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The signal processing in ground-based synthetic aperture radar (GB-SAR) has two main 
processes. One is the pre-processing data to prepare the data; the other is an algorithm 
to establish the single-look complex (SLC) image. Normally, the pre-processing data 
process wastes time recording huge signals for processing and a nested loop inside the 
process. In this paper, we propose a dataflow management approach for the pre-
processing data process to overcome the wasted time on recording data. Against the 
nested loop, we proposed model-based design (MBD) techniques that support the 
Hardware Description Language (HDL) coder in Simulink. The proposed method 
performs well without a nested loop and can be implemented on the Xilinx Zynq Z-
7020 Field Programmable Gate Array (FPGA) board, which is a low-cost FPGA. From the 
result, our proposed method has a high average percentage error in some stages, but 
the output from the final stage gives a very low average percentage error. The data 
after our proposed method can give the SLC image, which has the same significance as 
the SLC image from the original method. Our proposed implementation can perform 
on the FPGA as well. Therefore, the proposed method using dataflow management 
with MBD gives data with a low average percentage error and the SLC image similar to 
the original method. 
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1. Introduction 
 

Currently, Ground-based synthetic aperture radar (GB-SAR) technology is mainly used for 
collecting data of interest on Earth, such as measuring soil deformation, biomass monitoring, building 
infrastructure and even detecting foreign objects at airstrips of the airports [1-4]. It uses radio 
frequency transmission from the radar system's transmitter to a target object and detects differences 
in objects through the reflection properties of the object's surface [5]. After the radar system receives 
the reflected signal. Then the reflected signal is compared with transmitted signal to obtain a signal 
at baseband frequency called Dechirp signal. Then the Dechirp signal forwards it to the signal 
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processing part. The signal processing consists of 2 parts: 1. Data management (Pre-processing Data) 
and 2. Algorithms for processing signal and converting to 2D images or Single Look Complex (SLC) [6]. 

Pre-processing data is the process of organizing large data into smaller sizes to process the data 
through algorithms to reduce the time required for processing. This is because the GB-SAR system 
has a Stop-Wait collection signal operation, which has the disadvantage that there will be 
unnecessary data for processing through the algorithm during the movement of the transmitter and 
receiver of the radar system. The algorithm used in the GB-SAR system is an algorithm for managing 
data and converting it into high-resolution SLC Images [7-10]. The basic operation of the algorithm 
starts by receiving pre-processed data and doing the Range compression and the Azimuth 
compression, then improving the quality of the data with the Stolt interpolation [11-16]. Next, the 
obtained data is plotted as an SLC Image. All the mentioned steps can be done only after the signal 
has been recorded. 

In this research, we have presented data flow management in real-time for pre-processing data 
using the Model-Based Design (MBD) method on Simulink which is a practical design methodology 
that can develop rapid prototyping by using MATLAB/Simulink [17-20]. Many applications applied 
optimization methods such as fixed-point optimization, high-level synthesis optimizations and 
control data flow graph (CDFG)-based optimizations to improve the performance of lower-cost FPGAs 
with limited resources [21-24]. A data flow architecture is a high-impact method to improve 
performance [25-27]. However, there are limitations in that the MathWorks HDL requires that 
designers follow the coding guidelines [28]. Therefore, there are optimization rooms for code 
optimization and dataflow management. The proposed MBD is designed to depend on one-by-one 
data input which can be processed immediately. With our proposed MBD, the recorded signal isn't 
needed. With the MBD technique, the pre-processing data can be applied to FPGA boards that help 
with computation for signal processing. In this work, the Xilinx Zybo Z-7020 FPGA board was chosen 
which is a low-cost FPGA board to prove our MBD can perform on FPGA. 

 
2. Methodology  
2.1 Ground-Based Synthetic Aperture Radar (GB-SAR) Signal Processing 

 
In this paper, the Range Migration Algorithm (RMA) algorithm is the algorithm used for GB-SAR 

signal processing, which will be created through Simulink and MATLAB software. The RMA algorithm 
design will be optimized to suit the reflected signal recorded from the receiver. The GB-SAR signal 
processing is divided into three main processes: 
 

i. Data preparation 
ii. RMA algorithm computational 

iii. Data transformation into images.  
 
Data preparation is the first important step in the GB-SAR signal processing to handle data 

recorded from the audio recording program. The recorded signals have two parts of information: 
 

i. Pulse signal  
ii. Dechirp signal.  

 
Throughout the GB-SAR operation, the pulse signals are recorded in the audio recording program. 

