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This paper presented the 4-point Newton-Explicit Group Modified Kaudd-SOR (4N-
EGMKSOR) iterative method combined with the wave variable transformation to solve 
the porous medium equation with source terms (PMES). The PMES is a nonlinear heat 
equation having a variety of naturally occurring physical applications, primarily 
describing processes involving fluid flow, heat transfer and diffusion. However, finding 
its exact solution can be difficult. Hence, a numerical method is a good option to obtain 
the approximate solution for the proposed problem. Firstly, we applied the wave 
variable transformation to the PMES to reduce the PMES into an ordinary differential 
equation (ODE). This reduction will significantly minimize the computational 
complexity of the approximate solution for the PMES. Furthermore, the finite 
difference scheme was used to discretize the reduced form of the PMES, which leads 
to a nonlinear finite difference approximation equation. The approximate nonlinear 
equation was then solved using the Newton method, yielding a system of linear 
equations. In order to solve the formed system of linear equations, the 4N-EGMKSOR 
was developed and its formulation was derived. In addition, the effectiveness of the 
proposed method was examined by performing some numerical calculations and the 
results were compared to the existing iterative methods, i.e., the Newton-Gauss Seidel 
(N-GS) and the 4-Point Newton- Explicit Group Modified Kaudd SOR (4N-EGMKSOR). 
Based on the comparison, the 4N-EGMKSOR iterative method proposed in this work is 
more efficient in getting the converged solution of the PMES compared to N-GS and 
4N-EGKSOR iterative methods. 
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1. Introduction 
 

The porous medium equation with source terms with source terms (PMES) is defined as Eq. (1) 
[1]: 
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                         (1) 

 
Such, that a  and b  are constants, whereas m  and r  are known rational numbers. This equation is 
useful in describing various physical phenomena in real-world problems. For instance, it can model 
population pressure in biological systems and the unsteady heat transfer in the quiescent medium 
[2]. Also, the PMES can represent a more realistic population dynamics modelling and wound healing 
process [3].  

Finding the exact solution to the PMES can be complicated. Hence, an approximate solution is 
needed to understand the proposed problem. To obtain an approximate solution, the numerical and 
analytical methods are the feasible options. Previously, some researchers proposed a few methods 
to solve the PMES using an analytical or numerical approach. For instance, analytical methods such 
as the Adomian decomposition method (ADM) employed by Pamuk [4], the total variation 
diminishing third-order Runge-Kutta scheme by Sari [5], the homotopy perturbation method (HPM) 
by Biazar et al., [1] and the combination of HPM with He’s polynomial by Saberi et al., [6] have been 
utilized to solve the PMES. However, a thorough search of the relevant literature related to the 
numerical approach for solving the PMES yielded only one related article, namely a quarter-sweep 
finite difference scheme paired with the modified successive over-relaxation iterative method [7]. 

Motivated by Chew et al., [7] prior research into the approximate solution to the PMES and the 
lack of a numerical approach to solving the PMES, we introduced in this work a numerical method 
for solving the PMES. The method is called the 4-Point Newton-Explicit Group Modified Kaudd 
Successive Over Relaxation iterative method (4N-EGMKSOR) combined with the wave variable 
transformation. This method basically reduces the PMES into an ordinary differential equation (ODE) 
first, then continues solving the resultant ODE numerically. Consequently, the computation costs of 
the approximate solution will be significantly minimized, which means an improvement in the 
efficiency of the proposed method. 

The theory of traveling waves has been studied by some authors to examine the existence of 
traveling waves to PMES [8,9]. Additionally, several travelling wave applications are also discussed in 
the literature by some authors in literatures [10-15]. For example, Ghazaryan et al., [10] applied the 
travelling wave variable to the Korteweg-deVries (KdV) equation to find its travelling wave solution. 
The authors found that the travelling wave solution to the KdV equation has a form of traveling plus 
solution for any positive value of wave speed, 0c   and the known initial value of the wave equation 

for KdV, which is 0 2 /c c  . On the other hand, Bibi et al., [11] also applied the travelling wave 

