

Journal of Advanced Research Design 135, Issue 1 (2025) 218-237

218

Journal of Advanced Research Design

Journal homepage:
https://akademiabaru.com/submit/index.php/ard

ISSN: 2289-7984

Adaptive Quantum Behaved Flower Pollination and Tabu Search
Algorithm for Energy Efficient Task Management in Edge-Cloud
Continuum

Nasiru Muhammad Dankolo1,3, Nor Haizan Mohamed Radzi1, Noorfa Haszlinna Mustaffa1,
Farkhana Muchtar1*, Muhammad Zafran Muhammad Zaly Shah1, Aryati Bakri1, Mohd Kufaisal
Mohd Sidik1, Carolyn Salimun@Jackson2

1 Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
2 Faculty of Computing and Informatics, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
3 Kebbi State University of Science and Technology, Aliero Nigeria

ARTICLE INFO ABSTRACT

Article history:
Received 10 February 2025
Received in revised form 24 March 2025
Accepted 16 June 2025
Available online 18 August 2026

Efficient task management in a dynamic and resource-constrained edge-cloud
environments is essential for minimizing execution delays and reducing energy
consumption. This paper presents a novel hybrid optimization algorithm, integrating
an Adaptive Flower Pollination Algorithm (FPA) with Tabu Search, to address these
challenges. The proposed approach introduces a diversity-based adaptive
mechanism for global and local search and leverages Tabu Search to refine solutions
and prevent convergence to suboptimal points. Extensive simulations demonstrate
that the proposed algorithm outperforms state-of-the-art models in reducing delays
and energy usage while balancing resource utilization in both edge and cloud
environments. These results highlight the significant improvements achieved over
baseline algorithms, providing an effective solution for task scheduling in edge-cloud
systems.

Keywords:
Edge-cloud; energy consumption; flower
pollination

1. Introduction

The advent of edge-cloud computing has transformed the distributed computing by bringing
computation and data storage closer to the data source typically at the network edge [1]. This
paradigm shift addresses the limitations of traditional cloud-centric models, such as high latency and
network congestion, making it well-suited for applications that require real-time processing and low-
latency communication, such as the Internet of Things (IoT) [2,3], autonomous vehicles and smart
city infrastructures. However, as the volume and complexity of data generated by these edge devices
continue to grow, efficiently managing task execution in the edge-cloud continuum has emerged as
a significant challenge [4]. In this regards, two primary objectives are crucial: minimizing task
execution delay and reducing energy consumption [5]. These objectives are inherently conflicting, as

* Corresponding author.
E-mail address: farkhana@utm.my

https://doi.org/10.37934/ard.135.1.218337

https://akademiabaru.com/submit/index.php/ard

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

219

achieving lower delays often requires increased computational resources, which can elevate energy
usage, particularly at the resource-constrained edge nodes [6]. Therefore, optimizing task
management to balance these competing objectives is essential for the sustainable operation of
edge-cloud systems.

Existing task scheduling and resource allocation strategies are mostly metaheuristic-based
approaches [7-9]. Metaheuristic-based optimization methods, such as Particle Swarm Optimization
(PSO) [10] and Genetic Algorithms (GA) [11], often underperform in dynamic environments due to
their static parameter tuning and premature convergence to local optima. These methods are either
too rigid, resulting in suboptimal performance, or they lack the ability to effectively balance
exploration (searching for new, better solutions) and exploitation (refining existing solutions), leading
to premature convergence or inefficient resource utilization. The Flower Pollination Algorithm (FPA),
a nature-inspired optimization method, has shown promise in addressing complex optimization
problems due to its simplicity and ability to balance exploration and exploitation [12]. However, the
standard FPA can still suffer from drawbacks such as premature convergence to local optima and
slow convergence rates in high-dimensional or multi-modal search spaces, limiting its effectiveness
in dynamic environments like the edge-cloud continuum.

To address these challenges, this paper proposes an Adaptive Quantum Behaved Flower
Pollination Algorithm (QFPA) hybridized with Tabu Search. The adaptive QFPA incorporates a
Quantum Potential Field that dynamically adjusts its search strategy based on solution diversity,
enhancing the algorithm's ability to explore and exploit the search space effectively. Additionally, the
integration of Tabu Search provides a robust local search mechanism that helps refine promising
solutions, avoid local optima, and maintain solution diversity. The main contributions of this paper
are as follows:

i. Proposed an Adaptive QFPA that dynamically balances exploration and exploitation through
a Quantum Potential Field.

ii. Integrating Tabu Search as a local search strategy to refine solutions further and prevent
premature convergence.

iii. Evaluating the performance of the proposed hybrid algorithm in minimizing task execution
delay and reducing energy consumption in the edge-cloud continuum.

2. Literature Review

Task management in edge-cloud computing has garnered significant attention due to the
challenges of minimizing execution delays and energy consumption in dynamic, resource-constrained
environments. Several metaheuristic algorithms have been proposed to address these challenges,
offering varying degrees of success. This section critically examines the limitations of existing
approaches and positions the proposed hybrid algorithm within this context.

Metaheuristic methods such as PSO, GA and Grey Wolf Optimizer (GWO) have demonstrated
flexibility in solving optimization problems. However, these methods often suffer from premature
convergence and suboptimal performance in highly dynamic environments. For instance, PSO's
reliance on static parameter tuning limits its adaptability to fluctuating resource demands, leading to
inefficient task scheduling in edge-cloud systems [10]. Similarly, GA often requires extensive
computational time for convergence, making it less suitable for real-time applications [11]. Recent
advancements have explored hybrid algorithms to address these limitations. For example, Hamed et
al., [13] integrated Cooperative Search with GA for dynamic scheduling in heterogeneous
environments, demonstrating improved task completion times but struggling with energy efficiency

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

220

in larger systems. Similarly, Najafizadeh et al., [14] proposed a hybrid approach combining deadline-
aware scheduling with resource optimization. While this method effectively reduces delays, its
performance diminishes under high variability in task arrival rates [14].

Mohammadzadeh et al., [15] introduced an Energy-Aware Metaheuristic Algorithm for Industrial-
Internet-of-Things Task Scheduling Problems in Fog Computing Applications. This algorithm targets
minimizing both execution delay and energy consumption by optimizing task scheduling based on a
dual focus: reducing total execution time and minimizing energy use while maintaining task delay
constraints. The approach includes enhancements to genetic operations, such as selection, crossover
and mutation, along with a catastrophic strategy to avoid premature convergence. This strategy
allows the algorithm to escape local optima and better balance energy consumption and delay.
However, the algorithm's current testing conditions, limited to static tasks with strict deadlines, may
not fully represent the dynamic environments where new tasks appear spontaneously and demand
real-time adjustments. Other algorithms have also been developed to address these objectives. For
instance, Too et al., [16] proposed the Multi-Objective Binary Salp Swarm Algorithm (BSSA), which
uses binary coding to handle discrete joint request offloading and computational resource
scheduling. The algorithm aims to enhance system efficiency by balancing execution delays and
energy consumption, thus achieving fair resource allocation. Despite showing improvements in
performance through simulations, scalability challenges remain when these algorithms are applied
to larger systems or environments where task requests and network conditions fluctuate frequently.

