
 

Journal of Advanced Research Design 141, Issue 1 (2026) 217-231 
 

217 
 

 

Journal of Advanced Research Design 

 

Journal homepage: 
https://akademiabaru.com/submit/index.php/ard 

ISSN: 2289-7984 

 

Automated Early Detection of Retinopathy of Prematurity Zones using 
SWIN Transformer 

 

Nazar Salih Abdulhussein1,*, Royida A. Ibrahem Alhayali2, Mohammed Rashid Subhi3, Nebras 
Hussein4, Mohamed Ksantini5, Amina Turki5 
 
1 

2 

3 

4 

5 

Computer Science Department, Al-Imam Al-Adham University College, Baghdad, Iraq 
Department of Computer Engineering, College of Engineering, University of Diyala, Diyala, Iraq 
Department of Petroleum System Control Engineering, College of Petroleum Processes Engineering, Tikrit University, Tikrit, Iraq 
Biomedical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq 
Control and Energies Management Laboratory (CEM-Lab), National Engineering School of Sfax, University of Sfax, Sfax, Tunisia 
 

ARTICLE INFO ABSTRACT 

Article history: 
Received 7 January 2025 
Received in revised form 24 February 2025 
Accepted 15 July 2025 
Available online 8 August 2025 

Retinopathy of prematurity (ROP) is known to be the primary cause leading to 
permanent vision loss in children, which calls for its diagnosis and treatment based on 
subjective assessment of retinal vascular characteristics; even though this traditional 
approach is practical, it takes much time and likely results in errors. Therefore, 
automation is required not only to enhance precision but also productivity. The study 
proposes an innovative approach to early detection of ROP zones on fundus images 
between 2015 and 2020. It will use the SWIN Transformer model, which has 
demonstrated superior precision and achieved a performance rate of 90.11%. This 
work denotes significant advancement in this field, emphasizing the potential of 
transformer-based architectures for the precise and efficient detection of ROP in 
clinical environments. The findings underscore the significance of utilizing state-of-the-
art, comprehensive learning approaches to enhance early detection procedures, 
improving clinical outcomes for at-risk newborns. 
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1. Introduction 
 

In 1940, Terry blazed the trail as the primary investigator to pin Retinopathy of Prematurity (ROP) 
down and describe it. He termed it retrolental fibroplasia due to detachment of the retina located 
behind the lens [1]. Later, it was widely acknowledged that this is indeed the major factor 
contributing to childhood blindness globally [2,3]. The survival rate for neonates delivered at a 
gestational age less than 37 weeks has increased with establishment of neonatal intensive care units: 
up to 15 million preterm births take place every year in all parts of the world [4]. Up to 15 million 
preterm births occur globally each year [5]. Today ROP is now a major public health issue [6]. There 
are two main issues leading to blindness caused by ROP: a scarcity of ophthalmologists 
knowledgeable enough to detect and treat the disease. Early treatment of ROP in high-risk individuals 
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can help them preserve the majority, if not all, of their vision. Therefore, early-stage screening for 
ROP is crucial to prevent long-lasting visual impairment [7]. 

ROP is classified into stages 1-5 based on the severity of the sickness [8], zones 1-3 [7] and the 
presence of plus disease [9], according to the principles of the International Classification of 
Retinopathy of Prematurity (ICROP) established in 1984 [10], 1987 [11] and 2005 [12]. The first zone 
encompasses the entire visual field and has a radius twice the distance between the optic disc's 
centre and the macula's fovea. Zone 2 is an annular space, different from zone 1, with a radius that 
matches the distance between the optical disc and the serrated nasal border. Outside zones 1 and 2, 
the remaining crescent-shaped territories comprise zone 3. ICROP criteria for ROP severity are shown 
in Figure 1. 