variable to the Korteweg-deVries (KdV) equation to reduce it into a nonlinear ODE. Then, the reduced 
KdV equation was solved using the Sine-Cosine method and some computerized symbolic 
calculations. Moreover, Mansour [13] performed a travelling wave analysis of the nonlinear doubly 
degenerate reaction-diffusion equation to find out the travelling wave behaviour of its solutions. The 
author found out that the behaviour of the travelling wave solution for the equation was sharp type 
and smooth. The previous years, Mansour [15] also conducted a travelling wave analysis to the 
density-dependent diffusion Nagumo equation to show the existence of travelling wave solution to 
that equation. This analysis was conducted using a nonlinear dynamical system approach and the 
author concluded that the equation admits the travelling wave solution with a sharp front type. 
Consequently, the density-dependent diffusion Nagumo equation can be simplified to its 
corresponding travelling wave equation and the solution to the reduced equation can be determined 
through numerical computation.  

The method that was proposed draws significant inspiration from the method described by Ali et 
al., [16,17], which effectively utilised wave variable transformation to solve linear partial differential 
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equations. Nevertheless, we expanded upon their research by applying it to a nonlinear partial 
differential equation (PDE) that exhibits nonlinearity. 

Section 2 covers the process of developing the finite difference approximation of the PMES, while 
section 3 focuses on the implementation of the 4N-EGMKSOR iterative approach. Subsequently, we 
showcased the quantitative outcomes in section 4 and provided our assessments of our research in 
section 5. 

 
2. Development of the Approximation Equation 

 
In this section, the approximate equation of the PMES will be derived by using the finite difference 

scheme according to its traveling wave equation. To begin with, the PMES in Eq. (1) can be rewritten 
as Eq. (2): 

 
22

1

2

m m ru u u
au amu bu

t x x

   
   

   
 ,                            (2) 

 
Where, 0 1x   and 0t  . Next, Eq. (2) is converted into its appropriate travelling wave equation 
using the travelling wave transformation. This transformation is a general transformation under the 
similarity transformation [14]. The travelling wave transformation introduced a variable given by 

x ct    where c  is a constant representing a wave velocity [10,14]. Furthermore,  ( , ) ( )u x t u   

will become the solution to the corresponding travelling wave equation. Now, some chain rules are 
applied on    to generate the appropriate substitutions for the derivatives in Eq. (2) which yield Eq. 

(3) [18]:  
 

t

x

xx

u cu

u u

u u

 



 

 .                                 (3) 

 
Substituting Eq. (3) into Eq. (2), the PMES then transformed into a corresponding nonlinear ODE, 

i.e Eq. (4): 
 

22
1

2

m m rdu d u du
c au amu bu

d d d  

  
    

 
 ,                            (4) 

 

With, I F    , where I ct    and 1F ct    and 0t  . Observe that Eq. (4) becomes a 

nonlinear second-order ODE that depends only on one independent variable  . Therefore, we are 

now dealing with an ODE instead of a PDE. Hereafter, Eq. (4) is discretized using the second-order 
central difference scheme, which is in Eqs. (5) and (6): 

 

1 1( )
2

i i
i

u u
u

h
  
  ,                  (5) 

 
and 

  



Journal of Advanced Research Design 

Volume 141 Issue 1 (2026) 130-146  

133 

1 1

2

2
( ) i i i

i

u u u
u

h
   

  .                           (6) 

 

The subscript i  is assigned the values 1, 2,3, , ( 1)i M  , whereas   (1 ) ( ) /h ct ct M     and 

M  being the number of subintervals in   direction. By substituting Eq. (5) and Eq. (6) into Eq. (4), 

Eq. (4) is transformed into Eq. (7): 
 

     
21

1 1 1 1 1 12m m r

i i i i i i i i i iu u u u u u mu u u bu   

             ,            (7) 

 

Such, that / 2c h  , 2/a h   and 2/ 4a h   . The Eq. (7) represents the finite difference 

approximation equation to Eq. (2). Furthermore, Eq. (7) also may be expressed as a nonlinear function 
as in Eq. (8): 

 

     
21

1 1 1 1 1 1( ) 2  m m r

i i i i i i i i i i if u u u u u u u mu u u bu   

              ,                       (8) 

 
for 1, 2,3, , ( 1)i M  . Following this, Eq. (8) was subjected to the Newton method [19] in order to 

derive its corresponding linear system, which is given by Eq. (9): 
 