Karaja et al., [17] offered a bi-level multi-objective scheduling approach using an enhanced NSGA-
II algorithm to manage dynamic task allocation in heterogeneous multi-cloud environments. Their
approach focuses on minimizing execution delays while adhering to strict energy consumption
budgets. However, while their method demonstrates efficiency in controlled simulations, the
scalability of the algorithm in extremely large-scale or highly dynamic environments has not been
comprehensively addressed, potentially limiting its applicability in more volatile operational
contexts. In a similar vein, Gabi et al., [18] proposed the Fruit Fly-based Simulated Annealing
Optimization Scheme (FSAOS) for dynamic resource scheduling in mobile edge-cloud settings. This
algorithm specifically targets the trade-offs between execution delay and execution cost by
combining local and global search capabilities to prevent premature convergence. However, while
the algorithm has shown promise in simulated environments, its effectiveness in real-world
scenarios, which often involve complex and variable conditions, remains uncertain and prone to
overfitting.

Abdullahi et al., [8] enhanced the Symbiotic Organisms Search (SOS) algorithm, termed
CMABFSOS, to improve task scheduling in cloud computing environments with a focus on minimizing
both execution delay and execution cost. The algorithm incorporates adaptive mechanisms for
managing benefit factors and constraints, but these enhancements could introduce additional
computational complexity, potentially increasing the time and resources required to reach
convergence, especially in large-scale systems. Efforts have also been made to integrate different
metaheuristic strategies to optimize these objectives. Movahedi et al., [19] proposed an efficient
population-based multi-objective task scheduling approach in fog computing systems and Zhang et
al., [20] proposed Deadline-Aware Dynamic Task Scheduling in Edge-Cloud. This hybrid approach is
designed to minimize both execution delay and energy consumption while avoiding local optima
through a more diversified search process. However, balancing these objectives without one
negatively impacting the other remains a challenge, and the trade-offs involved are not fully detailed
in the study.

Li, et al., [21] developed the Multi-Objective Optimization Artificial Fish Swarm Algorithm
(MOOAFSA) [21] to optimize task scheduling in secure cloud environments by focusing on execution

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

221

time and energy usage. This algorithm attempts to achieve effective and secure scheduling by
balancing these objectives; however, its performance may be highly sensitive to initial parameter
settings. The study does not extensively explore the robustness of the algorithm under varying
configurations, which could impact its effectiveness in different contexts.

Despite these advancements, the limitations of current metaheuristic algorithms in handling the
complexities of edge-cloud environments persist. Many of these algorithms struggle to adapt to
dynamic conditions where task priorities and resource availability can change rapidly, leading to
suboptimal performance in terms of task execution delay and energy consumption [22-24].
Moreover, the need for extensive parameter tuning and the tendency towards premature
convergence to local optima remain significant challenges in applying these algorithms to real-world
edge-cloud applications [25]. Given these challenges, the FPA emerges as a promising alternative due
to its simplicity and easy to implement [26]. While FPA has shown potential in solving complex
optimization problems, it still requires improvements to adapt effectively to the dynamic and multi-
objective nature of edge-cloud computing. The integration of an Adaptive Quantum Potential Field,
which dynamically adjusts search strategies based on solution diversity, combined with Tabu Search
as a local search enhancement, represents a novel approach to overcome the limitations identified
in the current literature and achieve more efficient task management in edge-cloud environments.

3. System Model and Problem Description

The edge-cloud continuum consists of a hierarchical computing architecture where
computational resources are distributed across the cloud, edge servers, and user devices [23]. The
system model is designed to leverage both centralized cloud resources and decentralized edge
resources to optimize task execution based on latency, energy consumption, and resource
availability. In the edge-cloud continuum model, there are three distinct entities which are the Users,
Edge Servers and the Cloud Servers. Users generate tasks from their devices (e.g., smartphones, IoT
devices) that require processing. These tasks could range from simple data analytics to complex
machine learning inferences. Edge Servers are Situated closer to the users; edge servers offer low-
latency computation and storage capabilities. They act as intermediaries, handling time-sensitive
tasks that require quick processing and minimal delay. While the Cloud Servers provide extensive
computational power and storage, suitable for tasks that are less sensitive to latency but require
significant processing resources. In this model, tasks generated by user devices are dynamically
offloaded to edge or cloud servers based on several factors, such as the nature of the task, the current
workload of the edge and cloud resources, network conditions, and the optimization objectives (e.g.,
minimizing delay and energy consumption).

Task generation in the edge-cloud continuum begins at the user devices, such as smartphones,
IoT sensors, or other computing devices, which continuously produce tasks requiring varying levels
of computational processing. These tasks can range from simple data analytics to complex machine
learning inferences, characterized by parameters like task size, computation intensity, and deadlines.
Each task is generated based on user activity or automated triggers and needs to be processed
promptly to meet the application requirements. Once a task is generated, it is packaged with its
relevant parameters and sent to the task management system, which decides how and where to
execute it based on current system conditions, resource availability, and the optimization objectives
of minimizing delay and energy consumption.

The task management system evaluates the tasks by considering factors such as the urgency of
the task, the required computational resources, the network conditions, and the current workload
of both edge and cloud servers. Based on this evaluation, the system determines the most suitable

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

222

resource for executing the task. For tasks that require low latency or have tight deadline constraints,
the task may be processed at a nearby edge server to minimize transmission delay and provide quick
responses. Conversely, for tasks that are computationally intensive but less sensitive to delay, the
cloud servers, with their extensive computational capabilities, may be chosen for execution. If the
task is assigned to an edge server, it is transmitted through a local network connection, minimizing
transmission time. For cloud-bound tasks, data transmission occurs over a potentially longer network
path, impacting both the transmission delay and energy consumption.

After allocation, the task waits in the queue of the assigned resource, where it experiences
queuing delay depending on the current workload and service rate of the server. Once the task
reaches the front of the queue, it undergoes execution, which involves processing based on its
computation intensity and the resource capabilities. Execution delay is influenced by the speed and
efficiency of the allocated resource, and once processing is complete, the results are sent back to the
user device. This entire process, from task generation to result delivery, is dynamic and influenced
by multiple factors that determine the overall system performance, particularly the balance between
task execution delay and energy consumption. Therefore, the task execution Delay and energy
consumption models can be derived from the system.

3.1 Task Execution Delay Model

The task execution delay 𝐷(𝑇𝑖) experienced by task 𝑇𝑖 is composed of three components which
are transmission delay 𝐷𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖), queuing delay 𝐷𝑞𝑢𝑒𝑢𝑒(𝑇𝑖) and execution delay 𝐷𝑒𝑥𝑒𝑐(𝑇𝑖) as in

Eq. (1).

𝐷(𝑇𝑖) = 𝐷𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) + 𝐷𝑞𝑢𝑒𝑢𝑒(𝑇𝑖) + 𝐷𝑒𝑥𝑒𝑐(𝑇𝑖) (1)

Where, 𝐷𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) is the time taken to transmit the task from the user device to the edge server
or cloud server. It depends on the network bandwidth 𝐵 and the size of the task 𝑇𝑠 as in Eq. (2).

𝐷𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) =
𝑇𝑠

𝐵
 (2)

The queuing delay on the other hand is the time the task spends waiting in the queue before

being processed. It is influenced by the current workload of the selected resource in Eq. (3).