Retinal imaging is the gold standard for ROP diagnosis. Many ROP fundus examinations utilize the 
Retinal Camera (Retcam), a wide-angle optical retinal imaging equipment. It can take, store, produce 
and send fundus images in both directions. Furthermore, its structure is superior for educational 
purposes, clinical research, consulting and follow-up. There is now a plethora of morphological 
datasets available [13]. 

Artificial intelligence (AI) in health care has increased alongside advancements in AI technology. 
Applying deep learning models in medical diagnosis has proven beneficial [14]. These models have 
been employed in numerous computer vision applications, including image segmentation, object 
recognition [15], picture categorization and sickness detection. Due to the availability of big data sets 
and the development of deep network designs, AI has been proposed to help medical professionals 
deal with some of the strain. Image recognition and classification have been the target of several 
traditional machine-learning approaches. To finish the task, however, other methods, such as feature 
extraction and dimensionality reduction, are required, which prolong the process. However, losing 
critical features during the image matrix's conversion to a one-dimensional vector could reduce the 
models' efficacy. 
 

 

 

 
(a)  (b) 
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(c) 

Fig. 1. Retina pictures depicting the three zones of retinopathy of prematurity (ROP): (a) zone 1, (b) 
zone 2 (c) zone 3 [7]  

 
Using these extensive databases, various techniques, such as the ophthalmoscope, can perform 

diagnostic analysis on ROP. However, via the utilization of AI, we can get optimal outcomes. This 
research aims to develop a unique way of identifying and classifying ROP zones very early using the 
SWIN Transformer [16], which could be applied to an already available fundus image dataset. 

The proposed methodology introduces the SWIN Transformer, adopting a hierarchical vision 
transformer architecture and a shifted window mechanism to use pictures as an input data resource, 
allowing for more effective and reliable picture processing. The primary goal of our present research 
is to develop a new approach for the early identification and classification of ROP zones. The method 
will be tested on a selected collection of fundus images using a SWIN Transformer. 

SWIN Transformer uses the hierarchical vision transformer architecture with the shifted window 
mechanism. This allows for a more effective analysis of resource consumption and precision since it 
processes images at various levels of detail and avoids overlapping between extracted features.  

 
2. Related Works 

 
Automated retinal diagnostics using Retinal fundus pictures facilitate the timely identification of 

several disease disorders. Applying low-level statistical characteristics in these diagnoses efficiently 
detects different retinal diseases [17]. Artificial intelligence, specifically transformer-based models 
such as SWIN Transformer, has been progressively used in medical imaging technologies to identify 
and diagnose different illnesses at an early stage [18]. A unique transformer-based SWIN-T ROP 
model has been created to accurately distinguish ROP from normal neonatal fundus pictures. This 
model has shown promising outcomes in the automated identification of ROP zones [19]. This 
technological development not only assists in the early detection of retinal illnesses but also enables 
a more accurate assessment of diseases, potentially enhancing patient outcomes [20]. Incorporating 
transformer-based models such as the SWIN Transformer into automated medical imaging systems 
has significant promise to improve the early identification and diagnosis of several disorders, 
including ROP zones [7]. This section critically examines the pertinent literature and imparts essential 
knowledge that forms the basis for the proposed methodology. 

In 2021, Chioma et al., [18] Presented SWINIR, a robust base model for picture restoration that 
uses the SWIN Transformer's capabilities. Human resource reconstruction units, deep feature 
extraction and shallow feature extraction make up SWINIR. By consistently outperforming the 
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competition across six separate scenarios, the SWINIR model proved its mastery of every facet of 
image restoration. 

In 2022, Liao et al., [21] Presented the SWIN-PANet model, which incorporates a window-based 
self-attention mechanism utilizing the SWIN switch into a pre-existing supervision network. For 
melanoma diagnosis utilizing computer-aided diagnosis (CAD), the suggested SWIN PANet was used 
to take advantage of this change and increase segmentation accuracy. The model performed very 
well compared to newer models. However, it has limitations regarding transfer learning. 