   ( ) ( ) ( )k k kJ u u f u    ,                             (9) 

 

Where, 1 2 1( , , , )T

Mu u u u  , 
1 2 1( , , , )T

Mu u u u      ,   1 2 1, , ,
T

Mf f f f    and k  is the index 

of iteration. The Jacobian matrix in Eq. (9) is defined as in Eq. (10): 
 

1 2 1

1 2 1

1 2 1
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1 1 1

2 2 2( )

1 1 1
( 1) ( 1)

( )

M

M

M

k
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M M

f f f

f f f
J u

f f f




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 
 
 
 
 
 
 

  ,                        (10) 

 

Where, we defined /
jiu i jf f u   . Finally, we compute the approximate solutions ( )ku  via the Eq. 

(11): 
 

( 1) ( ) ( )k k ku u u     .                          (11) 

 
3. Implementation of the 4N-EGMKSOR Iteration 

 
To solve the system of linear equations in Eq. (9), we employed the 4-Point Explicit Group MKSOR 

iterative method, which is the combination of the Explicit Group [20] and MKSOR methods [21,22]. 
The MKSOR method implements the red-black ordering strategy [23] with two relaxation parameters 
[24], 

1  and 2  , in the domain of \ [ 2,0] . Thus, the formulation of the MKSOR iterative method 

based on Eq. (9) is expressed as in Eq. (12) [24,25]: 
 



Journal of Advanced Research Design 

Volume 141 Issue 1 (2026) 130-146  

134 

1 1
( 1) ( ) ( 1) ( )1

1 11

1
( )

1 j j

i

i M
k k k k

i i i iu j iu j
j j iiu

u u f f u f u
f





 
 
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  
  

  
  

        
    ,                     (12) 

for 2,4,6, , ( 2)i M  . 

 

The Jacobian matrix in Eq. (9) is large scale depending on the value of M . It is also a sparse matrix, 
as most of the entries are zero. In fact, it can be expressed as a tridiagonal matrix whose value is 
subject to the condition that: 
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M M M M

b c

a b c

a b c

a b c
J u

a b c

a b

  

    

 
 
 
 
 
 
 
 
 
 
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 
 

 ,                     (13) 

 

Where, 1/i i ia f u    , /i i ib f u    and 1/i i ic f u     for 1, 2,3, , ( 1)i M  . Therefore, we intended 

to facilitate the iteration process of the MKSOR iterative method by using the 4–point Explicit Group 
iterative method that was proposed by Evans to solve a large, sparse linear system [20]. 

The 4-point Explicit Group iterative method is constructed based on the linear system Eq. (9), 
resulting in a solution domain comprising several completed groups of four-points and ungroup 
points. The ungrouped points are dealt with utilizing a three-point iteration scheme [20]. Figure 1 
illustrates the groups of four-points enclosed in the red-coloured rectangle, the ungrouped points 
enclosed in the green-coloured rectangle and blue dots are the boundary conditions for the PMES 
expressed in Eq. (4). Furthermore, in addition, Eq. (7) is used to link the grid points in Figure 1 with h  
increment. 

 

 
Fig. 1. Finite grid network of the 4-point explicit group iterative method for traveling wave equation for the 
PMES  

 
Now, the 4-point EG iterative method for any completed group is given by the following Eq. (14) 

[26]; 
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Where, 1,5, , ( 7)p M  , ( )

1

k

p p p ps f a u     , 1 1p ps f   , 2 2p ps f    and ( )

3 3 3 4

k

p p p ps f a u       . 

To solve the ungroup points, we consider the following iterative method in Eq. (15): 
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 ,                          (15) 

 

Where, ( 3)p M  , 
( )

1

k

p p p ps f a u     , 1 1p ps f    and 
( )

2 2 2 3

k

p p p ps f c u       . Thus, by referring 

to Figure 1 as a guide and Eq. (12) until Eq. (14), the 4-point Explicit Group KSOR iterative method 
may be derived as in Eq. (16): 
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 ,                     (16) 

 
for 1,9,17 , ( 7)p M  as in Eq. (17): 
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 ,                     (17) 

 
for 5,13, 21, , ( 11)p M  . Last but not least, the ungrouped points are computed using Eq. (18): 
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                        (18) 

 
for ( 3)p M  . In addition, we presented the general algorithm for the 4-point Newton-Explicit 

Group MKSOR iterative method to solve the PMES, as shown in Algorithm 1. 
 