𝐷𝑞𝑢𝑒𝑢𝑒(𝑇𝑖) =
𝑛

𝜇−𝜆
 (3)

Where, 𝑛 is the number of tasks in the queue, 𝜇 is the service rate and 𝜆 is the arrival rate of tasks.
The execution delay 𝐷𝑒𝑥𝑒𝑐(𝑇𝑖) is the time taken to execute the task once it reaches the front of the
queue. It depends on the computational resources available (e.g., CPU speed) and the computation
intensity 𝐶𝑖 of the task in Eq. (4).

𝐷𝑒𝑥𝑒𝑐(𝑇𝑖) =
𝐶𝑖

𝑅
 (4)

Where, 𝑅 is the processing speed of the allocated resources.

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

223

3.2 Energy Consumption Model

The total energy consumption 𝐸(𝑇𝑖) for executing a task 𝑇𝑖 includes the energy consumed during
transmission 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) and the energy consumed during the execution 𝐸𝑒𝑥𝑒𝑐(𝑇𝑖). The
transmission energy 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) is energy required to transmit the task from the user device to the
edge or cloud server, given by Eqs. (5) and (6).

𝐸(𝑇𝑖) = 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) + 𝐸𝑒𝑥𝑒𝑐(𝑇𝑖) (5)

𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑇𝑖) = 𝑃𝑡𝑟𝑎𝑛𝑠 × 𝐷𝑡𝑟𝑎𝑛𝑠(𝑇𝑖) (6)

Where, 𝑃𝑡𝑟𝑎𝑛𝑠 is the power consumed for transmission. The execution energy 𝐸𝑒𝑥𝑒𝑐(𝑇𝑖) is the energy
consumed during the execution of the task on the edge or cloud server or both and is given in Eq. (7)

𝐸𝑒𝑥𝑒𝑐(𝑇𝑖) = 𝑃𝑒𝑥𝑒𝑐 × 𝐷𝑒𝑥𝑒𝑐(𝑇𝑖) (7)

Where, 𝑃𝑒𝑥𝑒𝑐 is the power consumed for execution.

3.3 Multi-Objective Function

The goal is to formulate a multi-objective optimization problem that minimizes both the total task
execution delay and the total energy consumption. Let 𝐹1 represent the objective function for
minimizing delay and 𝐹2 for minimizing energy consumption as follows in Eqs. (8) and (9).

𝐹1 = ∑ 𝐷(𝑇𝑖) 𝑁
𝑖=1 (8)

𝐹2 = ∑ 𝐸(𝑇𝑖)
𝑁
𝑖=1 (9)

Where, 𝑁 is the total number of tasks. The multi-objective optimization can be expressed as Eq. (10).

𝐹(𝑥) = min(𝐹1, 𝐹2) (10)

and is subjected to deadline constraints 𝐷(𝑇𝑖) ≤ 𝐷𝑙. The proposed hybrid algorithm, combining the
Adaptive Quantum Behaved Flower Pollination Algorithm (QFPA) with Tabu Search, aims to find an
optimal or near-optimal solution for this multi-objective problem.

4. Proposed Algorithm
4.1 Overview of the Flower Pollination Algorithm (FPA)

The FPA is a nature-inspired optimization algorithm based on the pollination process of flowering
plants [27]. Pollination is the process by which pollen is transferred from the male part of a flower to
the female part, enabling fertilization and reproduction. FPA mimics this process to explore and
exploit the search space effectively, balancing between global and local search strategies to find
optimal or near-optimal solutions. The FPA consists of two main processes: global pollination and
local pollination. The global pollination step is inspired by cross-pollination, where pollen is carried
over long distances by biotic and abiotic agents like insects or wind, enabling exploration across the
search space. The local pollination step, on the other hand, mimics self-pollination, where pollen

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

224

transfer occurs within the same plant or nearby flowers, leading to a more localized search. The
mathematical model of the FPA can be summarized with the following equations.

Global pollination is performed using Lévy flights, a type of random walk characterized by step
lengths that follow a Lévy distribution. The global pollination step is expressed in Eq. (11).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝑥𝑖
𝑡 + 𝑔∗) (11)

Where, 𝑥𝑖

𝑡 is the solution vector (flower) at iteration 𝑡, 𝑔∗ is the current best solution, 𝛾 is the step
size scaling factor, and 𝐿 is the represent the Levy flight distribution defined by Eq. (12).

𝐿 ≈
𝜆

Γ(1+𝜆) sin(
𝜋𝜆

2
)
 .

1

𝑠1+𝜆 (12)

Where, 𝑠 is the step size, 𝜆 is constant parameter typically set to 1.5. The local pollination is modelled
as in Eq. (13).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+∈ (𝑥𝑗
𝑡 + 𝑥𝑘

𝑡) (13)

Where, 𝑥𝑗

𝑡 and 𝑥𝑘
𝑡 are two solutions chosen at random from the population, and ∈ is a random

number drawn from a uniform distribution in the range [0,1].
A switch probability 𝑝 ∈ [0,1] determines whether global or local pollination is applied. Typically,

a value like p = 0.8 is chosen to favor global search in the initial iterations and gradually focuses more
on local search as the algorithm progresses. The FPA effectively balances exploration and
exploitation; however, it can suffer from drawbacks such as premature convergence to local optima
and slow convergence rates in high-dimensional and multi-modal search spaces and poor solution
initialization.

4.2 Solution Initialization

To enhance the initialization of solutions in the FPA, the Chaotic Circle Map is used. The Chaotic
Circle Map introduces chaos theory principles into the initialization phase, allowing the algorithm to
generate a more diverse and well-distributed set of initial solutions [28]. This improves the
algorithm's ability to explore the solution space effectively and avoid premature convergence to local
optima. The Chaotic Circle Map is a simple yet effective mathematical model that exhibits chaotic
behavior, generating sequences that can be used to initialize solutions in optimization algorithms.
The Circle Map is defined as follows:

𝑥𝑛+1 = (𝑥𝑛 + Ω −
𝐾

2𝜋
sin(2𝜋𝑥𝑛)) mod 1 (14)

where 𝑥𝑛 is the current value in the sequence, Ω is a constant representing the angular frequency, 𝐾
is a control parameter that determines the degree of chaos in the sequence and mod 1 ensures the
value remains within the range [0,1]. The procedure for solution initiation is given in algorithm 1
(Table 1).

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

225

Table 1
Algorithm 1
1. Algorithm 1: Solution initialization using Circle Map

2. //Set parameters for Chaotic Circle Map:
1. Omega (Ω) = 0.3, K = 0.5, Initial value x0 in range [0,1], Population size N, Solution space

boundaries [a, b]
3. //Generate chaotic sequence:
2. Initialize x = x0
3. For i = 1 to N:
4. x = (x + Ω - (K / (2π)) * sin (2π * x)) mod 1
5. chaotic_values[i] = x
4. //Map chaotic values to the solution space:
6. for each chaotic value xi in chaotic_values []
7. xsolutioni = a + (b − a) ∗ xi
8. // Initialize FPA population
9. Return mapped solutions as the initial population for FPA

The use of the Chaotic Circle Map for solution initialization introduces a higher degree of diversity

in the initial population, which enhances the FPA's ability to explore the solution space more
comprehensively. The chaotic sequence generated by the Circle Map ensures that the initial solutions
are not only well-distributed but also cover a wider range of potential solutions, increasing the
likelihood of finding the global optimum. This initialization technique reduces the chances of
premature convergence by promoting a more thorough exploration of the search space from the
very beginning of the optimization process.

