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ARTICLE INFO ABSTRACT 

Article history: 
Received 10 February 2025 
Received in revised form 24 March 2025 
Accepted 16 June 2025 
Available online 18 August 2026 

Efficient task management in a dynamic and resource-constrained edge-cloud 
environments is essential for minimizing execution delays and reducing energy 
consumption. This paper presents a novel hybrid optimization algorithm, integrating 
an Adaptive Flower Pollination Algorithm (FPA) with Tabu Search, to address these 
challenges. The proposed approach introduces a diversity-based adaptive 
mechanism for global and local search and leverages Tabu Search to refine solutions 
and prevent convergence to suboptimal points. Extensive simulations demonstrate 
that the proposed algorithm outperforms state-of-the-art models in reducing delays 
and energy usage while balancing resource utilization in both edge and cloud 
environments. These results highlight the significant improvements achieved over 
baseline algorithms, providing an effective solution for task scheduling in edge-cloud 
systems. 
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1. Introduction 
 

The advent of edge-cloud computing has transformed the distributed computing by bringing 
computation and data storage closer to the data source typically at the network edge [1]. This 
paradigm shift addresses the limitations of traditional cloud-centric models, such as high latency and 
network congestion, making it well-suited for applications that require real-time processing and low-
latency communication, such as the Internet of Things (IoT) [2,3], autonomous vehicles and smart 
city infrastructures. However, as the volume and complexity of data generated by these edge devices 
continue to grow, efficiently managing task execution in the edge-cloud continuum has emerged as 
a significant challenge [4]. In this regards, two primary objectives are crucial: minimizing task 
execution delay and reducing energy consumption [5]. These objectives are inherently conflicting, as 
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achieving lower delays often requires increased computational resources, which can elevate energy 
usage, particularly at the resource-constrained edge nodes [6]. Therefore, optimizing task 
management to balance these competing objectives is essential for the sustainable operation of 
edge-cloud systems. 

Existing task scheduling and resource allocation strategies are mostly metaheuristic-based 
approaches [7-9]. Metaheuristic-based optimization methods, such as Particle Swarm Optimization 
(PSO) [10] and Genetic Algorithms (GA) [11], often underperform in dynamic environments due to 
their static parameter tuning and premature convergence to local optima. These methods are either 
too rigid, resulting in suboptimal performance, or they lack the ability to effectively balance 
exploration (searching for new, better solutions) and exploitation (refining existing solutions), leading 
to premature convergence or inefficient resource utilization. The Flower Pollination Algorithm (FPA), 
a nature-inspired optimization method, has shown promise in addressing complex optimization 
problems due to its simplicity and ability to balance exploration and exploitation [12]. However, the 
standard FPA can still suffer from drawbacks such as premature convergence to local optima and 
slow convergence rates in high-dimensional or multi-modal search spaces, limiting its effectiveness 
in dynamic environments like the edge-cloud continuum. 

To address these challenges, this paper proposes an Adaptive Quantum Behaved Flower 
Pollination Algorithm (QFPA) hybridized with Tabu Search. The adaptive QFPA incorporates a 
Quantum Potential Field that dynamically adjusts its search strategy based on solution diversity, 
enhancing the algorithm's ability to explore and exploit the search space effectively. Additionally, the 
integration of Tabu Search provides a robust local search mechanism that helps refine promising 
solutions, avoid local optima, and maintain solution diversity. The main contributions of this paper 
are as follows: 
 

i. Proposed an Adaptive QFPA that dynamically balances exploration and exploitation through 
a Quantum Potential Field. 

ii. Integrating Tabu Search as a local search strategy to refine solutions further and prevent 
premature convergence. 

iii. Evaluating the performance of the proposed hybrid algorithm in minimizing task execution 
delay and reducing energy consumption in the edge-cloud continuum. 

 
2. Literature Review 
 

Task management in edge-cloud computing has garnered significant attention due to the 
challenges of minimizing execution delays and energy consumption in dynamic, resource-constrained 
environments. Several metaheuristic algorithms have been proposed to address these challenges, 
offering varying degrees of success. This section critically examines the limitations of existing 
approaches and positions the proposed hybrid algorithm within this context. 

Metaheuristic methods such as PSO, GA and Grey Wolf Optimizer (GWO) have demonstrated 
flexibility in solving optimization problems. However, these methods often suffer from premature 
convergence and suboptimal performance in highly dynamic environments. For instance, PSO's 
reliance on static parameter tuning limits its adaptability to fluctuating resource demands, leading to 
inefficient task scheduling in edge-cloud systems [10]. Similarly, GA often requires extensive 
computational time for convergence, making it less suitable for real-time applications [11]. Recent 
advancements have explored hybrid algorithms to address these limitations. For example, Hamed et 
al., [13] integrated Cooperative Search with GA for dynamic scheduling in heterogeneous 
environments, demonstrating improved task completion times but struggling with energy efficiency 
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in larger systems. Similarly, Najafizadeh et al., [14] proposed a hybrid approach combining deadline-
aware scheduling with resource optimization. While this method effectively reduces delays, its 
performance diminishes under high variability in task arrival rates [14]. 

Mohammadzadeh et al., [15] introduced an Energy-Aware Metaheuristic Algorithm for Industrial-
Internet-of-Things Task Scheduling Problems in Fog Computing Applications. This algorithm targets 
minimizing both execution delay and energy consumption by optimizing task scheduling based on a 
dual focus: reducing total execution time and minimizing energy use while maintaining task delay 
constraints. The approach includes enhancements to genetic operations, such as selection, crossover 
and mutation, along with a catastrophic strategy to avoid premature convergence. This strategy 
allows the algorithm to escape local optima and better balance energy consumption and delay. 
However, the algorithm's current testing conditions, limited to static tasks with strict deadlines, may 
not fully represent the dynamic environments where new tasks appear spontaneously and demand 
real-time adjustments. Other algorithms have also been developed to address these objectives. For 
instance, Too et al., [16] proposed the Multi-Objective Binary Salp Swarm Algorithm (BSSA), which 
uses binary coding to handle discrete joint request offloading and computational resource 
scheduling. The algorithm aims to enhance system efficiency by balancing execution delays and 
energy consumption, thus achieving fair resource allocation. Despite showing improvements in 
performance through simulations, scalability challenges remain when these algorithms are applied 
to larger systems or environments where task requests and network conditions fluctuate frequently. 