Algorithm 1: 4-Point Newton-Explicit Group MKSOR iterative method: 
 

i. Specify the boundary conditions i.e ( )Iu  and ( )Fu  . 

ii. Fix the value of  (0) ( ) ( ) / 2I Fu u u   , (0) 0.0u  , 1010u
  and 1010u 

  .  

iii. Set (0) 0u  . 

iv. Calculate J and f . 

v. Iterate Eq. (17), Eq. (18) and Eq. (19). 

vi. Verify whether ( 1) ( )k k

uu u 

   . If the statement is true, then continue to step vii. 
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Alternatively, perform step v again.  

vii. Compute ( 1) ( ) ( ).k k ku u u      

viii. Determine whether ( 1) ( )k k

uu u    . If the condition is true, then show the approximate 

solutions for PMES, i.e, ( 1)ku u  . Otherwise, repeat step iii until vii. 

 
To find the optimum values for the relaxation parameters 

1  and 
2 , a computer program is run 

with different values of   until the least number of iterations is attained. 
 

4. Numerical Results 
 
In this section, we examine the effectiveness of the 4-Point Newton-EGMKSOR (4N-EGMKSOR) 

method by considering the number of iterations ( k ), the execution time (measured in seconds) ( t ) 
and the highest absolute error ( E ) produced when solving several problems [27]. Furthermore, the 
4-Point Newton-Explicit Group (4N-EG) and 4-Point Newton-Explicit Group KSOR (4N-EGKSOR) 

iterative procedures are recognized as standard references. Regarding the tolerance error, 1010   
is used to assess the convergence of the solution for different sizes of linear systems [28], specifically 
for sizes 256,512,1024,2048M  and 4096 . The problems of interest are as follows: 

 
4.1 Problem 1 [9] 

 

Set 1m   and 2r   in Eq. (1). Thus, the equation becomes as such in Eq. (19): 
 

1 2u u
u u

t x x

   
  
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 .                          (19) 

 
This equation is a quasilinear fast diffusion equation with a quadratic reaction component. To 

verify our calculation, the exact solution given by Polyanin et al., [9] was utilized as a comparison, 
namely shown in Eq. (20): 

 
1

2

1

2

( )
( , ) 2 ln ,     0

2

x C
u x t C t t t t

t




   
 
 
 

 ,                         (20) 

 

Where, 1C and 2C are arbitrary constants. In this implementation, 1C  and 2C  have been set to 0.35 

and 1.35, respectively. 
 

4.2 Problem 2 [9] 
 
Consider an equation that describes the classical case of a gravity current in the air. Eq. (1) 

becomes Eq. (21): 
 

1 2u u
u u

t x x

   
  
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 .                          (21) 

 
Polyanin et al., [9] gave a particular solution for this equation, which is shown in Eq. (22): 
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1
2 2 2

2
( )

( , )
2 ( 2)

bmt m
m

bm x B
u x t Ae

a m


 
  

 
 ,                          (22) 

 

Where, A  and B  are arbitrary constants. For this problem, the value for , ,A a B  and b  are set to be 

1.35, 1.0, 0.35 and 1.0, respectively. 
 

4.3 Problem 3 [4] 
 
Taking 1m   and 0r   in Eq. (1) then, it becomes Eq. (23): 
 

u u
a u b

t x x

   
  

   
 ,                            (23) 

 
Which, is the heat conduction equation with source terms. The exact solution for this equation is 

( , ) ( )u x t x a b t   , where a  and b  are set as 1 and -3, respectively. 

 
4.4 Problem 4 [3] 

 

Let us take 2m , 1r   in Eq. (1), an equation representing a slow particle diffusion on a fresh 
membrane. Therefore, Eq. (1) becomes Eq. (24): 

 

2u u
u u

t x x

   
  

   
 .                          (24) 

 
The exact solution for this problem provided by Chew et al., [3] was utilized to verify the accuracy 

of the numerical solutions, which is shown as in Eq. (25): 
 

22 2
( , ) t tu x t x e e 

 

   
     
   

 ,                           (25) 

 
Where,   is an arbitrary constant that has been set to -1. 