4.3 Quantum Behaved Flower Pollination Algorithm (QFPA)

The Quantum Behaved Flower Pollination Algorithm (QFPA) introduces quantum computing
principles to enhance the standard FPA’s search capabilities. The need for QFPA arises from the
limitations of the standard FPA in dynamic and complex environments, such as premature
convergence and suboptimal exploration of the solution space. QFPA leverages the concepts of
quantum mechanics, such as superposition and probability amplitudes, to allow more diverse and
flexible exploration of the search space. This is particularly important for multi-objective optimization
problems, where maintaining a diverse set of solutions is critical for balancing conflicting objectives.
The key improvement of QFPA over the standard FPA is the integration of a Quantum Potential Field,
which dynamically adjusts the probability distribution governing the search direction based on the
diversity of the solutions. This allows the algorithm to adaptively balance exploration and
exploitation, enhancing its ability to avoid local optima and accelerate convergence towards the
global optimum.

In QFPA, each solution is represented in a quantum state, allowing it to exist in multiple states
simultaneously, enhancing the diversity of the search. The position update of each solution is
controlled by the Quantum Potential Field, which is modelled using a Gaussian probability
distribution as presented in Eq. (15).

𝑃(𝑥) =
1

√2𝜋𝜎2
 𝑒𝑥𝑝 (−

(𝑥−𝜇)2

2𝜎2
) (15)

Where, P(x) represents the probability of selecting a particular solution x, μ is the mean position of
the current set of solutions, and σ is the standard deviation that dynamically adjusts based on the

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

226

diversity of the solutions. The dynamic adjustment of 𝜎 enables the algorithm to expand or narrow
the search space adaptively. Hence, the QFPA enhanced global and local search steps are given in Eq.
(16) and Eq. (17) respectively.

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝑥𝑖
𝑡 + 𝑔∗). 𝑃(𝑥) (16)

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡+∈ (𝑥𝑗
𝑡 + 𝑥𝑘

𝑡). 𝑃(𝑥) (17)

The pseudo code for QFPA is given in algorithm 2 (Table 2).

Table 2
Algorithm 2
5. Algorithm 2: QFPA procedure

1. Generate initial solution using Algorithm 1, set the initial values for parameters N, 𝛾,
𝑝, 𝜇, and σ

2. For t= to N
6. //Quantum Potential Field Update
3. calculate the diversity of the current solutions
4. Adjust σ dynamically based on the diversity
5. If diversity is high, increase σ to encourage exploration; if diversity is low, decrease σ

to focus on exploitation.
7. //Decide whether to perform a global search or a local search
6. if rand < p
7. Global and Local Search using Eq. (16)
8. Else
9. Local Search using Eq. (17)
8. //Evaluation
10. Evaluate each solution using multi-objective function
11. Update the current best solution g∗ if a better solution is found.
12. Repeat
13. Return best solution
14. End

4.4 Adaptive QFPA with Tabu Search

To further enhance the search process and refine the solutions identified by QFPA, Tabu Search
(TS) is incorporated into the algorithm. The rationale behind this integration is that while QFPA excels
in maintaining diversity and exploring the global solution space, it may still struggle with fine-tuning
solutions and avoiding premature convergence in local optima. TS complements QFPA by providing
a structured local search mechanism that intensively explores the neighborhood of promising
solutions, ensuring that high-quality solutions are not missed due to restrictive search conditions. To
incorporate TS into the QFPA, we need to modify the solution update equations to account for the
local search optimization provided by TS. The integration of TS involves refining the current best
solution obtained from the QFPA's global and local search processes by exploring its neighborhood
more thoroughly [29]. The updated equations reflect how TS is applied to the QFPA framework to
achieve this.

After the initial population of solutions is generated and updated using the QFPA’s global and
local search mechanisms, the best solution 𝑔∗ from the current population is selected for further
refinement using TS. The position of the current best solution is perturbed to explore its
neighborhood. The new candidate solutions, denoted as 𝑥𝑛𝑒𝑤, are generated using the Eq. (18).

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

227

𝑥𝑛𝑒𝑤 = 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + Δ𝑥 (18)

Where, 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current best solution, and Δ𝑥 represents a small perturbation vector applied
to explore the local neighborhood. This perturbation is typically generated randomly within a small
range to ensure that the local search is focused around the current solution. The fitness of each new
candidate solution 𝑥𝑛𝑒𝑤 is evaluated using the multi-objective function that aims to minimize both
task execution delay and energy consumption. If 𝑥𝑛𝑒𝑤 provides a better objective value than
𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡, and it is not in the tabu list, it becomes the new current solution.

To incorporate the memory aspect of TS, a tabu list 𝑇 is maintained to store the recently visited
solutions, ensuring that the algorithm does not revisit these points. The updated candidate solution
is checked against the tabu list, and if it is not present in T or satisfies the aspiration criterion (i.e., it
offers a significant improvement in the objective function), it is accepted as the new best solution.
The equation for the local search update within the TS phase thus becomes:

𝑥𝑏𝑒𝑠𝑡 = {

𝑥𝑛𝑒𝑤, 𝑖𝑓 𝐹(𝑥𝑛𝑒𝑤) < 𝐹(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡)𝑎𝑛𝑑 𝑥𝑛𝑒𝑤 ∉ 𝑇,

𝑥𝑛𝑒𝑤, 𝑖𝑓 𝐹(𝑥𝑛𝑒𝑤) < 𝐹(𝑥𝑏𝑒𝑠𝑡) (𝑎𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (19)

Here, F(x) denotes the multi-objective fitness function, and 𝑥𝑏𝑒𝑠𝑡 represents the current best

solution after applying TS. This equation ensures that TS can dynamically refine the solution space
while integrating smoothly with the adaptive global search behavior of QFPA, leading to a more
robust and effective optimization process. The pseudo code for the Hybrid QFPA-TS is presented in
algorithm 3 (Table 3).

Table 3
Algorithm 3
9. Algorithm 3: Adaptive QFPA-TS Algorithm

10. Set population size N, initialize solution using Algorithm 1, Set QFPA parameters: Iter, γ,
 p, μ and σ. Set Tabu Search parameters: T, K,

1. For each solution xi in X
2. Calculate F(xi) : Eq. (10)
3. Identify the current best solution g* in the population X
4. Repeat until convergence or maximum iterations reached:
5. Calculate the diversity of the population X
6. Adjust Quantum Potential Field parameter σ based on diversity:
7. For each solution xi in X:
8. Generate a random number r in [0, 1]
9. If r < p:
10. Perform Quantum-Enhanced Global Search: Eq. (16)
11. Else:
12. Perform Quantum-Enhanced Local Search: Eq. (17)
13. For each solution xi in X:
14. Calculate the fitness function F(xi): Eq. (10)
15. Update current best solution g* if a better solution is found
16. Select the current best solution g* for Tabu Search
17. Initialize tabu list and iteration counter for TS
18. While not reaching TS maximum iterations or convergence:
19. Generate a new candidate solution: using Eq. (18)
20. Evaluate the fitness F (xnew): Eq. (10)

21. If (xnew)is not in the tabu list and F (xnew) < F (xcurrent):

22. Update xcurrent= xnew

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

228

23. Add xnew to the tabu list
24. Else if xnew is in the tabu list but satisfies aspiration criterion:
25. Update xcurrent= xnew