Karaja et al., [17] offered a bi-level multi-objective scheduling approach using an enhanced NSGA-
II algorithm to manage dynamic task allocation in heterogeneous multi-cloud environments. Their 
approach focuses on minimizing execution delays while adhering to strict energy consumption 
budgets. However, while their method demonstrates efficiency in controlled simulations, the 
scalability of the algorithm in extremely large-scale or highly dynamic environments has not been 
comprehensively addressed, potentially limiting its applicability in more volatile operational 
contexts. In a similar vein, Gabi et al., [18] proposed the Fruit Fly-based Simulated Annealing 
Optimization Scheme (FSAOS) for dynamic resource scheduling in mobile edge-cloud settings. This 
algorithm specifically targets the trade-offs between execution delay and execution cost by 
combining local and global search capabilities to prevent premature convergence. However, while 
the algorithm has shown promise in simulated environments, its effectiveness in real-world 
scenarios, which often involve complex and variable conditions, remains uncertain and prone to 
overfitting. 

Abdullahi et al., [8] enhanced the Symbiotic Organisms Search (SOS) algorithm, termed 
CMABFSOS, to improve task scheduling in cloud computing environments with a focus on minimizing 
both execution delay and execution cost. The algorithm incorporates adaptive mechanisms for 
managing benefit factors and constraints, but these enhancements could introduce additional 
computational complexity, potentially increasing the time and resources required to reach 
convergence, especially in large-scale systems. Efforts have also been made to integrate different 
metaheuristic strategies to optimize these objectives. Movahedi et al., [19] proposed an efficient 
population-based multi-objective task scheduling approach in fog computing systems and Zhang et 
al., [20] proposed Deadline-Aware Dynamic Task Scheduling in Edge-Cloud. This hybrid approach is 
designed to minimize both execution delay and energy consumption while avoiding local optima 
through a more diversified search process. However, balancing these objectives without one 
negatively impacting the other remains a challenge, and the trade-offs involved are not fully detailed 
in the study. 

Li, et al., [21] developed the Multi-Objective Optimization Artificial Fish Swarm Algorithm 
(MOOAFSA) [21] to optimize task scheduling in secure cloud environments by focusing on execution 
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time and energy usage. This algorithm attempts to achieve effective and secure scheduling by 
balancing these objectives; however, its performance may be highly sensitive to initial parameter 
settings. The study does not extensively explore the robustness of the algorithm under varying 
configurations, which could impact its effectiveness in different contexts. 

Despite these advancements, the limitations of current metaheuristic algorithms in handling the 
complexities of edge-cloud environments persist. Many of these algorithms struggle to adapt to 
dynamic conditions where task priorities and resource availability can change rapidly, leading to 
suboptimal performance in terms of task execution delay and energy consumption [22-24]. 
Moreover, the need for extensive parameter tuning and the tendency towards premature 
convergence to local optima remain significant challenges in applying these algorithms to real-world 
edge-cloud applications [25]. Given these challenges, the FPA emerges as a promising alternative due 
to its simplicity and easy to implement [26]. While FPA has shown potential in solving complex 
optimization problems, it still requires improvements to adapt effectively to the dynamic and multi-
objective nature of edge-cloud computing. The integration of an Adaptive Quantum Potential Field, 
which dynamically adjusts search strategies based on solution diversity, combined with Tabu Search 
as a local search enhancement, represents a novel approach to overcome the limitations identified 
in the current literature and achieve more efficient task management in edge-cloud environments. 
 
3. System Model and Problem Description 
 

The edge-cloud continuum consists of a hierarchical computing architecture where 
computational resources are distributed across the cloud, edge servers, and user devices [23]. The 
system model is designed to leverage both centralized cloud resources and decentralized edge 
resources to optimize task execution based on latency, energy consumption, and resource 
availability. In the edge-cloud continuum model, there are three distinct entities which are the Users, 
Edge Servers and the Cloud Servers. Users generate tasks from their devices (e.g., smartphones, IoT 
devices) that require processing. These tasks could range from simple data analytics to complex 
machine learning inferences. Edge Servers are Situated closer to the users; edge servers offer low-
latency computation and storage capabilities. They act as intermediaries, handling time-sensitive 
tasks that require quick processing and minimal delay. While the Cloud Servers provide extensive 
computational power and storage, suitable for tasks that are less sensitive to latency but require 
significant processing resources. In this model, tasks generated by user devices are dynamically 
offloaded to edge or cloud servers based on several factors, such as the nature of the task, the current 
workload of the edge and cloud resources, network conditions, and the optimization objectives (e.g., 
minimizing delay and energy consumption). 

Task generation in the edge-cloud continuum begins at the user devices, such as smartphones, 
IoT sensors, or other computing devices, which continuously produce tasks requiring varying levels 
of computational processing. These tasks can range from simple data analytics to complex machine 
learning inferences, characterized by parameters like task size, computation intensity, and deadlines. 
Each task is generated based on user activity or automated triggers and needs to be processed 
promptly to meet the application requirements. Once a task is generated, it is packaged with its 
relevant parameters and sent to the task management system, which decides how and where to 
execute it based on current system conditions, resource availability, and the optimization objectives 
of minimizing delay and energy consumption. 

The task management system evaluates the tasks by considering factors such as the urgency of 
the task, the required computational resources, the network conditions, and the current workload 
of both edge and cloud servers. Based on this evaluation, the system determines the most suitable 
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resource for executing the task. For tasks that require low latency or have tight deadline constraints, 
the task may be processed at a nearby edge server to minimize transmission delay and provide quick 
responses. Conversely, for tasks that are computationally intensive but less sensitive to delay, the 
cloud servers, with their extensive computational capabilities, may be chosen for execution. If the 
task is assigned to an edge server, it is transmitted through a local network connection, minimizing 
transmission time. For cloud-bound tasks, data transmission occurs over a potentially longer network 
path, impacting both the transmission delay and energy consumption. 