 
The numerical computations were performed using a laptop computer with an Intel(R) Core i7-

6500U CPU running at 2.60GHz and 8 GB of RAM. All numerical results of this experiment are 
tabulated in Table 1 until Table 5. In addition, the percentage of reduction listed in Table 5 was 
computed using the expression in Eq. (26) [29]: 

 

4% 100%N EG N EGMKSOR

N EG

k k
k

k

 




    ,                          (26) 

 
for the number of iterations, Eq. (27) is produced: 
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4% 100%N EG N EGMKSOR

N EG

t t
t

t

 




    ,                          (27) 

 
for the computational time. On top of that, the maximum absolute error can be determined by the 
following Eq. (28) [19]: 

 
( 1) ( )

[1, 1]
max k k

i M
E u u

 
   .                          (28) 

 
Based on Table 1 to 4, the 4N-EGMKSOR iterative method required fewer iteration numbers ( k ) 

and less computation time ( t ) at every size linear system ( M ) compared to the 4N-EG and 4N-
EGKSOR iterative methods. This comparison is also presented graphically in Figure 2 to 9 for each 
problem, where the graph for the 4N-EGMKSOR lies below the graph of the 4N-EG and 4N-EGKSOR. 
Hence, it indicates that the values on the graph for the 4N-EGMKSOR are consistently lower than the 
values on the graph for the 4N-EG and 4N-EGKSOR. 

In Table 5, the 4N-EGMKSOR iterative method can minimize the iteration numbers against the 
4N-EG to at least 97.27%, 98.43%, 99.06%, 99.41% and 99.61% for the linear systems of size 256, 512, 
1024, 2048 and 4096, respectively. Furthermore, the 4N-EGMKSOR iterative method reduces the 
computational time against the 4N-EG to at least 55.88%, 97.47%, 98.79%, 99.24% and 99.51% for 
the linear systems of size 256, 512, 1024, 2048 and 4096, respectively. The reductions are achievable 
as a result of the use of two optimal relaxation parameters in the computation, as indicated in Table 
1 to 4. These parameters expedite the convergence rate towards an approximation of the PMES 
solution. In terms of accuracy, all methods are in good agreement. When compared to 4N-EG, the 
accuracy of the iterative methods 4N-EGKSOR and 4N-EGMKSOR improves marginally. Therefore, 
based on the experimental results, the 4N-EGMKSOR iterative method is more efficient in solving the 
PMES compared to the two benchmarks. 

 
Table 1 
The number of iterations, time taken and maximum absolute error  
generated by N-GS, 4N-EGKSOR and 4N-EGMKSOR at different grid sizes 
for Problem 1 

M  Method 
1

  
2

  k  t  E  

256 N-EG   49218 0.24 1.8681 × 10-04 
4N-EGKSOR -2.0462  1399 0.02 1.8709 × 10-04 
4N-EGMKSOR -2.0489 -2.0493 1321 0.02 1.8709 × 10-04 

512 N-EG   166788 1.68 1.8727 × 10-04 
4N-EGKSOR -2.0231  2762 0.03 1.8707 × 10-04 
4N-EGMKSOR -2.0244 -2.0247 2613 0.03 1.8706 × 10-04 

1024 N-EG   549995 10.95 1.8891 × 10-04 
4N-EGKSOR -2.0117  5420 0.16 1.8706 × 10-04 
4N-EGMKSOR -2.0123 -2.0125 5164 0.13 1.8706 × 10-04 

2048 N-EG   1734570 67.41 1.9548 × 10-04 
4N-EGKSOR -2.0059  10709 0.55 1.8706 × 10-04 
4N-EGMKSOR -2.0062 -2.0063 10181 0.51 1.8706 × 10-04 

4096 N-EG   5129203 400.87 2.2224 × 10-04 
4N-EGKSOR -2.0030  21024 2.11 1.8706 × 10-04 
4N-EGMKSOR -2.0032 -2.0033 20007 1.95 1.8706 × 10-04 
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(a) (b) 

Fig. 2. (a) Shows the difference in iteration counts against the size of linear system for N-EG, 4N-
EGKSOR and 4N-EGMKSOR. (b) Shows the close up look of the difference in iteration counts against 
the size of linear system for the 4N-EGKSOR and 4N-EGMKSOR 