26. Add xnewto the tabu list
27. Update tabu list by removing the oldest entry if size exceeds the limit
28. Update population X with refined solution from Tabu Search
29. End Repeat
30. Return the best solution g* and corresponding fitness value

4.5 Execution of the Proposed Adaptive QFPA-TS Algorithm

The execution of the Adaptive QFPA-TS algorithm in the edge-cloud continuum begins by
initializing the algorithm parameters, which include defining the population size, setting parameters
for the Quantum Behaved Flower Pollination Algorithm (QFPA), such as step size, switch probability
and quantum potential field parameters, as well as configuring the TS parameters like the size of the
tabu list and the maximum number of iterations for the local search. The initial population of
solutions is generated using the Chaotic Circle Map (algorithm 1), which introduces chaotic behavior
to ensure a diverse and well-distributed starting point for the optimization process. Each solution in
this initial population represents a potential strategy for allocating tasks across the edge and cloud
resources in the continuum. The fitness of each solution is evaluated using a multi-objective function
(Eq. (10)) that considers both task execution delay and energy consumption.

The solution with the best fitness value is identified as the current best solution, which will serve
as the focal point for further refinement and optimization. Once the initial population is evaluated,
the algorithm adjusts the Quantum Potential Field dynamically to balance exploration and
exploitation (step 7). This adjustment is based on the diversity of the current set of solutions. If the
diversity is high, indicating a broad range of potential task allocation strategies, the quantum
potential field parameter is adjusted to promote more exploration, allowing the algorithm to search
for novel and potentially more efficient resource allocation scenarios. Conversely, if the diversity is
low, indicating that the solutions are converging towards a particular area in the search space, the
quantum potential field is adjusted to focus on exploitation, refining the current solutions to find the
best possible allocation strategy. This dynamic adjustment mechanism enables the QFPA to adapt to
the changing search landscape and maintain an effective balance between exploring new solutions
and refining existing ones.

In the next phase, the QFPA performs both global and local searches (step 8-13) to explore
different task allocation strategies. For each solution in the population, a random decision is made
to determine whether to perform a global search or a local search. If the global search is chosen, the
algorithm uses quantum-enhanced Lévy flights to explore distant regions of the search space (Eq.
(16), simulating a broader search for potential solutions by making larger, stochastic jumps. This
approach helps identify promising areas that may contain optimal or near-optimal solutions. If the
local search is chosen, the algorithm performs a quantum-enhanced local search by making smaller,
more focused adjustments to the solution (Eq. (17)), allowing it to exploit known good configurations
to refine the task allocation strategy. Both global and local searches are guided by the quantum
potential field (Eq. (15)), ensuring that the search process remains adaptive and responsive to the
diversity of the solutions.

After performing the global and local searches, the fitness of the updated population is evaluated
again using the multi-objective function (step 15). If a better solution is found, the current best
solution is updated to reflect this improvement. At this stage, the algorithm moves into the TS phase
for local refinement (step 17-28). TS begins by selecting the current best solution obtained from the

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

229

QFPA phase and focuses on intensively exploring its neighborhood by generating small perturbations
around it (step 20). The new candidate solutions generated by these perturbations are evaluated
based on the multi-objective fitness function, and if a candidate solution offers a better objective
value than the current best solution and is not in the tabu list, it is accepted as the new current best
solution. To ensure the search does not revisit recently explored solutions, a tabu list is maintained
to record these solutions.

However, if a solution in the tabu list provides a significant improvement (satisfies the aspiration
criterion), it is accepted regardless of its tabu status. This local search process continues until either
the maximum number of iterations for TS is reached, or no further improvement is found. The refined
solution obtained from TS is then used to update the population of solutions for the next iteration of
the QFPA global and local search. The algorithm iteratively alternates between the global search
phase of QFPA, where broad exploration is performed, and the local refinement phase of TS, where
the focus is on intensifying the search around the most promising solutions. This iterative framework
allows the algorithm to continuously improve the quality of solutions by adapting to the dynamic
nature of the edge-cloud continuum environment.

5. Experiment and Results Analysis

In this section, we present the experimental setup and result analysis of our proposed algorithm,
comparing its performance against Quantum Particle Swarm Optimization (QPSO) [10], Grey Wolf
Optimizer (GWO) [30], and the Standard Flower Pollination Algorithm (FPA). The experiment is
conducted using the Edge-CloudSim simulation environment, configured to simulate a realistic edge-
cloud computing scenario with varying numbers of offloading tasks. We evaluate the algorithms
based on key performance metrics, including delay, energy consumption, makespan and resource
utilization.

5.1 Experiment

To conduct the experiment, the Edge-CloudSim simulation environment is used to evaluate the
performance of our proposed algorithm in comparison with QPSO, GWO and the FPA. The focus of
the evaluation is on several key metrics: delay, energy consumption, makespan and resource
utilization. Delay will measure the total time taken from task generation to completion, while energy
consumption will quantify the amount of energy used by both edge and cloud servers during task
execution. Makespan will represent the total time required to complete all offloaded tasks. Resource
utilization will indicate the percentage of computational resources used by the servers. The Edge-
CloudSim environment is configured with specific settings to simulate a realistic edge-cloud
computing scenario, ensuring that all algorithms are evaluated under identical conditions. The
settings include the number of servers, their capacities, network bandwidths, and task parameters.
This is presented in detail in Table 4. The simulation involves varying the number of offloading tasks
and observing the behavior of each algorithm in response to these changes.

Table 4
Edge-Cloudsim environment settings
Parameter Value

Number of Cloud servers 2
Cloud server CPU capacity 60-80 (uniform distribution)
Edge link bandwidth 100 Mbps
Cloud link bandwidth 200 Mbps

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

230

Number of edge servers 30
Edge server CPU capacity 40-60 (uniform distribution)
Number of mobile devices 100
Task CPU request Oct-20
Task Data Size 10-20 MB
Task tolerable delay 10-15 ms
Number of Offloading tasks 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

The parameter settings for the benchmark algorithms are adopted from the original benchmark

papers to ensure a fair comparison. The parameter settings of each algorithm are presented in Table
5.

Table 5
Algorithms parameter settings
Algorithm Parameter Value

QPSO Population size 30
 Maximum iterations 100
 Cognitive coefficient 1.5
 Social coefficient 1.5
 Inertia weight 0.9-0.4
GWO Population size 30
 Maximum iterations 100
 Alpha (Î±) 0.5
 Beta (Î²) 0.3
FPA Population size 30
 Maximum iterations 100
 Probability switch (p) 0.8
 Step size 0.1
QFPA-TS Population size 30
 Maximum iterations 100
 Adaptive probability function Based on solution diversity
 TS maximum iterations 50
 Tabu list size 10

5.2 Results Analysis

In this section, we present the results of our experiments, organized into subsections for each
performance metric: delay, energy consumption, makespan and resource utilization. Each subsection
provides a detailed analysis of the corresponding metric, comparing the performance of our
proposed algorithm with the baseline algorithms QPSO, GWO and FPA. The results are discussed to
highlight the strengths and weaknesses of each algorithm, emphasizing the effectiveness of our
proposed approach in optimizing task management in the edge-cloud continuum under various
conditions.