After allocation, the task waits in the queue of the assigned resource, where it experiences 
queuing delay depending on the current workload and service rate of the server. Once the task 
reaches the front of the queue, it undergoes execution, which involves processing based on its 
computation intensity and the resource capabilities. Execution delay is influenced by the speed and 
efficiency of the allocated resource, and once processing is complete, the results are sent back to the 
user device. This entire process, from task generation to result delivery, is dynamic and influenced 
by multiple factors that determine the overall system performance, particularly the balance between 
task execution delay and energy consumption. Therefore, the task execution Delay and energy 
consumption models can be derived from the system. 
 
3.1 Task Execution Delay Model 
 

The task execution delay 𝐷(𝑇𝑖) experienced by task 𝑇𝑖 is composed of three components which 
are transmission delay 𝐷𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖), queuing delay 𝐷𝑞𝑢𝑒𝑢𝑒(𝑇𝑖) and execution delay 𝐷𝑒𝑥𝑒𝑐(𝑇𝑖) as in 

Eq. (1). 
 
𝐷(𝑇𝑖) = 𝐷𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) + 𝐷𝑞𝑢𝑒𝑢𝑒(𝑇𝑖) + 𝐷𝑒𝑥𝑒𝑐(𝑇𝑖)         (1) 

 
Where, 𝐷𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) is the time taken to transmit the task from the user device to the edge server 
or cloud server. It depends on the network bandwidth 𝐵 and the size of the task 𝑇𝑠 as in Eq. (2). 
 

𝐷𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) =
𝑇𝑠

𝐵
              (2) 

 
The queuing delay on the other hand is the time the task spends waiting in the queue before 

being processed. It is influenced by the current workload of the selected resource in Eq. (3). 
 

𝐷𝑞𝑢𝑒𝑢𝑒(𝑇𝑖) =
𝑛

𝜇−𝜆
              (3) 

 
Where, 𝑛 is the number of tasks in the queue, 𝜇 is the service rate and 𝜆 is the arrival rate of tasks. 
The execution delay 𝐷𝑒𝑥𝑒𝑐(𝑇𝑖) is the time taken to execute the task once it reaches the front of the 
queue. It depends on the computational resources available (e.g., CPU speed) and the computation 
intensity 𝐶𝑖 of the task in Eq. (4). 
 

𝐷𝑒𝑥𝑒𝑐(𝑇𝑖) =
𝐶𝑖

𝑅
              (4) 

 
Where, 𝑅 is the processing speed of the allocated resources. 
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3.2 Energy Consumption Model 
 

The total energy consumption 𝐸(𝑇𝑖) for executing a task 𝑇𝑖   includes the energy consumed during 
transmission 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) and the energy consumed during the execution 𝐸𝑒𝑥𝑒𝑐(𝑇𝑖). The 
transmission energy 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) is energy required to transmit the task from the user device to the 
edge or cloud server, given by Eqs. (5) and (6). 
 
𝐸(𝑇𝑖) = 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) + 𝐸𝑒𝑥𝑒𝑐(𝑇𝑖)           (5) 
 
𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) = 𝑃𝑡𝑟𝑎𝑛𝑠 × 𝐷𝑡𝑟𝑎𝑛𝑠(𝑇𝑖)           (6) 
 
Where, 𝑃𝑡𝑟𝑎𝑛𝑠 is the power consumed for transmission. The execution energy 𝐸𝑒𝑥𝑒𝑐(𝑇𝑖) is the energy 
consumed during the execution of the task on the edge or cloud server or both and is given in Eq. (7) 
 
𝐸𝑒𝑥𝑒𝑐(𝑇𝑖) =  𝑃𝑒𝑥𝑒𝑐 × 𝐷𝑒𝑥𝑒𝑐(𝑇𝑖)           (7) 
 
Where, 𝑃𝑒𝑥𝑒𝑐 is the power consumed for execution. 
 
3.3 Multi-Objective Function 
 

The goal is to formulate a multi-objective optimization problem that minimizes both the total task 
execution delay and the total energy consumption. Let 𝐹1 represent the objective function for 
minimizing delay and 𝐹2  for minimizing energy consumption as follows in Eqs. (8) and (9). 
 

𝐹1 = ∑ 𝐷(𝑇𝑖) 𝑁
𝑖=1              (8) 

 

𝐹2 = ∑ 𝐸(𝑇𝑖)
𝑁
𝑖=1                          (9) 

 
Where, 𝑁 is the total number of tasks. The multi-objective optimization can be expressed as Eq. (10). 
 
𝐹(𝑥) = min(𝐹1, 𝐹2)                       (10) 
 
and is subjected to deadline constraints 𝐷(𝑇𝑖) ≤ 𝐷𝑙. The proposed hybrid algorithm, combining the 
Adaptive Quantum Behaved Flower Pollination Algorithm (QFPA) with Tabu Search, aims to find an 
optimal or near-optimal solution for this multi-objective problem.  
 
4. Proposed Algorithm 
4.1 Overview of the Flower Pollination Algorithm (FPA) 
 

The FPA is a nature-inspired optimization algorithm based on the pollination process of flowering 
plants [27]. Pollination is the process by which pollen is transferred from the male part of a flower to 
the female part, enabling fertilization and reproduction. FPA mimics this process to explore and 
exploit the search space effectively, balancing between global and local search strategies to find 
optimal or near-optimal solutions. The FPA consists of two main processes: global pollination and 
local pollination. The global pollination step is inspired by cross-pollination, where pollen is carried 
over long distances by biotic and abiotic agents like insects or wind, enabling exploration across the 
search space. The local pollination step, on the other hand, mimics self-pollination, where pollen 
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transfer occurs within the same plant or nearby flowers, leading to a more localized search. The 
mathematical model of the FPA can be summarized with the following equations. 