In 2022, Li et al., [22] Proposed a continuous Wavelet sliding transformer called DnSWIN for real-
world image denoising. It uses a convolutional neural network (CNN) encoder to extract bottom 
features from noisy input images, extracting high-frequency and low-frequency information and 
building frequency dependencies. Using a CNN decoder, the WSWT uses discrete wavelet transform, 
self-attention and inverse DWT to extract deep features and reconstruct them into denoised images. 
The proposed method outperforms state-of-the-art methods. 

In 2022, Gu et al., [23], presented a novel approach that integrates SWIN transformer blocks and 
a lightweight U-Net type model with a HarDNet blocks-based encoder-decoder structure to enhance 
the accuracy and speed of stroke diagnosis using MRI images. The STHarDNet model underwent 
evaluation using the ATLAS dataset, which consists of 229 T1-weighted MRI images depicting 
anatomical tracings of lesions following a stroke. The model attained superior performance 
compared to state-of-the-art models U-Net, SegNet, PSPNet, FCHarDNet, TransHarDNet, SWIN 
Transformer, SWIN UNet, X-Net and D-UNet, with Dice, IoU, precision and recall values of 0.5547, 
0.4185, 0.6764 and 0.5286, respectively. This approach seeks to surpass the constraints of traditional 
models in MRI segmentation, enabling a more efficient and precise diagnosis of strokes. 

In 2022, Hao et al., [24] Suggested the two-stream SWIN transformer network (TSTNet) as a 
solution for remote sensing problems. The two streams that make up TSTNet are the edge stream 
and the original stream. Both streams use deep features from edges and images to make predictions. 
A SWIN transformer supports each stream and the edge stream incorporates a differentiable edge 
Sobel operator module (DESOM) for robust edge information suppression and adaptive learning. 
According to experimental results, TSTNet works better than cutting-edge techniques. 

In 2023, Dihin et al., [25], The research presented a new approach to automatically detecting the 
degree of diabetic retinopathy progression by integrating wavelet and multi-wavelet transformations 
with a SWIN Transformer. Using the multi-wavelet transform to glean helpful information is a 
groundbreaking innovation in this research. A novel approach is developed at the feature extraction 
stage by incorporating the resultant photos into the SWIN Transformer model. Using a dataset 
including 3662 photographs, the researchers conducted their investigation. Impressively, the 
experimental training accuracy was 97.78% and the test accuracy was 97.54%. A maximum of 98.09% 
accuracy was achieved throughout the training process. 

In contrast, a testing accuracy of 82% was achieved when the multi-wavelet method was applied 
to multiclass classification; the validation and training accuracies were 91.60% and 82.42%, 
respectively. The results show that the multi-wavelet strategy performs better in the research than 
other methodologies. The training and test sets show that the model performs exceptionally well on 
binary classification tasks. It should be noted that the model's accuracy dropped in multiclass 
classification, highlighting the necessity for additional research and improvement to deal with a wider 
variety of classification tasks. 

In 2023, Sankari et al., [26] aim to separate retinal vessels from fundus pictures using SegNet and 
extract features using SURF and SIFT Feature Extraction techniques. Four traditional machine learning 
classifiers categorize normal and ROP retinal vessels. Based on the transformer architecture and 
SWIN-T, a unique ROP classification model is explicitly created to distinguish between ROP and 
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normal Neonatal fundus pictures. The performance of the proposed QSVM model is evaluated in 
comparison to Resnet50, DarkNet19 and traditional classifiers. The research used a dataset of 200 
fundus pictures comprising 100 normal newborn retinal images and 100 neonatal retinal images 
showing signs of ROP. The machine learning classifiers demonstrate 86.7%, 75%, 74% and 76.5% 
classification accuracies when distinguishing between ROP and normal retinal pictures. ResNet50 and 
DarkNet19, which are deep learning networks, attain 92.87% and 89% accuracy rates, respectively. 
The Quantum machine learning classifier surpasses traditional classifiers regarding classification 
accuracy, sensitivity and specificity. The suggested approach provides a precise diagnosis of ROP 
based on newborn fundus pictures, which might assist in point-of-care diagnosis in places with 
limited healthcare services. 