 

 
(a) (b) 

Fig. 3. (a) Shows the difference in time taken (seconds) against the size of linear system for N-EG, 4N-
EGKSOR and 4N-EGMKSOR. (b) Shows the close up look of the difference in time taken (seconds) 
against the size of linear system for the 4N-EGKSOR and 4N-EGMKSOR 
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Table 2 
The number of iterations, time taken and maximum absolute error  
generated by N-GS, 4N-EGKSOR and 4N-EGMKSOR at different grid sizes for 
Problem 2 

M  Method 
1

  
2

  k  t  E  

256 N-EG   82738 0.03 1.6583 × 10-03 
4N-EGKSOR -2.0528  2079 0.02 1.6583 × 10-03 
4N-EGMKSOR -2.0531 -2.0535 1951 0.02 1.6583 × 10-03 

512 N-EG   289268 3.12 1.6588 × 10-03 
4N-EGKSOR -2.0535  4076 0.05 1.6584 × 10-03 
4N-EGMKSOR -2.0535 -2.0265 3875 0.05 1.6584 × 10-03 

1024 N-EG   992073 19.62 1.6599 × 10-03 
4N-EGKSOR -2.0130  8035 0.22 1.6584 × 10-03 
4N-EGMKSOR -2.0133 -2.0133 7673 0.19 1.6584 × 10-03 

2048 N-EG   3318699 130.43 1.6644 × 10-03 
4N-EGKSOR -2.0065  15779 0.81 1.6584 × 10-03 
4N-EGMKSOR -2.0067 -2.0067 15185 0.76 1.6584 × 10-03 

4096 N-EG   10746838 851.63 1.6880 × 10-03 
4N-EGKSOR -2.0033  31028 3.11 1.6584 × 10-03 
4N-EGMKSOR -2.0034 -2.0034 30124 3.10 1.6584 × 10-03 

 

 
(a) (b) 

Fig. 4. (a) Shows the difference in iteration counts against the size of linear system for N-EG, 4N-
EGKSOR and 4N-EGMKSOR. (b) Shows the close up look of the difference in iteration counts against 
the size of linear system for the 4N-EGKSOR and 4N-EGMKSOR 
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(a) (b) 

Fig. 5. (a) Shows the difference in time taken (seconds) against the size of linear system for N-EG, 4N-
EGKSOR and 4N-EGMKSOR. (b) Shows the close up look of the difference in time taken (seconds) 
against the size of linear system for the 4N-EGKSOR and 4N-EGMKSOR 

 
Table 3 
The number of iterations, time taken and maximum absolute error  
generated by N-GS, 4N-EGKSOR and 4N-EGMKSOR at different grid sizes 
for Problem 3 

M  Method 1
  

2
  k  t  E  

256 N-EG   65556 0.31 1.5132 × 10-07 
4N-EGKSOR -2.0518  1574 0.00 9.5551 × 10-11 
4N-EGMKSOR -2.0522 -2.0520 1559 0.00 6.6120 × 10-11 

512 N-EG   228564 2.20 6.0648 × 10-07 
4N-EGKSOR -2.0258  3118 0.06 1.1923 × 10-10 
4N-EGMKSOR -2.0260 -2.0260 3089 0.03 1.0040 × 10-10 

1024 N-EG   780456 15.05 2.4307 × 10-07 
4N-EGKSOR -2.0129  6186 0.16 1.3166 × 10-10 
4N-EGMKSOR -2.0131 -2.0129 6108 0.16 1.2480 × 10-10 

2048 N-EG   2600860 101.97 9.9434 × 10-07 
4N-EGKSOR -2.0065  12222 0.60 1.9517 × 10-10 
4N-EGMKSOR -2.0066 -2.0065 12099 0.60 1.8303 × 10-10 

4096 N-EG   8418880 649.08 4.4469 × 10-07 
4N-EGKSOR -2.0033  24144 2.56 3.2026 × 10-10 
4N-EGMKSOR -2.0033 -2.0033 23978 2.37 3.1766 × 10-10 
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(a) (b) 