Global pollination is performed using Lévy flights, a type of random walk characterized by step 
lengths that follow a Lévy distribution. The global pollination step is expressed in Eq. (11). 
 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝑥𝑖
𝑡 + 𝑔∗)                      (11) 

 
Where, 𝑥𝑖

𝑡 is the solution vector (flower) at iteration 𝑡, 𝑔∗ is the current best solution, 𝛾 is the step 
size scaling factor, and 𝐿 is the represent the Levy flight distribution defined by Eq. (12). 
 

𝐿 ≈
𝜆

Γ(1+𝜆) sin(
𝜋𝜆

2
)
 .

1

𝑠1+𝜆                      (12) 

 
Where,  𝑠 is the step size, 𝜆 is constant parameter typically set to 1.5. The local pollination is modelled 
as in Eq. (13). 
 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+∈ (𝑥𝑗
𝑡 + 𝑥𝑘

𝑡 )                      (13) 

 
Where, 𝑥𝑗

𝑡 and 𝑥𝑘
𝑡  are two solutions chosen at random from the population, and ∈ is a random 

number drawn from a uniform distribution in the range [0,1]. 
A switch probability 𝑝 ∈ [0,1] determines whether global or local pollination is applied. Typically, 

a value like p = 0.8 is chosen to favor global search in the initial iterations and gradually focuses more 
on local search as the algorithm progresses. The FPA effectively balances exploration and 
exploitation; however, it can suffer from drawbacks such as premature convergence to local optima 
and slow convergence rates in high-dimensional and multi-modal search spaces and poor solution 
initialization. 
 
4.2 Solution Initialization 
 

To enhance the initialization of solutions in the FPA, the Chaotic Circle Map is used. The Chaotic 
Circle Map introduces chaos theory principles into the initialization phase, allowing the algorithm to 
generate a more diverse and well-distributed set of initial solutions [28]. This improves the 
algorithm's ability to explore the solution space effectively and avoid premature convergence to local 
optima. The Chaotic Circle Map is a simple yet effective mathematical model that exhibits chaotic 
behavior, generating sequences that can be used to initialize solutions in optimization algorithms. 
The Circle Map is defined as follows: 
 

𝑥𝑛+1 = (𝑥𝑛 + Ω −
𝐾

2𝜋
sin(2𝜋𝑥𝑛)) mod 1                    (14) 

 
where 𝑥𝑛 is the current value in the sequence, Ω is a constant representing the angular frequency, 𝐾  
is a control parameter that determines the degree of chaos in the sequence and mod 1 ensures the 
value remains within the range [0,1]. The procedure for solution initiation is given in algorithm 1 
(Table 1). 
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Table 1 
Algorithm 1 
1. Algorithm 1: Solution initialization using Circle Map  

2.  //Set parameters for Chaotic Circle Map: 
1. Omega (Ω) = 0.3, K = 0.5, Initial value x0 in range [0,1], Population size N, Solution space 

boundaries [a, b] 
3. //Generate chaotic sequence: 
2. Initialize x = x0 
3. For i = 1 to N: 
4. x = (x + Ω - (K / (2π)) * sin (2π * x)) mod 1 
5. chaotic_values[i] = x 
4. //Map chaotic values to the solution space: 
6. for each chaotic value xi in chaotic_values [] 
7. xsolutioni = a + (b − a) ∗  xi 
8.       // Initialize FPA population 
9. Return mapped solutions as the initial population for FPA 

 
The use of the Chaotic Circle Map for solution initialization introduces a higher degree of diversity 

in the initial population, which enhances the FPA's ability to explore the solution space more 
comprehensively. The chaotic sequence generated by the Circle Map ensures that the initial solutions 
are not only well-distributed but also cover a wider range of potential solutions, increasing the 
likelihood of finding the global optimum. This initialization technique reduces the chances of 
premature convergence by promoting a more thorough exploration of the search space from the 
very beginning of the optimization process. 
 
4.3 Quantum Behaved Flower Pollination Algorithm (QFPA) 
 

The Quantum Behaved Flower Pollination Algorithm (QFPA) introduces quantum computing 
principles to enhance the standard FPA’s search capabilities. The need for QFPA arises from the 
limitations of the standard FPA in dynamic and complex environments, such as premature 
convergence and suboptimal exploration of the solution space. QFPA leverages the concepts of 
quantum mechanics, such as superposition and probability amplitudes, to allow more diverse and 
flexible exploration of the search space. This is particularly important for multi-objective optimization 
problems, where maintaining a diverse set of solutions is critical for balancing conflicting objectives. 
The key improvement of QFPA over the standard FPA is the integration of a Quantum Potential Field, 
which dynamically adjusts the probability distribution governing the search direction based on the 
diversity of the solutions. This allows the algorithm to adaptively balance exploration and 
exploitation, enhancing its ability to avoid local optima and accelerate convergence towards the 
global optimum. 

In QFPA, each solution is represented in a quantum state, allowing it to exist in multiple states 
simultaneously, enhancing the diversity of the search. The position update of each solution is 
controlled by the Quantum Potential Field, which is modelled using a Gaussian probability 
distribution as presented in Eq. (15). 
 

𝑃(𝑥) =
1

√2𝜋𝜎2
 𝑒𝑥𝑝 (−

(𝑥−𝜇)2

2𝜎2
)                     (15) 

 
Where, P(x) represents the probability of selecting a particular solution x, μ is the mean position of 
the current set of solutions, and σ is the standard deviation that dynamically adjusts based on the 
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diversity of the solutions. The dynamic adjustment of 𝜎 enables the algorithm to expand or narrow 
the search space adaptively. Hence, the QFPA enhanced global and local search steps are given in Eq. 
(16) and Eq. (17) respectively. 
 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝑥𝑖
𝑡 + 𝑔∗). 𝑃(𝑥)                     (16) 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+∈ (𝑥𝑗
𝑡 + 𝑥𝑘

𝑡 ). 𝑃(𝑥)                     (17) 

 
The pseudo code for QFPA is given in algorithm 2 (Table 2). 
 