In 2024, Haque et al., [27] introduced the SWIN Transformer architecture to learn global context 
information. They applied it in the classification of fundus images into five different levels of diabetic 
retinopathy: no apparent retinopathy, mild non-proliferative DR (NPDR), moderate NPDR, severe 
NPDR, neovascularization and vitreous/pre-retinal haemorrhage (PDR). They used a publicly available 
dataset of fundus images with DR annotations for training and evaluation. They measured the model 
performance using accuracy and area under the ROC curve (AUC) for each category— where the 
SWIN Transformer model outperformed the previous leading research by 56.8% (obtained from 
American University in Cairo at 83.4%) on the discriminatory solid capacity for each category. This 
work surpasses other deep learning structures used in prior research, demonstrating the 
effectiveness of SWIN Transformers specifically for DR classification tasks. This work illustrates the 
efficacy of SWIN transformers in accurately and reliably classifying diabetes mellitus (DR) on eye-bed 
images. This method can enhance the automated DR screening systems, assist in prompt detection 
and rapid intervention, improve patient outcomes and avoid visual impairment. 
 
3. Materials and Methods 
3.1 Dataset  

 
The photographs were captured in the Private Clinic Al-Amal Eye Centre in Baghdad, Iraq. The 

photos were obtained by skilled professionals utilizing a RetCam3 imaging device. This facility, 
dedicated to a specific purpose, has been offering ROP screening services for many years. A total of 
1365 fundus images were obtained from ROP screening between 2015 and 2020. 
 
3.2 Labelling 

 
The study involves two experienced ophthalmologists specializing in ROP treatment with over 15 

years of clinical experience. The specialists allocated three classification zones to each of the fundus 
photographs. Before comparing the photos, the three ophthalmologists individually classified them 
to identify any discrepancies in the labelling process, precisely to determine if the specialists assigned 
different labels to the same image. The labels were arranged collectively after a discussion among 
the experts and a specific label was assigned to the images. 

 
3.3 Preprocessing 

 
The fundus photographs had a resolution of 640 by 480 pixels. Nevertheless, their dimensions 

were reduced to 224x224 when inputted into our deep-learning models. We utilized data from a total 
of 1029 patients for training. The study excluded photographs that were indistinct, hazy or poorly lit. 
We examined fundus photos depicting different zones of ROP in a single infant, ensuring no overlaps 
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between patients in the training and test datasets. The dataset used for training, evaluation and 
testing of the model is randomly divided, as outlined in Table 1. 

 
Table 1 
ROP zone dataset [7]  

 Zone 1 Zone 2 Zone 3 

Train set (70%) 305 286 364 
Validation set (10%) 44 41 52 
Test set (20%) 87 82 104 
Total 436 409 520 

 

3.4 Data Augmentation 
 
Overfitting may arise during training when the model is developed with limited data. We 

employed data augmentation techniques to address this issue to create new retinal fundus images 
based on the existing training dataset. Data augmentation was utilized to generate additional 
datasets. In this inquiry, we utilized augmentation strategies like rotation range [3, 3], width shift 
range [0.1, 0.1], height shift range [0.1, 0.1], zoom range [0.85, 1.15] and horizontal flip. The training 
dataset was augmented by a factor of seven, resulting in a total of 18,808 images for training. 

 
3.5 Training Procedure and Hyperparameters 

 
In the training phase of the SWIN Transformer model for early detection of ROP in fundus images, 

specific hyperparameters were meticulously chosen to optimize the learning process. The learning 
rate of 0.001 facilitated the balanced convergence rate during improvement. Using the 64-image 
batch size (BS) for each frequency, it achieved a trade-off for the generalization of computational 
efficiency. The module was trained 200 times, ensuring comprehensive exposure to the data set for 
optimal learning of advantages. To assess the model performance and prevent overprocessing, a 15% 
cross-validation split was applied, with a distinct sub-cluster dedicated to performance evaluation 
during training. These super-markers, including the learning rate, the size of the batch, the number 
of Epochs and the validation partitioning, are adjusted through experience to balance effective 
convergence with strong dissemination, thus enhancing the effectiveness of the SWIN transformer 
in the early detection of ROP. 