Pulse signals are used in the data preparation stage to obtain accurate information in the Dechirp 
signal. Figure 1 shows the waveform of the recorded signal. 
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Fig. 1. An example of audio signals recorded with an audio recording program on Audacity [29] 

 
Calculating the RMA algorithm is the second main step of SAR signal processing. The MBD 

implementation is shown in Figure 2. Input data is raw data converted from audio file to numbers 
and retrieved through the Simulink block in MATLAB. For splitting the raw data, the reshape block is 
used to rearrange the data into vector format. Two selector blocks are then used to divide the raw 
data into two sets:  
 

i. Pulse signal data  
ii. Dechirp signal data.  

 
Three MATLAB function blocks are used in the data separation process:  

 
i. The first block is used for separating data by position, which is called the parse by position 

block. 
ii. The second block separates data using the pulse signal, which is called the parse by pulse 

iii. The third block makes the data accurate and reliable, which is called the normalization data 
block. 

 

 
Fig. 2. The RMA algorithm designed using MBD techniques on Simulink 
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Similarly, calculating RMA also uses the MATLAB function blocks. There are consist of 5 steps 
inside: 
 

i. Applying the window function for filtering data 
ii. Along Track FFT by mapping the total number of data points to a suitable number for Fourier 

transformation 
iii. Creation and applying matched filter to the data 
iv. Performing the Stolt interpolation process 
v. Cleaning up the data and performing the inverse FFT. 

 
After the mentioned steps, we send the data to an M-file and converting data into images is the 

process of converting data into an image showing the intensity of the electromagnetic field reflected 
from an object. Within this step, we use an M-file to create the SLC image. 

 
2.2 Code Optimization Method 

 
We attempt to organize GB-SAR signal processing into stages of signal processing blocks to enable 

flexible, readily modifiable design. In the original method, we can divide it into 7 blocks, as shown in 
Figure 3(a). Block S1-S5 is data preprocessing to obtain the clean data for the IFFT and FFT of blocks 
S6 and S7, respectively. Block S1 (Rp_start) detects the pulse signal to find the recording point. Block 
S2 writes the signals to the buffer. Blocks S3 and S4 are new pulse synchronization and finding 
maximum amplitude signals to obtain the best-reflected signals. Block S5 writes the clean signals to 
another buffer. These blocks are MATLAB codes and some blocks cannot be synthesized to obtain 
the Hardware Description Language (HDL) codes. This means that such blocks cannot be 
implemented in FPGAs. 
 

  
(a) (b) 

Fig. 3. SAR signal processing blocks: (a) the original method vs (b) the proposed method 

 
There are limitations in Mathworks, where HDL coder cannot stream a loop if there are two or 

more nested loops at the same hierarchy level within another loop [28]. Moreover, the loop index 
must be known and increase by 1 on each iteration. Therefore, we optimize MATLAB code to satisfy 
the coding guides of the MathWorks HDL coder as follows. 
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According to the HDL coder's coding guides, we optimized the SAR signal processing to six blocks 
by collapsing blocks S3-S5 into S3-S4, defining the exact variables in S3 and S4 and reducing the 
redundant divided count in block S5, as shown in Figure 3(b). Table 1 shows the codes comparison 
between the original method and the proposed method. Now, the optimized code can be synthesized 
to HDL codes. 
 

Table 1  
The code comparison between the original method and the proposed method 
The original method The proposed method 

Block S1 
rpstart = abs(trig)>mean(abs(trig)); 

Block S1 
rpstart = abs(trig)>mean(abs(trig)); 

Block S2 
count = 0; 
Nrp = Trp*FS; 
  
for ii = Nrp+1:size(rpstart,1)-Nrp 
  if rpstart(ii) == 1 & sum(rpstart(ii-Nrp:ii-1)) == 
0 
    count = count + 1; 
    RP_org(count,:) = s(ii:ii+Nrp-1); 
    RPtrig_org(count,:) = trig(ii:ii+Nrp-1); 
  end 
end 

Block S2 
count = 0; 
Nrp = Trp*FS; 
  
for ii = Nrp+1:size(rpstart,1)-Nrp 
  if rpstart(ii) == 1 & sum(rpstart(ii-Nrp:ii-1)) == 0 
    count = count + 1; 
    RP_pro(count,:) = s(ii:ii+Nrp-1); 
    RPtrig_pro(count,:) = trig(ii:ii+Nrp-1); 
  end 
end 

Block S3 
start = (RPtrig_org(jj,:)> thresh); 