Table 2 
Algorithm 2 
5. Algorithm 2: QFPA procedure 

1. Generate initial solution using Algorithm 1, set the initial values for parameters N, 𝛾, 
𝑝, 𝜇, and σ 

2. For t= to N 
6. //Quantum Potential Field Update 
3. calculate the diversity of the current solutions 
4. Adjust σ dynamically based on the diversity 
5. If diversity is high, increase σ to encourage exploration; if diversity is low, decrease σ 

to focus on exploitation. 
7.       //Decide whether to perform a global search or a local search 
6. if rand < p 
7. Global and Local Search using Eq. (16) 
8. Else 
9. Local Search using Eq. (17) 
8. //Evaluation 
10. Evaluate each solution using multi-objective function 
11. Update the current best solution g∗  if a better solution is found. 
12. Repeat 
13. Return best solution 
14. End 

 
4.4 Adaptive QFPA with Tabu Search 
 

To further enhance the search process and refine the solutions identified by QFPA, Tabu Search 
(TS) is incorporated into the algorithm. The rationale behind this integration is that while QFPA excels 
in maintaining diversity and exploring the global solution space, it may still struggle with fine-tuning 
solutions and avoiding premature convergence in local optima. TS complements QFPA by providing 
a structured local search mechanism that intensively explores the neighborhood of promising 
solutions, ensuring that high-quality solutions are not missed due to restrictive search conditions. To 
incorporate TS into the QFPA, we need to modify the solution update equations to account for the 
local search optimization provided by TS. The integration of TS involves refining the current best 
solution obtained from the QFPA's global and local search processes by exploring its neighborhood 
more thoroughly [29]. The updated equations reflect how TS is applied to the QFPA framework to 
achieve this. 

After the initial population of solutions is generated and updated using the QFPA’s global and 
local search mechanisms, the best solution 𝑔∗  from the current population is selected for further 
refinement using TS. The position of the current best solution is perturbed to explore its 
neighborhood. The new candidate solutions, denoted as 𝑥𝑛𝑒𝑤, are generated using the Eq. (18). 
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𝑥𝑛𝑒𝑤 = 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + Δ𝑥                       (18) 
 
Where, 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current best solution, and Δ𝑥 represents a small perturbation vector applied 
to explore the local neighborhood. This perturbation is typically generated randomly within a small 
range to ensure that the local search is focused around the current solution. The fitness of each new 
candidate solution 𝑥𝑛𝑒𝑤  is evaluated using the multi-objective function that aims to minimize both 
task execution delay and energy consumption. If  𝑥𝑛𝑒𝑤 provides a better objective value than 
𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡, and it is not in the tabu list, it becomes the new current solution. 

To incorporate the memory aspect of TS, a tabu list 𝑇 is maintained to store the recently visited 
solutions, ensuring that the algorithm does not revisit these points. The updated candidate solution 
is checked against the tabu list, and if it is not present in T or satisfies the aspiration criterion (i.e., it 
offers a significant improvement in the objective function), it is accepted as the new best solution. 
The equation for the local search update within the TS phase thus becomes: 
 

𝑥𝑏𝑒𝑠𝑡 = {

𝑥𝑛𝑒𝑤,         𝑖𝑓 𝐹(𝑥𝑛𝑒𝑤) < 𝐹(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡)𝑎𝑛𝑑 𝑥𝑛𝑒𝑤  ∉ 𝑇,              

𝑥𝑛𝑒𝑤,         𝑖𝑓 𝐹(𝑥𝑛𝑒𝑤) < 𝐹(𝑥𝑏𝑒𝑠𝑡) (𝑎𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                      
                     (19) 

 
Here, F(x) denotes the multi-objective fitness function, and 𝑥𝑏𝑒𝑠𝑡 represents the current best 

solution after applying TS. This equation ensures that TS can dynamically refine the solution space 
while integrating smoothly with the adaptive global search behavior of QFPA, leading to a more 
robust and effective optimization process. The pseudo code for the Hybrid QFPA-TS is presented in 
algorithm 3 (Table 3). 
 

Table 3 
Algorithm 3 
9. Algorithm 3: Adaptive QFPA-TS Algorithm 

10.   Set population size N, initialize solution using Algorithm 1, Set QFPA parameters: Iter, γ,  
  p, μ and σ. Set Tabu Search parameters: T, K, 

1.  For each solution xi in X 
2.  Calculate F(xi) : Eq. (10) 
3.  Identify the current best solution g* in the population X 
4.  Repeat until convergence or maximum iterations reached: 
5.  Calculate the diversity of the population X 
6.  Adjust Quantum Potential Field parameter σ based on diversity: 
7.  For each solution xi in X: 
8.  Generate a random number r in [0, 1] 
9.  If r < p: 
10.  Perform Quantum-Enhanced Global Search: Eq. (16)  
11. Else: 
12.    Perform Quantum-Enhanced Local Search: Eq. (17) 
13.    For each solution xi in X: 
14.    Calculate the fitness function F(xi): Eq. (10) 
15. Update current best solution g* if a better solution is found 
16. Select the current best solution g* for Tabu Search 
17. Initialize tabu list and iteration counter for TS 
18. While not reaching TS maximum iterations or convergence: 
19. Generate a new candidate solution: using Eq. (18) 
20. Evaluate the fitness F (xnew): Eq. (10) 

21.        If (xnew)is not in the tabu list and F (xnew) < F (xcurrent): 

22.              Update xcurrent= xnew 
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23.        Add xnew to the tabu list 
24.            Else if xnew is in the tabu list but satisfies aspiration criterion: 
25.               Update xcurrent= xnew 

26.      Add xnewto the tabu list 
27.       Update tabu list by removing the oldest entry if size exceeds the limit 
28.   Update population X with refined solution from Tabu Search 
29.   End Repeat 
30.   Return the best solution g* and corresponding fitness value 