 
3.5.1 Proposed methodology 

 
The SWIN Transformer architecture is intricately designed, as shown in Figures 2 and 3, 

commencing with the ‘Patch Partition’ block responsible for segmenting input images into smaller 
patches. Subsequently, four stages, each housing one or more SWIN Transformer blocks, are 
employed to correct and transform features iteratively. At the apex of each stage, patch merging or 
linear embedding is applied, termed ‘Patch Merging’ or ‘Linear Embedding’ exclusively in the initial 
layer. This process involves reducing the number of distinctive tokens by a factor of 4, leading to an 
effective down sampling of resolution by x2. Consequently, a pyramidal-shaped feature map emerges 
due to varying resolutions at each stage. The final block, denoted ‘Two Successive SWIN Transformer 
Blocks’, consists of Multi-Layer Perceptron (MLP), Layer Normalization (LN), Window-based Multi-
Head Self-Attention (W-MSA) and Multi-Head Self-Attention Module with Regular Windowing (SW-
MSA). 
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Fig. 2. The suggested method 
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Fig. 3. SWIN Transformer architecture 

 
3.5.2 Evaluation metrics 

 
The study included various metrics, including precision, recall, F-measure and area under the 

curve, to assess and compare the effectiveness of each trained model. Following the completion of 
this investigation, the data obtained from the various classifiers were integrated into the voting 
classifier to predict accuracy. This study evaluated the precision and recall of the trained model in 
classifying the ROP zones. Regardless of the veracity of these numbers, precision is determined by 
the degree of accuracy and refers to the proximity between two or more qualities. 

 
Accuracy (ACC) Eq. (1): The proportion of correctly identified samples to total samples: 
 

Accuracy (Acc): ((TP+TN))/((TP+TN+FP+FN))          (1) 
 
Precision (Prec) Eq. (2): Precision is defined as the division of truly positive cases among all 

examples that we projected to be positive: 
 

Precision (Prec): ((TP))/((TP+FP))           (2) 
 
Recall Eq. (3): the proportion of Positive samples accurately identified as Positive to the total 

number of Positive models: 
 

Recall: ((TP))/((TP+FN))            (3) 
 
F1 score Eq. (4): The F1 score is the harmonic mean of precision and sensitivity: 
 

F1 Score: 2×(Precision×Recall)/((Precision+recall))         (4) 
 
Area under the curve (AUC): The ROC curve is called the Receiver Operating Characteristics. The 

integral of the curve is a crucial performance measure that demonstrates the model's ability to 
distinguish between multiple classes properly. Keep in mind that increasing the elevation of this 
region will result in a more precise model for identification purposes. The Receiver Operating 
Characteristic (ROC) curve is computed based on the true positive rate (TPR) and false positive rate 
(FPR) as in Eq. (5). 
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FPR=FP/(FP+TN)             (5) 
 
Where, 𝑇𝑃=𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠, 𝑇𝑁=𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠, 𝐹𝑃=𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 and 𝐹𝑁=𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠. 

 
4. Results and Discussion 

 
The purpose of this research is to find out the zones of ROP in premature newborns. We evaluated 

the performance of our models in a fine way differentiating ROP from fundus photographs in three 
different zones. The data sets were fed into four unique classifiers which aimed to forecast the 
irregularities in the data based on precision, recall, F1-measure and area under curve: though finally 
SWIN Transformer integrated each classifier's output into one composite accuracy measurement. 