Block S3 
start = (RPtrig_pro(jj,:)> thresh); 
for kk=17:(size(start,2)-2*N) 
  if start(kk)==1&&start(kk-2)==0&&start(kk-3)==0&&start(kk-
8)==0&&start(kk-16)==0 
    new_start(kk)=1; 
  end 
end 

Block S4 
max(RPtrig_org(jj,ii:ii+2*N)); 
if mean(start(ii-10:ii-2)) == 0 & I== 1 

Block S4 
count = 0; 
for ii = 1765:(size(new_start,2)-2*N) 
  if mean(new_start(ii-1764:ii-1))==0&&new_start(ii)==1 
    count = count + 1; 
    SIF = RP_pro(jj,ii:ii+N-1)'+SIF; 
    RP_syn_pro(jj,:) = RP_pro(jj,ii:ii+N-1); 
  end 
  if count == 1 
    break 
  end 
end 

Block S5 
count = count + 1; 
SIF = RP_org(jj,ii:ii+N-1)' + SIF; 
 

Block S5 
q = ifft(SIF); 

Block S6 
q = ifft(SIF/count); 
 

Block S6 
sif_pro(jj,:)=fft(q(size(q,1)/2+1:size(q,1))); 
 

Block S7 
sif_org(jj,:)=fft(q(size(q,1)/2+1:size(q,1))); 
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2.3 Dataflow Accelerators in FPGA 
 
The SAR process is signal processing, which is divided into blocks as shown in Figure 3(b). Each 

block can be either a function block or an iteration block. Normally, these blocks operate in sequence. 
The predecessor block should be finished before starting the successor block. Such a behaviour is 
difficult to achieve real-time processing. Therefore, we apply dataflow accelerators to improve the 
throughput of the processing.  

Figure 4 and 5 show the concepts of dataflow accelerators in FPGA. The dataflow accelerators are 
based on high-level synthesis techniques such as operation scheduling and pipelining [26,27]. The 
data dependent between functions is pre-processed to insert a pipeline to increase speed. Figure 4 
shows the sequence process of four functions without the dataflow accelerators. Consider Figures 
4(a) and 4(b), where there are dataflow relations in sequence functions. Without the concept of 
dataflow accelerators, Func_B waits for results from func_A. Func_C waits results from func_B. 
Func_D waits results from func_C. If the functions are scheduled in sequence as shown in Figure 4(c), 
the latency is nine clock cycles and the throughput is nine clock cycles. When the pipeline is applied, 
the next iteration of the four functions can start earlier. As a result, the latency is still nine clock 
cycles, but the throughput is now three clock cycles. 
 

 

 

(a) All functions inside 
the loop for 
computation 

(b) The sequence of computation inside the loop without dataflow accelerators 

  

 
(c) Without dataflow accelerators, latency is 9 clock cycles and 
throughput are 9 clock cycles 

 

 
(d) With dataflow accelerators, latency is 9 clock cycles and throughput are 3 clock cycles 

Fig. 4. Dataflow relations in functions [27] 

 
Figure 5 shows the sequence process of four function with the concepts of dataflow accelerators 

in FPGA. Consider Figure 5(a), where there is a dataflow relation between iteration loops. In each 
block, iteration loops are repeated according to the number of incoming data samples. Then, the 
successor block will begin after the predecessor block is completed. Such a sequential process takes 
a lot of time. In this research, we propose a dataflow architecture to accelerate such data processing. 
Loop_1 and Loop_2 are consecutive loops. An argument of Loop_2 (c[i]) uses results from Loop_1 
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(b[i]). In other words, there is a dataflow from Loop_1 to Loop_2. Dataflow pipelining is applied to 
allow Loop_2 to start when data is ready. As a result, the throughput is improved, as shown in Figure 
5(b). 

 

 
(a) Loop functions and the sequence of computation for each loop without dataflow accelerators 

 

 
(b) The sequence of computation for each 
loop with dataflow accelerators 

Fig. 5. Dataflow relations in iteration loops [27] 

 
According to the concepts in Figures 4 and 5, the SAR process in Figure 3(b) can be scheduled as 

Figure 6. Block S2 has a conditional relation with S1. Only when S1 detects the start signal recording 
condition, block S2 starts recording the signal into the buffer. Blocks S2 and S3 have a dataflow 
relation. When block S2 starts recording the signal to buffer 1, which is implemented by a dual-port 
RAM that can read and write at the same time, block S3 can be scheduled to start as soon as block 
S2 starts recording the signal. Blocks S3 and S4 have the same conditional relation as blocks S1 and 
S2. Therefore, block S4 can only be started when S3 detects a complete pulse. Blocks S4 and S5 and 
blocks S5 and S6 are related to dataflow, but IFFT and FTT must wait for the signal samples to reach 
the size of IFFT and FTT to perform calculations. 
 