 
4.5 Execution of the Proposed Adaptive QFPA-TS Algorithm 
 

The execution of the Adaptive QFPA-TS algorithm in the edge-cloud continuum begins by 
initializing the algorithm parameters, which include defining the population size, setting parameters 
for the Quantum Behaved Flower Pollination Algorithm (QFPA), such as step size, switch probability 
and quantum potential field parameters, as well as configuring the TS parameters like the size of the 
tabu list and the maximum number of iterations for the local search. The initial population of 
solutions is generated using the Chaotic Circle Map (algorithm 1), which introduces chaotic behavior 
to ensure a diverse and well-distributed starting point for the optimization process. Each solution in 
this initial population represents a potential strategy for allocating tasks across the edge and cloud 
resources in the continuum. The fitness of each solution is evaluated using a multi-objective function 
(Eq. (10)) that considers both task execution delay and energy consumption.  

The solution with the best fitness value is identified as the current best solution, which will serve 
as the focal point for further refinement and optimization. Once the initial population is evaluated, 
the algorithm adjusts the Quantum Potential Field dynamically to balance exploration and 
exploitation (step 7). This adjustment is based on the diversity of the current set of solutions. If the 
diversity is high, indicating a broad range of potential task allocation strategies, the quantum 
potential field parameter is adjusted to promote more exploration, allowing the algorithm to search 
for novel and potentially more efficient resource allocation scenarios. Conversely, if the diversity is 
low, indicating that the solutions are converging towards a particular area in the search space, the 
quantum potential field is adjusted to focus on exploitation, refining the current solutions to find the 
best possible allocation strategy. This dynamic adjustment mechanism enables the QFPA to adapt to 
the changing search landscape and maintain an effective balance between exploring new solutions 
and refining existing ones. 

In the next phase, the QFPA performs both global and local searches (step 8-13) to explore 
different task allocation strategies. For each solution in the population, a random decision is made 
to determine whether to perform a global search or a local search. If the global search is chosen, the 
algorithm uses quantum-enhanced Lévy flights to explore distant regions of the search space (Eq. 
(16), simulating a broader search for potential solutions by making larger, stochastic jumps. This 
approach helps identify promising areas that may contain optimal or near-optimal solutions. If the 
local search is chosen, the algorithm performs a quantum-enhanced local search by making smaller, 
more focused adjustments to the solution (Eq. (17)), allowing it to exploit known good configurations 
to refine the task allocation strategy. Both global and local searches are guided by the quantum 
potential field (Eq. (15)), ensuring that the search process remains adaptive and responsive to the 
diversity of the solutions. 

After performing the global and local searches, the fitness of the updated population is evaluated 
again using the multi-objective function (step 15). If a better solution is found, the current best 
solution is updated to reflect this improvement. At this stage, the algorithm moves into the TS phase 
for local refinement (step 17-28). TS begins by selecting the current best solution obtained from the 
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QFPA phase and focuses on intensively exploring its neighborhood by generating small perturbations 
around it (step 20). The new candidate solutions generated by these perturbations are evaluated 
based on the multi-objective fitness function, and if a candidate solution offers a better objective 
value than the current best solution and is not in the tabu list, it is accepted as the new current best 
solution. To ensure the search does not revisit recently explored solutions, a tabu list is maintained 
to record these solutions.  

However, if a solution in the tabu list provides a significant improvement (satisfies the aspiration 
criterion), it is accepted regardless of its tabu status. This local search process continues until either 
the maximum number of iterations for TS is reached, or no further improvement is found. The refined 
solution obtained from TS is then used to update the population of solutions for the next iteration of 
the QFPA global and local search. The algorithm iteratively alternates between the global search 
phase of QFPA, where broad exploration is performed, and the local refinement phase of TS, where 
the focus is on intensifying the search around the most promising solutions. This iterative framework 
allows the algorithm to continuously improve the quality of solutions by adapting to the dynamic 
nature of the edge-cloud continuum environment. 
 
5. Experiment and Results Analysis 
 

In this section, we present the experimental setup and result analysis of our proposed algorithm, 
comparing its performance against Quantum Particle Swarm Optimization (QPSO) [10], Grey Wolf 
Optimizer (GWO) [30], and the Standard Flower Pollination Algorithm (FPA). The experiment is 
conducted using the Edge-CloudSim simulation environment, configured to simulate a realistic edge-
cloud computing scenario with varying numbers of offloading tasks. We evaluate the algorithms 
based on key performance metrics, including delay, energy consumption, makespan and resource 
utilization. 
 
5.1 Experiment 
 

To conduct the experiment, the Edge-CloudSim simulation environment is used to evaluate the 
performance of our proposed algorithm in comparison with QPSO, GWO and the FPA. The focus of 
the evaluation is on several key metrics: delay, energy consumption, makespan and resource 
utilization. Delay will measure the total time taken from task generation to completion, while energy 
consumption will quantify the amount of energy used by both edge and cloud servers during task 
execution. Makespan will represent the total time required to complete all offloaded tasks. Resource 
utilization will indicate the percentage of computational resources used by the servers. The Edge-
CloudSim environment is configured with specific settings to simulate a realistic edge-cloud 
computing scenario, ensuring that all algorithms are evaluated under identical conditions. The 
settings include the number of servers, their capacities, network bandwidths, and task parameters. 
This is presented in detail in Table 4. The simulation involves varying the number of offloading tasks 
and observing the behavior of each algorithm in response to these changes. 
 

Table 4 
Edge-Cloudsim environment settings 
Parameter Value 

Number of Cloud servers 2 
Cloud server CPU capacity 60-80 (uniform distribution) 
Edge link bandwidth 100 Mbps 
Cloud link bandwidth 200 Mbps 
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Number of edge servers 30 
Edge server CPU capacity 40-60 (uniform distribution) 
Number of mobile devices 100 
Task CPU request Oct-20 
Task Data Size 10-20 MB 
Task tolerable delay 10-15 ms 
Number of Offloading tasks 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 

 
The parameter settings for the benchmark algorithms are adopted from the original benchmark 

papers to ensure a fair comparison. The parameter settings of each algorithm are presented in Table 
5. 