5.2.1 Delay analysis

The delay results of the Adaptive QFPA-TS algorithm, when compared to the baseline algorithms
GWO, QPSO and the FPA demonstrate a significant improvement in task execution times in both edge
and cloud environments, as shown in Figures 1(a) and (b). In the edge environment, the Adaptive
QFPA-TS outperforms all baselines, primarily due to its dynamic balance between exploration and
exploitation. The adaptive quantum potential field enables the algorithm to explore the solution
space efficiently, avoiding premature convergence to suboptimal solutions. Additionally, the

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

231

incorporation of TS intensively refines solutions, further reducing task delays, which gives the
algorithm an edge over GWO and QPSO, which lack these adaptive and local search mechanisms.

(a) (b)

Fig. 1. Task execution delay (a) Cloud servers (b) Edge servers

On cloud resources, the Adaptive QFPA-TS also shows better performance in minimizing task

execution delays, although the margin of improvement over the baseline algorithms is less
pronounced compared to the edge environment. This difference is due to the cloud’s higher
computational capacity, which naturally reduces delays. However, the Adaptive QFPA-TS maintains
its advantage by effectively balancing task execution and data transmission times through its
quantum-enhanced global search and TS-based local refinement. The GWO and QPSO perform well
in the cloud but cannot match the Adaptive QFPA-TS’s adaptability in dynamically allocating
resources. The standard FPA, without enhancements, lags behind in both environments, especially
on the edge, where it struggles to adapt to rapid changes in resource availability.

5.2.2 Energy consumption analysis

The energy consumption performance results of the Adaptive QFPA-TS algorithm also reveal
notable differences in both edge and cloud environments compared to the base line algorithms. As
illustrated in Figures 2. On the edge, the Adaptive QFPA-TS demonstrates a significant reduction in
energy consumption compared to all baseline algorithms. This is primarily due to its ability to
dynamically manage task allocation by considering both the execution cost and the energy overhead
associated with each task. The quantum-inspired adaptive search of the QFPA allows it to explore
various allocation scenarios efficiently, finding those that minimize the overall energy usage.
Furthermore, the integration of Tabu Search helps refine these allocations by locally optimizing
around the most promising solutions, which is particularly advantageous in the edge environment,
where energy resources are limited.

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

232

(a) (b)

Fig. 2. Energy consumption (a) Cloud servers (b) Edge servers

In the cloud environment, depicted in Figure 2(a), the Adaptive QFPA-TS also achieves lower

energy consumption than GWO, QPSO, and FPA, but the margin of improvement is relatively smaller
than in the edge environment. The cloud’s greater computational capacity tends to offset energy
savings, reducing the overall consumption benefits. However, the Adaptive QFPA-TS still maintains
an edge by effectively balancing the computational load and minimizing the energy-intensive data
transmission required for offloading tasks to cloud servers. GWO and QPSO, while demonstrating
reasonable performance, do not achieve the same level of energy efficiency as the Adaptive QFPA-
TS because they lack mechanisms to dynamically adjust allocation based on both execution cost and
energy consumption. The standard FPA, without the benefits of quantum adaptation or local search
refinement, also shows higher energy consumption in both environments compared to the Adaptive
QFPA-TS, particularly on the edge.

5.2.3 Makespan analysis

Compared to the baseline algorithm, the makespan results for the Adaptive QFPA-TS algorithm
demonstrate its effectiveness in optimizing task completion time across both edge and cloud
environments, as shown in Figure 3. On the edge, the Adaptive QFPA-TS shows a substantial
reduction in makespan compared to all baselines. This improvement stems from the algorithm's
ability to dynamically manage task scheduling and resource allocation, balancing the load more
efficiently across limited edge resources. The adaptive quantum potential field facilitates a diverse
exploration of potential scheduling scenarios, while TS fine-tunes these strategies by intensively
searching the local neighborhood of promising solutions, thereby achieving a more balanced
distribution of tasks and minimizing the total time required to complete all tasks.

In the cloud environment, as illustrated in Figure 3(a), the Adaptive QFPA-TS also exhibits a
notable decrease in makespan compared to GWO, QPSO and FPA, though the relative improvement
is less dramatic than on the edge. The cloud's extensive computational resources naturally contribute
to a lower makespan overall, but the Adaptive QFPA-TS maintains its advantage by optimizing the
allocation of tasks in a way that reduces bottlenecks and improves parallel processing. GWO, while
achieving reasonable makespan reductions, often converges prematurely due to its less dynamic
search strategy, resulting in less optimal task allocations. QPSO performs better in some cases but
lacks the refinement mechanisms needed to consistently minimize makespan across different load
levels. The standard FPA, without the enhancements of quantum-inspired adaptation or TS
refinement, shows the higher makespan values against QFPA-TS in both environments, particularly
on the edge, where the lack of dynamic adjustment leads to inefficient task distribution.

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

233

(a) (b)

Fig. 3. Makespan time (a) Cloud servers (b) Edge servers

5.2.4 Resource utilization

The resource utilization results also illustrate performance of the QFPA-TS in effectively managing
computational resources in both edge and cloud environments, as presented in Figure 4. In the edge
environment, the Adaptive QFPA-TS achieves higher and more balanced resource utilization
compared to the baselines. This advantage stems from the algorithm's ability to dynamically allocate
tasks across the available edge resources, leveraging both global exploration through the adaptive
quantum potential field and local refinement via TS. The combination of these mechanisms allows
for an optimized distribution of workload, reducing idle time and ensuring that all available resources
are effectively used, which is crucial in environments with limited capacity like the edge.

(a) (b)

Fig. 4. Resource utilization (a) Cloud servers (b) Edge servers

In the cloud environment, as shown in Figure 4(a), the Adaptive QFPA-TS also demonstrates a

higher resource utilization than GWO, QPSO, and FPA, although the relative improvement is
somewhat less noticeable compared to the edge. The cloud's abundant computational resources
generally lead to higher baseline utilization levels; however, the Adaptive QFPA-TS maintains an edge
by preventing resource underutilization and ensuring that tasks are distributed in a way that
maximizes the use of available processing power. GWO tends to achieve suboptimal utilization due
to its static hierarchy-based approach, which can lead to uneven task distribution. QPSO, while better
than GWO, lacks the adaptive refinement capabilities of TS, leading to occasional resource
bottlenecks. The standard FPA also struggled in balancing the resources.

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

234

5.2.5 Percentage improvement

The percentage improvement of an algorithm refers to the relative increase in performance (in
this case, delay, resource utilization and energy consumption) between the baseline algorithm
(QPSO, GWO and FPA) and the enhanced version (QFPA-TS). It helps in quantifying how much better
the improved algorithm is compared to the previous one. This percentage improvement is calculated
using Eq. (20) and the percentage improvement is presented in Table 6.