 
(a) Sequential operations 

 

 
(b) Operations scheduled with dataflow relation 

Fig. 6. Dataflow schedule of Figure 3(b) 
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3. Results 
 
We use MATLAB/Simulink to generate HDL code and simulate the proposed method on a Xilinx 

Zynq Z-7020 FPGA. We set the dataflow to our MBD for similar real-time processing as 1 by 1 input 
data. Then use M-file to generate an SLC image. Our experimental results show the sample of RP and 
RPtrig between the original method (S5) and purposed method (S4). The resources were used in the 
Register Transfer Level (RTL) code and a Xilinx Zynq Z-7020 FPGA. The critical data path estimation 
shows a delay of data that occurs inside our proposed method. The comparison of the average 
percentage error of our proposed method and the original method between M-file Simulink. The SLC 
image was established by data via our proposed method as well. 

 
3.1 The Sample of RP and RPtrig of the Original Method and Purposed Methods 

 
From the original method, the RP data of S5 is decreased depending on the condition of S3 and 

S4. The S3 and S4 of the original method depend on the RPtrig data. The sample of RP and RPtrig of 
the original method is shown in Figure 7(a). On the other hand, the RP data from S4 of the proposed 
method uses S3 as a trigger signal to buffering data in S4. The S3 of the proposed method generates 
the perfect pulse that depends on the RPtrig data. The sample of RP and RPtrig of the proposed 
method is shown in Figure 7(b). The proposed method is to select the RP data that matches the first 
perfect pulse of S3 and send it to S5 to reduce the number of computations. 
 

  
(a) (b) 

Fig. 7. The sample of RP and RPtrig (a) of the original method and (b) the proposed method 

 
3.2 The Resource Usage Results in RTL Code and FPGA 

 
The resource usage results in the RTL code from the HDL coder tool are shown in Table 2. The 

first column is a type of resource inside the proposed method which consists of Adder/Subtractors, 
Registers, Total 1 Bit Registers, RAMs, Multiplexers, I/O Bits and Dynamic Shift Operator. The second 
column is the total number of resources that were generated for our proposed method. 

In addition, Table 3 shows the resource utilization on a Xilinx Zynq Z-7020 FPGA which specifically 
depends on the RTL code. The resources in RTL code were implemented on the resources inside a 
Xilinx Zynq Z-7020. Adder/Subtractors and Multiplexers were implemented by LUT that use 7.98% of 
all LUT in FPGA. Registers and Total 1 Bit Registers were implemented by Flip-Flops (FF) which uses 
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1.69% of all FF in FPGA. RAMs were implemented by LUTRAM and Block RAM (BRAM) that use 0.05% 
and 95.36% of all LUTRAM and BRAM in FPGA. I/O Bits were implemented by IO that use 1.60% of all 
IO in FPGA. Our proposed method must control dataflow by Trigger signal that uses Dynamic Shift 
operators in the RTL code to generate it. Therefore, the resources for Dynamic Shift operators were 
implemented by Global Clock Simple Buffer (BUFG) and Mixed-Mode Clock Manager (MMCM) using 
9.38% and 25% of all BUFG and MMCM in FPGA. 
 

Table 2 
Resource usage results from the RTL code 
Resources Proposed method 

Adder/Subtractors 58 
Registers 28 
Total 1-Bit Registers 337 
RAMs 2 
Multiplexers 912 
I/O Bits 167 
Dynamic Shift operators 14 

 
Table 3  
Resource utilization on a Xilinx Zynq Z-7020 FPGA 
Resources Available Proposed method Utilization (%) 

LUT 53200 4247 7.98 
FF 106400 1797 1.69 
LUTRAM 17400 9 0.05 
BRAM 140 133.5 95.36 
IO 125 2 1.60 
BUFG 32 3 9.38 
MMCM 4 1 25.00 

 
3.3 The Critical Path Estimation 

 
Table 4 shows the critical path estimation of the proposed method. The critical path is the 

propagation delay occurring in each block path within the MBD. The first column shows the order of 
the block paths from fastest to slowest in the propagation delay in the block path occurring in the 
critical path. The second column shows the beginning of the propagation delay that occurs in the 
propagation delay of the block path. The third column shows the propagation delay of each block 
path in the MBD. 