 
4.1 Experimental Setup 

 
The 200 Epochs at a rate of 0.001 per repeat and the size of the 64th batch were what the modules 

trained with. Adam was the optimizer, with cross-entrepreneur loss as the loss function. The training 
images were supplemented by data by random flipping and lateral recycling to make the training 
data set more diverse and less susceptible to over computation— Model training has become more 
efficient using GPU acceleration: SWIN Transformer underwent comprehensive training 
independently and was evaluated using the F1 score, recall, accuracy and precision. SWIN 
Transformer was the most effective in detecting precipitous retinal malformation early, with the best 
accuracy, precision, recall and F1 degree. The analysis was conducted on an Intel Core i7 computer 
with a random-access memory (RAM) of 8 gigabytes and a central processing unit at a speed of 2.7 
gigahertz. Scikit-learn is an open-source machine learning program based on Python. To make the 
study analysis more efficient and accessible, we used Google Colab, a free web-based and open-
source basic system, to create, share and cooperate in real-time with reports, images, equations and 
encrypted prose. 

In addition, the models were thoroughly evaluated and validated using different data sets and 
standards to ensure their robustness and dissemination. The training process involved careful control 
of super-teachers to improve performance and mitigate potential biases or overprocessing. 
Furthermore, extensive experiments have explored different architectural designs and formations to 
achieve the best possible results. 

Training has been distributed using more computational methods and involves multiple GPUs and 
parallel computing. The use of this strategy resulted in the control of expense and effort rationalized 
to strike an equilibrium with a proper addressing on effective grounds plus managing large dataset 
sizes, saving time during the training reduction. New models are developed based on refined 
algorithms and updated organization techniques— with the aim to achieve optimal convergence and 
prevent misuse from taking place at all. 

Large models are expensive to train due to their computational requirements. Such an adoption 
has spurred the use of distributed training that works on multiple graphic processing units plus a 
parallel computing framework. This paves way for the effective development of methods and ensures 
quick data production leading to minimizing time consumption during model training. The algorithms 
were improved; the models were trained with optimization for convergence in mind: without any 
wastage. 

Moreover, advanced data processing techniques are addressed in the training line, including the 
computation of advantages and normalization measurement before the dimension reduction. These 
preprocessing steps helped solidly combine the input data and extract features that would benefit 
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model learning to make accurate predictions later. Moreover, the training line involves advanced 
data processing techniques such as measuring benefits, normalization and dimensionality reduction. 
These preparatory steps assisted in solidifying the input data and bringing out features that would 
benefit effective learning by models developed to ensure accurate predictions were made. 

The merger of advanced model structures, strict training procedures, state-of-the-art 
improvement algorithms and advanced computational resources generally resulted in exceptional 
performance effectiveness in early mesh detection. The knowledge gained from this study 
contributes significantly to the future development of an analysis of medical photography, which 
means that more ideas can be obtained from such research. This is an up-and-coming area that 
demonstrates the ability of automated learning to enhance healthcare outcomes. The visual 
representation of the training process is shown in Figure 4. 

 

 
(a) 

 

 
(b) 

Fig. 4. Training and validation over epochs for ROP zones 
dataset: (a) loss (b) accuracy 
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As shown in Table 2, the model demonstrates significant learning and generalization 
improvements throughout the epochs. In the initial epochs (10-40), training accuracy rises from 
87.27% to above 98%, with training loss dropping from 0.5556 to around 0.3164. Validation accuracy 
improves from 80.00% to 83.64%, while validation loss decreases overall from 0.6393 to around 
0.5589. In the middle epochs (50-100), training accuracy remains high at around 99%, with training 
loss slightly decreasing and validation accuracy peaking at 86.36%, though validation loss fluctuates 
around 0.5 to 0.56. Training accuracy is nearly perfect in the later epochs (150-200), between 99.39% 
and 99.90%, with a low training loss of around 0.2998 to 0.3121. Validation accuracy stabilizes around 
85.45% to 86.36% and validation loss fluctuates but stabilizes around 0.54 to 0.56. These results 
collectively indicate an efficiently performing model with strong learning capabilities and effective 
generalization to novel, unseen data, as evidenced by robust accuracy and low loss values across 
training and validation datasets. 
 