Table 5 
Algorithms parameter settings 
Algorithm Parameter Value 

QPSO Population size 30 
 Maximum iterations 100 
 Cognitive coefficient 1.5 
 Social coefficient 1.5 
 Inertia weight 0.9-0.4 
GWO Population size 30 
 Maximum iterations 100 
 Alpha (Î±) 0.5 
 Beta (Î²) 0.3 
FPA Population size 30 
 Maximum iterations 100 
 Probability switch (p) 0.8 
 Step size 0.1 
QFPA-TS Population size 30 
 Maximum iterations 100 
 Adaptive probability function Based on solution diversity 
 TS maximum iterations 50 
 Tabu list size 10 

 
5.2 Results Analysis 
 

In this section, we present the results of our experiments, organized into subsections for each 
performance metric: delay, energy consumption, makespan and resource utilization. Each subsection 
provides a detailed analysis of the corresponding metric, comparing the performance of our 
proposed algorithm with the baseline algorithms QPSO, GWO and FPA. The results are discussed to 
highlight the strengths and weaknesses of each algorithm, emphasizing the effectiveness of our 
proposed approach in optimizing task management in the edge-cloud continuum under various 
conditions. 
 
5.2.1 Delay analysis 
 

The delay results of the Adaptive QFPA-TS algorithm, when compared to the baseline algorithms 
GWO, QPSO and the FPA demonstrate a significant improvement in task execution times in both edge 
and cloud environments, as shown in Figures 1(a) and (b). In the edge environment, the Adaptive 
QFPA-TS outperforms all baselines, primarily due to its dynamic balance between exploration and 
exploitation. The adaptive quantum potential field enables the algorithm to explore the solution 
space efficiently, avoiding premature convergence to suboptimal solutions. Additionally, the 
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incorporation of TS intensively refines solutions, further reducing task delays, which gives the 
algorithm an edge over GWO and QPSO, which lack these adaptive and local search mechanisms. 
 

    
(a) (b) 

Fig. 1. Task execution delay (a) Cloud servers (b) Edge servers 

 
On cloud resources, the Adaptive QFPA-TS also shows better performance in minimizing task 

execution delays, although the margin of improvement over the baseline algorithms is less 
pronounced compared to the edge environment. This difference is due to the cloud’s higher 
computational capacity, which naturally reduces delays. However, the Adaptive QFPA-TS maintains 
its advantage by effectively balancing task execution and data transmission times through its 
quantum-enhanced global search and TS-based local refinement. The GWO and QPSO perform well 
in the cloud but cannot match the Adaptive QFPA-TS’s adaptability in dynamically allocating 
resources. The standard FPA, without enhancements, lags behind in both environments, especially 
on the edge, where it struggles to adapt to rapid changes in resource availability. 
 
5.2.2 Energy consumption analysis 
 

The energy consumption performance results of the Adaptive QFPA-TS algorithm also reveal 
notable differences in both edge and cloud environments compared to the base line algorithms. As 
illustrated in Figures 2. On the edge, the Adaptive QFPA-TS demonstrates a significant reduction in 
energy consumption compared to all baseline algorithms. This is primarily due to its ability to 
dynamically manage task allocation by considering both the execution cost and the energy overhead 
associated with each task. The quantum-inspired adaptive search of the QFPA allows it to explore 
various allocation scenarios efficiently, finding those that minimize the overall energy usage. 
Furthermore, the integration of Tabu Search helps refine these allocations by locally optimizing 
around the most promising solutions, which is particularly advantageous in the edge environment, 
where energy resources are limited. 
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(a) (b) 

Fig. 2. Energy consumption (a) Cloud servers (b) Edge servers 

 
In the cloud environment, depicted in Figure 2(a), the Adaptive QFPA-TS also achieves lower 

energy consumption than GWO, QPSO, and FPA, but the margin of improvement is relatively smaller 
than in the edge environment. The cloud’s greater computational capacity tends to offset energy 
savings, reducing the overall consumption benefits. However, the Adaptive QFPA-TS still maintains 
an edge by effectively balancing the computational load and minimizing the energy-intensive data 
transmission required for offloading tasks to cloud servers. GWO and QPSO, while demonstrating 
reasonable performance, do not achieve the same level of energy efficiency as the Adaptive QFPA-
TS because they lack mechanisms to dynamically adjust allocation based on both execution cost and 
energy consumption. The standard FPA, without the benefits of quantum adaptation or local search 
refinement, also shows higher energy consumption in both environments compared to the Adaptive 
QFPA-TS, particularly on the edge. 
 
5.2.3 Makespan analysis 
 

Compared to the baseline algorithm, the makespan results for the Adaptive QFPA-TS algorithm 
demonstrate its effectiveness in optimizing task completion time across both edge and cloud 
environments, as shown in Figure 3. On the edge, the Adaptive QFPA-TS shows a substantial 
reduction in makespan compared to all baselines. This improvement stems from the algorithm's 
ability to dynamically manage task scheduling and resource allocation, balancing the load more 
efficiently across limited edge resources. The adaptive quantum potential field facilitates a diverse 
exploration of potential scheduling scenarios, while TS fine-tunes these strategies by intensively 
searching the local neighborhood of promising solutions, thereby achieving a more balanced 
distribution of tasks and minimizing the total time required to complete all tasks. 