From the results, the proposed method with dataflow accelerators in the FPGA technique is 
modified by Dual Port RAM System1 and Dual Port RAM System2 which made a real-time dataflow 
(0 delays) in Dual Port RAM System2 and Abs1_outbuff block paths. 

 
Table 4  
Critical path estimation 
Id Propagation (ns) Delay (ns) Block Path 

1 3.1425 3.1425 Dual Port RAM System1 
2 3.1425 0.0000 Dual Port RAM System2 
3 3.1425 0.0000 Abs1_outbuff 
4 5.3595 2.2170 Compare To Zero_relop_outbuff 
5 5.6025 0.2430 Logical Operator2 
6 6.2710 0.6685 Logical Operator1 
7 6.6880 0.4170 Switch16 
8 7.1105 0.4225 Sum8 
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9 7.9815 0.8710 Relational Operator17 
10 8.6555 0.6740 Logical Operator31 
11 9.7960 1.1405 AND1 
12 10.0390 0.2430 Logical Operator29 
13 10.7130 0.6740 Logical Operator30 
14 11.1300 0.4170 t1 
15 26.9070 15.7770 Sum9_outbuff 
16 29.1240 2.2170 Relational Operator16_outbuff 
17 29.7980 0.6740 Logical Operator22 
18 30.0410 0.2430 Logical Operator32 
19 30.6565 0.6155 Logical Operator21 
20 31.0735 0.4170 t 
21 46.8505 15.7770 Sum11_outbuff 
22 62.6275 15.7770 Sum12_outbuff 
23 62.7915 0.1640 Unit Delay14 

 
3.4 The Comparison of the Average Percentage Error 

 
After implementing the proposed method on FPGA, we collect the results on each state from the 

proposed method. The results can be separated into 2 types. The first type is the results from FPGA 
and the second from Simulink. The results from FPGA consist of data from S1, S2 and S4. The results 
from Simulink consist of data from S5 and S6. Then we compare the results collected from M-file and 
Simulink. The results from the m-file are the original method and the proposed method. The results 
from Simulink are the proposed method and the FPGA board. Then we compare the results by 
average percentage error of the results between the original method, the proposed method and the 
FPGA with Eq. (1). The comparison of the average percentage error is shown in Table 5.  
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =
∑ (

|𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑖−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑖|

|𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑖|
×100)𝑁

𝑖=1

𝑁
       (1) 

 
Table 5  
The comparison of the average percentage error 
Parameters M-file Simulink 

Original and proposed Original (M) and proposed Original (M) and FPGA Proposed and FPGA 

S1 0 16.5004 16.5004 0 
S2(RP) 0 0 0 0 
S2(RPtrig) 0 0 0 0 
S4 0.3531 0.3531 0.3531 0 
Real S5 49.9963 49.9963 49.9963 0 
ImaginaryS5 0.0028 0.0028 0.0028 0 
Real S6 0.1263 0.1263 0.1263 0 
ImaginaryS6 0.1301 0.1301 0.1301 0 

 
In the case of M-file, the average percentage error will compare with the original method and the 

proposed method in the M-file. The average percentage error between the original method and the 
proposed method of S1 and S2 is 0%. In the S4, the original method is finding the position of the max 
value of the RPTrig and comparing it with the same position in the pulse of S3 and collecting the 
results. The proposed method is finding the perfect pulse in S3 and collecting the results. The S5 and 
S6 in the proposed method is the S6 and S7 in the original method. The average percentage error of 
S4 in M-file is 0.3531%. We compute the data after S4 with IFFT and FFT that transform the data to 
complex numbers. The average percentage error of the S5 and S6 should be calculated with the real 



Journal of Advanced Research Design 

Volume 135 Issue 1 (2025) 169-182  

179 

part and imaginary part. Ther average percentage error of the S5 is 49.9963% in the real part and 
0.0028% in the imaginary part. The average percentage error of the S6 is 0.1263% in the real part and 
0.1301% in the imaginary part. So, the average percentage error of S5 in the real part gives the most 
incorrect results when compared with the original method. 