Table 2 
Accuracy and loss for SWIN transformer 
Epoch Train-Acc Train-Loss Val-Acc Val-Loss 

10 0.8727 0.5556 0.8000 0.6393 
20 0.9868 0.3319 0.8091 0.5736 
30 0.9949 0.3164 0.8182 0.5480 
40 0.9837 0.3483 0.8364 0.5589 
50 0.9949 0.3144 0.8636 0.5062 
60 0.9929 0.3344 0.8636 0.5620 
70 0.9949 0.3170 0.8545 0.4970 
80 0.9949 0.3094 0.8636 0.5067 
90 0.9949 0.3407 0.8455 0.5400 
100 0.9929 0.3240 0.8273 0.5461 

150 0.9939 0.3121 0.8636 0.5564 

200 0.9990 0.2998 0.8545 0.5416 

 
4.2 Confusion Matrix 

 
A confusion matrix is a tabular representation that provides a concise summary of the number of 

accurate positive predictions, inaccurate positive forecasts, accurate negative predictions and 
inaccurate negative predictions for each class. Figure 5 displays the confusion matrix of the SWIN 
transformer. The table's rows correspond to the data's true labels, while the columns correspond to 
the anticipated labels. The figures in the table indicate the frequency with which the algorithm 
accurately or inaccurately identified each incident. The confusion matrix in this image displays the 
predicted labels as "zone1", "zone2" and "zone3", but the actual labels also correspond to "zone1", 
"zone2" and "zone3". 
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Fig. 5. Confusion matrix of SWIN transformer 

 
The structure of the SWIN Transformer was designed in a complex manner, starting with the 

"Patch Partition" mass responsible for splitting the images into more minor corrections. First, it 
optimally ensures the distribution of inputs for further processing. The structure consists of four 
stages after this initialization, where each stage has one or more SWIN transformer blocks that make 
the features right and then change them into another domain. These blocks are the core of 
architecture; they help to collect information from different levels by capturing them properly and 
act as a means to integrate the advantages linearly at later stages (at the top). This process is called 
Patch Merging or Linear Embedding, performed only in the primary layer where correction is merged 
so that distinctive symbols can be reduced, which is 4x less than their actual number, leading to a 
reduction of accuracy by x2. This ensures structural adaptability towards images with varying 
dimensions while maintaining mathematical efficacy post-reductions. 

Consequently, a pyramidal-shaped feature map emerges, reflecting the different resolutions at 
each stage. The final block, "Two Successive SWIN Transformer Blocks," incorporates two SWIN 
Transformer blocks in sequence. This arrangement allows for an even more intricate transformation 
of features and enhances the overall expressiveness of the architecture. Two essential components 
are significant within these blocks: Multi-Layer Perceptron (MLP) and Layer Normalization (LN). The 
MLP layers are responsible for updating distinctive token features after self-attention computation. 
This type of artificial neural network, characterized by multiple layers of linear and non-linear 
transformations, contributes to the architecture's ability to capture complex patterns and 
dependencies in the visual data. 