Fig. 6. (a) Shows the difference in iteration counts against the size of linear system for N-EG, 4N-
EGKSOR and 4N-EGMKSOR. (b) Shows the close up look of the difference in iteration counts against 
the size of linear system for the 4N-EGKSOR and 4N-EGMKSOR 

 

 
(a) (b) 

Fig. 7. (a) Shows the difference in time taken (seconds) against the size of linear system for N-EG, 4N-
EGKSOR and 4N-EGMKSOR. (b) Shows the close up look of the difference in time taken (seconds) 
against the size of linear system for the 4N-EGKSOR and 4N-EGMKSOR 
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Table 4 
The number of iterations, time taken and maximum absolute error 
generated by N-GS, 4N-EGKSOR and 4N-EGMKSOR at different grid sizes 
for Problem 4 

M  Method 1
  

2
  k  t  E  

256 N-EG   54639 0.28 4.5052 × 10-03 
4N-EGKSOR -2.0618  1649 0.02 4.5052 × 10-03 
4N-EGMKSOR -2.0623 -2.0624 1490 0.02 4.5052 × 10-03 

512 N-EG   189895 1.82 4.5050 × 10-03 
4N-EGKSOR -2.0306  3256 0.05 4.5052 × 10-03 
4N-EGMKSOR -2.0307 -2.0310 2947 0.05 4.5052 × 10-03 

1024 N-EG   649901 12.70 4.5055 × 10-03 
4N-EGKSOR -2.0154  6386 0.17 4.5052 × 10-03 
4N-EGMKSOR -2.0155 -2.0157 5820 0.15 4.5052 × 10-03 

2048 N-EG   2217420 85.91 4.5092 × 10-03 
4N-EGKSOR -2.0077  12533 0.64 4.5052 × 10-03 
4N-EGMKSOR -2.0078 -2.0079 11502 0.57 4.5052 × 10-03 

4096 N-EG   7382332 567.45 4.5241 × 10-03 
4N-EGKSOR -2.0039  24584 2.93 4.5052 × 10-03 
4N-EGMKSOR -2.0039 -2.0040 22625 2.19 4.5052 × 10-03 

 

 
(a) (b) 

Fig. 8. (a) Shows the difference in iteration counts against the size of linear system for N-EG, 4N-
EGKSOR and 4N-EGMKSOR. (b) Shows the close up look of the difference in iteration counts against 
the size of linear system for the 4N-EGKSOR and 4N-EGMKSOR 
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(a) (b) 

Fig. 9. (a) Shows the difference in time taken (seconds) against the size of linear system for N-EG, 4N-
EGKSOR and 4N-EGMKSOR. (b) Shows the close up look of the difference in time taken (seconds) 
against the size of linear system for the 4N-EGKSOR and 4N-EGMKSOR 

 
Table 5 
Summary of the reduction in the number of iterations    

( %k ) and execution time ( %t ) of the 4N-EGMKSOR 
against N-EG for all test problems 
M  %k  %t  

256 97.27 – 97.64 55.88 - 94.62 
512 98.43 – 98.66 97.47 - 98.59 
1024 99.06 - 99.23 98.79 - 99.05 
2048 99.41 - 99.54 99.24 - 99.42 
4096 99.61 - 99.72 99.51 - 99.64 

 
5. Conclusion 

 
The 4-Point Newton-Explicit Group Modified Kaudd Successive Over Relaxation (4N-EGMKSOR) 

iterative method was effectively integrated with the wave variable transformation to numerically 
solve the porous medium equation with source terms (PMES). The wave variable transformation that 
reduces the PMES into an ODE with an independent variable   has contributed in reducing the 

computation complexity. Furthermore, the 4-Point Explicit Group iterative strategy also helps 
facilitate the computational of the linear system as it computes four equations simultaneously. 
Moreover, the MKSOR iterative method which incorporates two relaxation parameters, which are 

1  and 
2  enhance the convergence towards the approximate solution of the PMES. Therefore, the 

proposed method has been shown to be both efficient and accurate in providing an approximation 
of the PMES solution. Consequently, the method proposed is a feasible alternative numerical method 
for estimating solutions to nonlinear parabolic partial differential equations that allow for the 
existence of travelling wave solutions. The work will extend to a family of half-sweep iterative 
algorithms [30]. 
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