In the cloud environment, as illustrated in Figure 3(a), the Adaptive QFPA-TS also exhibits a 
notable decrease in makespan compared to GWO, QPSO and FPA, though the relative improvement 
is less dramatic than on the edge. The cloud's extensive computational resources naturally contribute 
to a lower makespan overall, but the Adaptive QFPA-TS maintains its advantage by optimizing the 
allocation of tasks in a way that reduces bottlenecks and improves parallel processing. GWO, while 
achieving reasonable makespan reductions, often converges prematurely due to its less dynamic 
search strategy, resulting in less optimal task allocations. QPSO performs better in some cases but 
lacks the refinement mechanisms needed to consistently minimize makespan across different load 
levels. The standard FPA, without the enhancements of quantum-inspired adaptation or TS 
refinement, shows the higher makespan values against QFPA-TS in both environments, particularly 
on the edge, where the lack of dynamic adjustment leads to inefficient task distribution. 
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(a) (b) 

Fig. 3. Makespan time (a) Cloud servers (b) Edge servers 

 
5.2.4 Resource utilization 
 

The resource utilization results also illustrate performance of the QFPA-TS in effectively managing 
computational resources in both edge and cloud environments, as presented in Figure 4. In the edge 
environment, the Adaptive QFPA-TS achieves higher and more balanced resource utilization 
compared to the baselines. This advantage stems from the algorithm's ability to dynamically allocate 
tasks across the available edge resources, leveraging both global exploration through the adaptive 
quantum potential field and local refinement via TS. The combination of these mechanisms allows 
for an optimized distribution of workload, reducing idle time and ensuring that all available resources 
are effectively used, which is crucial in environments with limited capacity like the edge. 
 

    
(a) (b) 

Fig. 4. Resource utilization (a) Cloud servers (b) Edge servers 

 
In the cloud environment, as shown in Figure 4(a), the Adaptive QFPA-TS also demonstrates a 

higher resource utilization than GWO, QPSO, and FPA, although the relative improvement is 
somewhat less noticeable compared to the edge. The cloud's abundant computational resources 
generally lead to higher baseline utilization levels; however, the Adaptive QFPA-TS maintains an edge 
by preventing resource underutilization and ensuring that tasks are distributed in a way that 
maximizes the use of available processing power. GWO tends to achieve suboptimal utilization due 
to its static hierarchy-based approach, which can lead to uneven task distribution. QPSO, while better 
than GWO, lacks the adaptive refinement capabilities of TS, leading to occasional resource 
bottlenecks. The standard FPA also struggled in balancing the resources. 
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5.2.5 Percentage improvement 
 

The percentage improvement of an algorithm refers to the relative increase in performance (in 
this case, delay, resource utilization and energy consumption) between the baseline algorithm 
(QPSO, GWO and FPA) and the enhanced version (QFPA-TS). It helps in quantifying how much better 
the improved algorithm is compared to the previous one. This percentage improvement is calculated 
using Eq. (20) and the percentage improvement is presented in Table 6. 
 

Improvement% =
Baseline−Proposed

Baseline
× 100                                 (20) 

 
Table 6 
Percentage improvement 
Metric Against QPSO (%) Against GWO (%) Against FPA (%) 

Delay (ms) 33.75371 31.1569 12.44463 
Energy consumption (J) 16.92538 14.74175 5.194264 
Makespan (ms) 9.942674 8.060856 4.414982 

 
The percentage improvement results demonstrate that QFPA-TS consistently outperforms QPSO, 

GWO, and FPA in reducing delay, energy consumption, and makespan across all task sizes. QFPA-TS 
achieves the highest improvements in delay, with an average reduction of 33.75% over QPSO, 31.16% 
over GWO, and 12.44% over FPA, showcasing its robust handling of latency-sensitive tasks. The 
energy consumption results further highlight the efficiency of QFPA-TS, achieving reductions of 
16.93%, 14.74%, and 5.19% compared to QPSO, GWO, and FPA, respectively. These improvements 
underscore its suitability for energy-constrained environments. While the improvements in 
makespan are slightly lower, with reductions of 9.94% over QPSO, 8.06% over GWO, and 4.41% over 
FPA, they are still significant and demonstrate QFPA-TS's ability to maintain efficient task execution. 
Overall, the results emphasize the effectiveness of QFPA-TS in optimizing task scheduling for edge-
cloud environments by reducing latency and energy usage while ensuring timely task completion, 
making it a reliable solution for such systems. 
 
6. Conclusions 
 

This research presents a novel hybrid optimization approach, the Adaptive Quantum Behaved 
Flower Pollination Algorithm with Tabu Search (QFPA-TS), designed to optimize task management in 
the edge-cloud continuum by minimizing task execution delay, energy consumption, makespan, and 
maximizing resource utilization. The integration of quantum-inspired global search mechanisms with 
adaptive adjustments, alongside a robust local search refinement using TS, allows the proposed 
algorithm to dynamically balance exploration and exploitation, thereby overcoming the limitations 
of traditional optimization methods like GWO, QPSO and standard FPA. 

The results of this study demonstrate that the Adaptive QFPA-TS algorithm consistently 
outperforms these baseline algorithms across multiple performance metrics in both edge and cloud 
environments. In the edge environment, where resources are limited and the need for rapid 
adaptation is critical, the Adaptive QFPA-TS shows significant improvements in reducing task 
execution delays, lowering energy consumption, minimizing makespan and maximizing resource 
utilization. The algorithm's ability to adjust dynamically to varying conditions enables it to maintain 
optimal performance in scenarios characterized by high variability and constrained resources. In the 
cloud environment, while the relative performance gains are less noticeable due to the inherent 
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capacity and resource availability, the Adaptive QFPA-TS still provides a distinct advantage by 
ensuring efficient task allocation and minimizing energy-intensive data transmissions. Hence, the 
Adaptive QFPA-TS proves to be a robust and versatile solution for managing tasks in the edge-cloud 
continuum, demonstrating substantial improvements over existing methods. Its unique combination 
of quantum-inspired global search, adaptive parameter adjustments, and local refinement 
capabilities offers a powerful framework for multi-objective optimization in dynamic, resource-
constrained environments. This approach not only enhances the efficiency and effectiveness of 
resource management but also paves the way for future research into adaptive optimization 
techniques in emerging computing paradigms. The findings suggest that the proposed hybrid 
algorithm can be a valuable tool for optimizing complex distributed computing environments, 
supporting the development of more efficient and sustainable edge-cloud systems. 
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