In the case of Simulink, the average percentage error will be compared with the original method 
in the M-file, the proposed method in Simulink and the FPGA. The average percentage error of S1 
between the original method and the proposed method in Simulink is 16.5004%. The results from S2 
are dependent on S1. But the average percentage error of S2 is 0% which proves the results from S2 
are correct. And the average percentage error of S4, S5 and S6 are same as the average percentage 
error in M-file. So, our proposed method can give correct results when running in Simulink. Then we 
implement our proposed method on FPGA and collect the results for comparison between the 
original method in M-file, the proposed method in Simulink and the FPGA. In the case of the 
comparison of the average percentage error between the original method in the M-file and the FPGA, 
all average percentage errors are same as in all average percentage errors between the original 
method and the proposed method in Simulink. In the last case, we will compare the average 
percentage error between the proposed method in Simulink and the FPGA. All average percentage 
errors are 0. Therefore, the proposed method that is implemented on FPGA performs well and can 
also produce the same results as compared to the proposed method in Simulink.  

 
3.5 The SLC Image after Pre-Processing Data of Original Method and Proposed Method 

 
After pre-processing data with the original method and the proposed method, we use this data 

to process via an algorithm to generate an SLC image. The SLC image after pre-processing data with 
the original method and the proposed method are shown in Figure 8(a) and Figure 8(b). The cross 
range is the distance moving of the GB-SAR system. A dark blue colour which is -95 dB colour bar in 
the cross range is a blind spot. The down range is the distance between objects and GB-SAR system. 
The dB colour bar indicates the reflected object signal index. The higher value of -75 dB colour bar 
indicates that there is an object at that location. Therefore, the data after pre-processing data with 
the proposed method can be used as the data for processing in the RMA algorithm due to the SLC 
image in Figure 8(b) having the same significance as Figure 8(a). 

 

 
(a) 

 

 
(b) 

Fig. 8. The SLC image after pre-processing data with (a) the original 
method (b) the proposed method 
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4. Conclusions 
 
This paper optimized the pre-processing data step using dataflow management with the MBD 

technique to improve the data flow from the original method. The original method has a waiting time 
and nested loop for computation that all made the longest time to generate an SLC image. Our 
proposed method improves the pre-processing step by reducing the waiting time and nest loops 
inside. Our proposed method can be implemented on FPGA with the HDL coder in Simulink. The data 
result after our proposed method can generate an SLC image. The target device for implementation 
is the Xilinx Zynq Z-7020 FPGA board. 

For the optimization process, we proposed to reduce the state of the pre-processing data from 7 
states to 6 states by collapsing S3-S4 of the original method into S3 of our proposed method. Because 
S3 and S4 of the original method are made a nested loop and don't support HDL coder for 
implementation on FPGA. This paper proposes the new state S3 without a nested loop. In our S3, we 
find the perfect pulse to select the best-reflected signal. We design the proposed method with the 
MBD technique which supports Simulink. Inside the proposed method, we select all components that 
support in HDL coder which can be implemented on FPGA. To prove the proposed method, we apply 
the proposed method to a M-file, Simulink and the FPGA. Then we compare the correctness of the 
outputs with the average percentage error between the original state (S1, S2, S5, S6, S7) and the 
proposed method (S1, S2, S4, S5, S6) 

From the experimental results, the average percentage error of S1 is 0% in M-file and 16.5004% 
in Simulink between the original and proposed methods. By the way, the average percentage error 
of S2 is 0% which means the output from the proposed method is the same output from the original 
method. The average percentage error of S4 is 0.3531% in M-file and Simulink between the original 
and proposed methods but we can accept that value because we use a different method to select 
the best-reflected signal. The highest average percentage error has come from S5 in the real part but 
when focused on the final output the average percentage errors of S6 are 0.1263 and 0.1301 in the 
real and imaginary parts which can be accepted. For the implementation of FPGA, the proposed 
network on FPGA gives the same average percentage error between the original and proposed 
methods. The proposed network can perform on FPGA as well because all average percentage errors 
between the proposed method in Simulink and the FPGA are 0%. To prove our proposed method, we 
will use the output from S6 of the proposed method and S7 of the original method as data to generate 
the SLC images via an algorithm. The SLC image from the proposed method has the same significance 
data as the SLC image from the original method. Therefore, our proposed network can be instead of 
the original method because it gives a similar SLC image and our proposed method can perform on 
the Xilinx Zynq Z-7020 FPGA board as well. 

In addition, the proposed method can reach faster computation speeds by implementing it on 
higher-performance devices. The pre-processing data with our proposed method is implemented on 
FPGA, but the algorithm for GB-SAR isn’t implemented on FPGA which made the speed of 
computation still slow with the computation between FPGA and PC. Therefore, the computation 
speed can be fast by integrating the pre-processing data and algorithm in high-performance FPGA. 
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