However, LN layers act by normalizing inputs in the feature dimension, which can be a great way 
to maintain stable input distribution. In turn, it improves training stability and thus boosts overall 
model performance. Moreover, SWIN Transformer has two self-attention mechanisms: Window-
based Multi-Head Self-Attention (W-MSA) and Multi-Head Self-Attention Module with Regular 
Windowing (SW-MSA). W-MSA differs from the standard multi-head self-attention mechanism as it 
computes attention scores within local windows— capturing local dependencies based on different 
token features that help in efficient information exchange within limited contexts. 
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On the other hand, SW-MSA represents a variant of W-MSA, where windows are shifted by half 
their size along the image's original height and width dimensions. By enabling communication across 
different windows, SW-MSA layers excel in capturing long-range dependencies in distinctive token 
features. This capability proves particularly valuable in scenarios where contextual understanding 
across the entire image is necessary. These components' comprehensive structure and integration 
contribute to the SWIN Transformer's efficacy in handling complex visual tasks. These tasks can range 
from image classification, where the architecture accurately predicts the class labels of images, to 
image segmentation, where it accurately identifies and delineates objects or regions of interest 
within an image. The SWIN Transformer's ability to capture both local and long-range dependencies, 
combined with its effective down sampling and feature refinement operations, makes it a suitable 
choice for a wide range of real-world applications requiring sophisticated image analysis and 
understanding. 

 
4.3 Comparison with Previous Studies 

 
The research paper stems from the predecessor study based on the Private Clinic Al-Amal Eye 

Centre data set in Baghdad, Iraq. It contained 1365 ROP screening fundus images taken from 2015 
through 2020. The previous investigation used deep learning algorithms and the voting classifier [7]. 
In the proposed method, using three steps— namely, image preprocessing, feature extraction 
through deep learning models and classification by voting classifier— is reported to result in 88.82% 
accuracy for predicting ROP zones. Instead, this work applied the SWIN Transformer model, which is 
a learning structure that is developed for the classification of images.  

As a result, our model achieved an accuracy of 90.11%, a notable improvement over the previous 
study's best accuracy of 88.82% [7]. The advancement highlights the capability of transformer-based 
models in the analysis of medical images that help in early diagnosis of retinopathy of prematurity, 
which is typically noted for preterm infants. The significant performance improvement demonstrated 
by transformer-based models underscores the potential use of these systems to promote automated 
diagnostic systems and bring about a complete change in early diagnosis and treatment— which 
would then lead to improved health results for preterm infants at risk ROP. 

 
5. Conclusion 

 
This research paper provides a powerful and effective methodology for detecting ROP zones in 

premature infants using deep learning models, specifically SWIN Transformer's structure. This study 
emphasizes artificial intelligence-based systems' central and transformative role in revolutionizing 
health care, especially in complex and challenging areas such as paediatrics.  

However, as with any scientific study, it is essential to recognize and address the limitations 
inherent in our research. One such limitation is the data set size used for training and evaluation 
purposes. Expanding the data set to include a more diverse range of cases and integrating external 
verification of diverse populations and clinical settings would significantly enhance the strength and 
generality of our findings. These future endeavours will undoubtedly improve the credibility and 
applicability of our proposed methodology, ensuring its smooth integration into real-world clinical 
functioning and increasing advanced healthcare systems. Despite these recognized limitations, our 
proposed methodology offers a promise and tremendous potential for strengthening existing 
healthcare systems by providing an early and accurate diagnosis of ROP, thereby facilitating timely 
interventions and ultimately improving healthcare outcomes for premature children at risk affected 
by ROP and other visually threatening situations. 
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Given the future, our future research will focus primarily on expanding the data set to a wider 
range of situations, enabling us to further enhance the performance of our models through rigorous 
testing and validation of external data sets. In addition, we will seriously emphasize the smooth 
integration of our artificial intelligence system into the clinical process, ensuring its smooth adoption 
and use by medical specialists in real-world scenarios. By tirelessly pursuing these research methods, 
we aspire to contribute to artificial intelligence-based healthcare solutions continued and ruthless 
progress. Ultimately, by harnessing the power of advanced technology, we seek to move this area 
forward, achieving improved diagnostic accuracy, facilitating timely interventions and ensuring 
better healthcare outcomes for vulnerable children at risk and struggling with retinal and other 
diseases. It's likely the stressful conditions that threaten vision. 

 In the future, we will concentrate on the continued development of algorithms, more 
methodologies and the production of a larger training dataset, all of which will aid in advancing 
medical reform in the current circumstances. 
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