Improvement% =
Baseline−Proposed

Baseline
× 100 (20)

Table 6
Percentage improvement
Metric Against QPSO (%) Against GWO (%) Against FPA (%)

Delay (ms) 33.75371 31.1569 12.44463
Energy consumption (J) 16.92538 14.74175 5.194264
Makespan (ms) 9.942674 8.060856 4.414982

The percentage improvement results demonstrate that QFPA-TS consistently outperforms QPSO,

GWO, and FPA in reducing delay, energy consumption, and makespan across all task sizes. QFPA-TS
achieves the highest improvements in delay, with an average reduction of 33.75% over QPSO, 31.16%
over GWO, and 12.44% over FPA, showcasing its robust handling of latency-sensitive tasks. The
energy consumption results further highlight the efficiency of QFPA-TS, achieving reductions of
16.93%, 14.74%, and 5.19% compared to QPSO, GWO, and FPA, respectively. These improvements
underscore its suitability for energy-constrained environments. While the improvements in
makespan are slightly lower, with reductions of 9.94% over QPSO, 8.06% over GWO, and 4.41% over
FPA, they are still significant and demonstrate QFPA-TS's ability to maintain efficient task execution.
Overall, the results emphasize the effectiveness of QFPA-TS in optimizing task scheduling for edge-
cloud environments by reducing latency and energy usage while ensuring timely task completion,
making it a reliable solution for such systems.

6. Conclusions

This research presents a novel hybrid optimization approach, the Adaptive Quantum Behaved
Flower Pollination Algorithm with Tabu Search (QFPA-TS), designed to optimize task management in
the edge-cloud continuum by minimizing task execution delay, energy consumption, makespan, and
maximizing resource utilization. The integration of quantum-inspired global search mechanisms with
adaptive adjustments, alongside a robust local search refinement using TS, allows the proposed
algorithm to dynamically balance exploration and exploitation, thereby overcoming the limitations
of traditional optimization methods like GWO, QPSO and standard FPA.

The results of this study demonstrate that the Adaptive QFPA-TS algorithm consistently
outperforms these baseline algorithms across multiple performance metrics in both edge and cloud
environments. In the edge environment, where resources are limited and the need for rapid
adaptation is critical, the Adaptive QFPA-TS shows significant improvements in reducing task
execution delays, lowering energy consumption, minimizing makespan and maximizing resource
utilization. The algorithm's ability to adjust dynamically to varying conditions enables it to maintain
optimal performance in scenarios characterized by high variability and constrained resources. In the
cloud environment, while the relative performance gains are less noticeable due to the inherent

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

235

capacity and resource availability, the Adaptive QFPA-TS still provides a distinct advantage by
ensuring efficient task allocation and minimizing energy-intensive data transmissions. Hence, the
Adaptive QFPA-TS proves to be a robust and versatile solution for managing tasks in the edge-cloud
continuum, demonstrating substantial improvements over existing methods. Its unique combination
of quantum-inspired global search, adaptive parameter adjustments, and local refinement
capabilities offers a powerful framework for multi-objective optimization in dynamic, resource-
constrained environments. This approach not only enhances the efficiency and effectiveness of
resource management but also paves the way for future research into adaptive optimization
techniques in emerging computing paradigms. The findings suggest that the proposed hybrid
algorithm can be a valuable tool for optimizing complex distributed computing environments,
supporting the development of more efficient and sustainable edge-cloud systems.

Acknowledgement
This research was not funded by any grant.

References
[1] Dankolo, Nasiru Muhammad Dankolo, Nor Haizan Mohamed Radzi, Noorfa Haszlinna Mustaffa, Mohd Shukor Talib,

Zuriahati Mohd Yunos, and Danlami Gabi. "Efficient task scheduling approach in edge-cloud continuum based on
flower pollination and improved shuffled frog leaping algorithm." Baghdad Science Journal 21, no. 2 (SI) (2024):
0740-0740. https://doi.org/10.21123/bsj.2024.10084

[2] Fuaad, Mohamad Adrian Mohd, Qairel Qayyum Muhamad Ridhuan, Wan Muhammad Alif Firdaus Wan Hanapi,
and Shelena Soosay Nathan. "LifeGuardian; A smart bracelet for visually impaired elderly." Journal of Advanced
Research in Computing and Applications 36, no. 1 (2024): 20-28. https://doi.org/10.37934/arca.36.1.2028

[3] Ali, Tasnuva, Azni Haslizan Ab Halim, and Nur Hafiza Zakaria. "3D lightweight cryptosystem design for IoT
applications based on composite S-box." International Journal of Computational Thinking and Data Science 3, no.
1 (2024): 40-54. https://doi.org/10.37934/ctds.3.1.4054

[4] Shafiq, Dalia Abdulkareem, N. Z. Jhanjhi, and Azween Abdullah. "Load balancing techniques in cloud computing
environment: A review." Journal of King Saud University-Computer and Information Sciences 34, no. 7 (2022): 3910-
3933. https://doi.org/10.1016/j.jksuci.2021.02.007

[5] Al Shamaa, Saleh, Nabil Harrabida, Wei Shi, and Marc St-Hilaire. "Particle swarm optimization with enhanced
neighborhood search for task scheduling in cloud computing." In 2022 IEEE Cloud Summit, p. 31-37. IEEE, 2022.
https://doi.org/10.1109/CloudSummit54781.2022.00011

[6] Gabi, Danlami, Abdul Samad Ismail, Anazida Zainal, Zalmiyah Zakaria, Ajith Abraham, and Nasiru Muhammed
Dankolo. "Cloud customers service selection scheme based on improved conventional cat swarm
optimization." Neural Computing and Applications 32 (2020): 14817-14838. https://doi.org/10.1007/s00521-020-
04834-6

[7] Saif, Faten A., Rohaya Latip, Zurina Mohd Hanapi, and Kamarudin Shafinah. "Multi-objective grey wolf optimizer
algorithm for task scheduling in cloud-fog computing." IEEE Access 11 (2023): 20635-20646.
https://doi.org/10.1109/ACCESS.2023.3241240

[8] Abdullahi, Mohammed, Md Asri Ngadi, Salihu Idi Dishing, and Shafi’I. Muhammad Abdulhamid. "An adaptive
symbiotic organisms search for constrained task scheduling in cloud computing." Journal of ambient intelligence
and humanized computing 14, no. 7 (2023): 8839-8850. https://doi.org/10.1007/s12652-021-03632-9

[9] Usman, Mohammed Joda, Lubna A. Gabralla, Ahmed Aliyu, Danlami Gabi, and Haruna Chiroma. "Multi-objective
hybrid flower pollination resource consolidation scheme for large cloud data centres." Applied Sciences 12, no. 17
(2022): 8516. https://doi.org/10.3390/app12178516

[10] Dong, Shi, Yuanjun Xia, and Joarder Kamruzzaman. "Quantum particle swarm optimization for task offloading in
mobile edge computing." IEEE Transactions on Industrial Informatics 19, no. 8 (2022): 9113-9122.
https://doi.org/10.1109/TII.2022.3225313

[11] Wang, Shudong, Yanqing Li, Shanchen Pang, Qinghua Lu, Shuyu Wang, and Jianli Zhao. "A Task Scheduling Strategy
in Edge‐Cloud Collaborative Scenario Based on Deadline." Scientific Programming 2020, no. 1 (2020): 3967847.
https://doi.org/10.1155/2020/3967847

[12] Guevara, Judy C., and Nelson LS Da Fonseca. "Task scheduling in cloud-fog computing systems." Peer-to-Peer
Networking and Applications 14, no. 2 (2021): 962-977. https://doi.org/10.1007/s12083-020-01051-9

https://doi.org/10.21123/bsj.2024.10084
https://doi.org/10.37934/arca.36.1.2028
https://doi.org/10.37934/ctds.3.1.4054
https://doi.org/10.1016/j.jksuci.2021.02.007
https://doi.org/10.1109/CloudSummit54781.2022.00011
https://doi.org/10.1007/s00521-020-04834-6
https://doi.org/10.1007/s00521-020-04834-6
https://doi.org/10.1109/ACCESS.2023.3241240
https://doi.org/10.1007/s12652-021-03632-9
https://doi.org/10.3390/app12178516
https://doi.org/10.1109/TII.2022.3225313
https://doi.org/10.1155/2020/3967847
https://doi.org/10.1007/s12083-020-01051-9

Journal of Advanced Research Design

Volume 135, Issue 1 (2025) 218-237

236

[13] Hamed, Ahmed Y., M. Kh Elnahary, Faisal S. Alsubaei, and Hamdy H. El-Sayed. "Optimization Task Scheduling Using
Cooperation Search Algorithm for Heterogeneous Cloud Computing Systems." Computers, Materials &
Continua 74, no. 1 (2023). http://dx.doi.org/10.32604/cmc.2022.032215

[14] Najafizadeh, Abbas, Afshin Salajegheh, Amir Masoud Rahmani, and Amir Sahafi. "Multi-objective task scheduling
in cloud-fog computing using goal programming approach." Cluster Computing 25, no. 1 (2022): 141-165.
https://doi.org/10.1007/s10586-021-03371-8

[15] Mohammadzadeh, Ali, Mohammad Masdari, and Farhad Soleimanian Gharehchopogh. "Energy and cost-aware
workflow scheduling in cloud computing data centers using a multi-objective optimization algorithm." Journal of
Network and Systems Management 29, no. 3 (2021): 31. https://doi.org/10.1007/s10922-021-09599-4

[16] Too, Jingwei, Abdul Rahim Abdullah, and Norhashimah Mohd Saad. "A new quadratic binary harris hawk
optimization for feature selection." Electronics 8, no. 10 (2019): 1130. https://doi.org/10.3390/electronics8101130

[17] Karaja, Mouna, Abir Chaabani, Ameni Azzouz, and Lamjed Ben Said. "Efficient bi-level multi objective approach for
budget-constrained dynamic bag-of-tasks scheduling problem in heterogeneous multi-cloud
environment." Applied Intelligence 53, no. 8 (2023): 9009-9037. https://doi.org/10.1007/s10489-022-03942-1

[18] Gabi, Danlami, Nasiru Muhammad Dankolo, Abubakar Atiku Muslim, Ajith Abraham, Muhammad Usman Joda,
Anazida Zainal, and Zalmiyah Zakaria. "Dynamic scheduling of heterogeneous resources across mobile edge-cloud
continuum using fruit fly-based simulated annealing optimization scheme." Neural Computing and Applications 34,
no. 16 (2022): 14085-14105. https://doi.org/10.1007/s00521-022-07260-y

[19] Movahedi, Zahra, Bruno Defude, and Amir Mohammad Hosseininia. "An efficient population-based multi-objective
task scheduling approach in fog computing systems." Journal of Cloud Computing 10, no. 1 (2021): 53.
https://doi.org/10.1186/s13677-021-00264-4

[20] Zhang, Yu, Bing Tang, Jincheng Luo, and Jiaming Zhang. "Deadline-aware dynamic task scheduling in edge–cloud
collaborative computing." Electronics 11, no. 15 (2022): 2464. https://doi.org/10.3390/electronics11152464

[21] Li, Chunlin, Chengyi Wang, and Youlong Luo. "An efficient scheduling optimization strategy for improving
consistency maintenance in edge cloud environment." The Journal of Supercomputing 76 (2020): 6941-6968.
https://doi.org/10.1007/s11227-019-03133-9

[22] Wang, Ying, Zhile Yang, Yuanjun Guo, Bowen Zhou, and Xiaodong Zhu. "A novel binary competitive swarm
optimizer for power system unit commitment." Applied Sciences 9, no. 9 (2019): 1776.
https://doi.org/10.3390/app9091776

[23] Zhang, Miao, Peng Jiao, Yong Peng, and Quanjun Yin. "Efficient Dynamic Deployment of Simulation Tasks in
Collaborative Cloud and Edge Environments." Applied Sciences 12, no. 3 (2022): 1646.
https://doi.org/10.3390/app12031646

[24] Patra, Manoj Kumar, Sanjay Misra, Bibhudatta Sahoo, and Ashok Kumar Turuk. "GWO-based simulated annealing
approach for load balancing in cloud for hosting container as a service." Applied Sciences 12, no. 21 (2022): 11115.
https://doi.org/10.3390/app122111115

[25] Fu, Kaihua, Wei Zhang, Quan Chen, Deze Zeng, and Minyi Guo. "Adaptive resource efficient microservice
deployment in cloud-edge continuum." IEEE Transactions on Parallel and Distributed Systems 33, no. 8 (2021):
1825-1840. https://doi.org/10.1109/TPDS.2021.3128037

[26] Kaur, Harpreet, and Munish Rattan. "Improved offline multi-objective routing and wavelength assignment in
optical networks." Frontiers of Optoelectronics 12 (2019): 433-444. https://doi.org/10.1007/s12200-019-0850-4

[27] Yang, Xin-She. "Flower pollination algorithm for global optimization." In International Conference on
Unconventional Computing and Natural Computation, p. 240-249. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012. https://doi.org/10.1007/978-3-642-32894-7_27

[28] Gölcük, İlker, and Fehmi Burcin Ozsoydan. "Fuzzy flower pollination algorithm with chaos for global optimization."
In International Online Conference on Intelligent Decision Science, p. 406-414. Cham: Springer International
Publishing, 2020. https://doi.org/10.1007/978-3-030-66501-2_33

[29] Umam, Moch Saiful, Mustafid, and Suryono. "A hybrid genetic algorithm and tabu search for minimizing makespan
in flow shop scheduling problem." Journal of King Saud University-Computer and Information Sciences 34, no. 9
(2022): 7459-7467. https://doi.org/10.1016/j.jksuci.2021.08.025

[30] Li, Xiaobo, Qiyong Fu, Qi Li, Weiping Ding, Feilong Lin, and Zhonglong Zheng. "Multi-objective binary grey wolf
optimization for feature selection based on guided mutation strategy." Applied Soft Computing 145 (2023):
110558. https://doi.org/10.1016/j.asoc.2023.110558

http://dx.doi.org/10.32604/cmc.2022.032215
https://doi.org/10.1007/s10586-021-03371-8
https://doi.org/10.1007/s10922-021-09599-4
https://doi.org/10.3390/electronics8101130
https://doi.org/10.1007/s10489-022-03942-1
https://doi.org/10.1007/s00521-022-07260-y
https://doi.org/10.1186/s13677-021-00264-4
https://doi.org/10.3390/electronics11152464
https://doi.org/10.1007/s11227-019-03133-9
https://doi.org/10.3390/app9091776
https://doi.org/10.3390/app12031646
https://doi.org/10.3390/app122111115
https://doi.org/10.1109/TPDS.2021.3128037
https://doi.org/10.1007/s12200-019-0850-4
https://doi.org/10.1007/978-3-642-32894-7_27
https://doi.org/10.1007/978-3-030-66501-2_33
https://doi.org/10.1016/j.jksuci.2021.08.025
https://doi.org/10.1016/j.asoc.2023.110558

