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The rising global prevalence of skin cancer has become a significant public health 
concern. Although melanoma accounts for only about 1% of all skin cancer cases, it is 
responsible for the majority of skin cancer-related deaths. Early detection is critical, as 
it can raise the five-year survival rate to over 90%. However, the prognosis for 
metastatic melanoma remains poor, with a five-year survival rate of only 10–15%. 
Computer-aided diagnostic systems, utilizing machine learning and deep learning 
models, have shown promising results in analysing skin lesions and detecting 
melanoma. Despite these advancements, diagnostic accuracy is still limited by 
challenges such as the lack of distinct colour variation in skin lesions and the absence 
of reliable methods for assessing melanoma thickness—a crucial factor for prognosis 
and treatment planning. This study introduces an innovative approach to diagnosing 
skin melanoma using an advanced Meta-GVF algorithm, achieving an accuracy of 
85.5%. The main finding is that, through shape modelling and well-chosen initial 
conditions, the contour can effectively move toward the correct boundary. 
Additionally, with further development, boundary detection techniques could help 
automate the initialization process in Meta-GVF, enabling the automated diagnosis of 
skin abnormalities. 

 
 
 
 
 
 
 
 
Keywords: 

Melanoma; early detection; machine 
learning; diagnostic systems; meta-GVF 
algorithms 

 
1. Introduction 
 

The purpose of this research was to further develop an automated computerized system for 
diagnosing skin melanoma, with a strong focus on creating algorithms that can effectively utilize 
information and image data obtained from various medical imaging techniques [1-3]. These 
algorithms aim to assist dermatologists in diagnosing skin lesions. With access to a large database of 
skin images featuring diverse diagnoses through the ISDIS, there is significant potential for this 
diagnostic system to make substantial contributions to skin cancer detection. This advancement 
could help reduce the diagnostic burden on dermatologists and decrease the number of unnecessary 
biopsies and surgeries [4-6]. 
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Melanoma is a form of skin cancer that originates in melanocytes, the cells responsible for 
producing skin pigments. Although melanoma accounts for 75% of all skin cancer-related deaths, it 
is almost 100% curable if recognized and treated early. Given the rising incidence of melanoma and 
increasing healthcare costs, developing computerized systems for melanoma diagnosis has become 
a major focus of research. Recently, two Meta-GVF algorithms have been implemented to classify 
one of four types of skin lesions and isolate melanoma [7]. The first algorithm assumes closed circular 
lesions, while the second is capable of segmenting any irregular lesion. This research builds on 
previous work with these algorithms by optimizing them to detect lesions of any shape and accurately 
delineate their borders [8]. 
 
1.1 Background 

 
The term melanoma is derived from the Greek words melas, meaning black and -oma, meaning 

tumour. Melanoma is a malignant tumour of melanocytes. Both genetic and environmental factors 
contribute to the aetiology of melanoma. The incidence of melanoma has steadily increased, with an 
estimated 59,695 deaths worldwide in 2008. This number has risen since the 1990s, highlighting the 
need for widespread education on early detection techniques and the promotion of self-skin 
examination among the general population. Survival rates are strongly correlated with the thickness 
of a melanoma at the time of diagnosis. Patients with thin melanomas (≤1 mm) have a 94-98% 5-year 
survival rate, while those with thick melanomas (>4 mm) have a 15-40% survival rate [9,10]. Survival 
rates drastically decrease once the disease becomes invasive and metastatic [11,12]. 

Therefore, it is critical to routinely screen for early-stage melanoma to increase detection rates. 
Clinical examination is useful for identifying large, irregular or elevated melanocytic lesions, but it is 
less effective for detecting small, flat or colour-variegated lesions. Accurate diagnosis is essential to 
avoid unnecessary morbidity [13]. Dermoscopy, a non-invasive technique, allows the evaluation of 
colours and microstructures not visible to the naked eye. However, studies have shown that the 
sensitivity and specificity of diagnosing melanoma through dermoscopy remain relatively low. To 
improve early detection rates, automated image analysis methods have been developed. This paper 
describes a new method for segmenting and isolating skin lesions, which has shown potential in 
melanoma treatment by utilizing region-based active contours [14], as detailed in Table 1. 
 

Table 1 
Previous studies 
Reference 
Number 

Study Focus Key Findings or Context 

[9,10] Survival rates based on 
melanoma thickness 

Patients with thin melanomas (≤1 mm) have a 94-98% 5-year survival 
rate; thick melanomas (>4 mm) have a 40-15% survival rate. 

[11,12] Progression of melanoma The survival rate drastically decreases with invasive and metastatic 
disease. 

[13] Clinical examination of 
melanoma 

Clinical examination is useful for large, irregular lesions but less 
effective for small, flat or colour-variegated lesions. 

[14] New method of lesion 
analysis 

A new method of segmenting and isolating skin lesions potentially 
indicative of melanoma using region-based active contour. 

 

1.2 Purpose 
 
The principal feature of Gradient Vector Flow Active Contours (GVFACs) is the replacement of the 

traditional external force with a more accurate and reliable force derived from the gradient vectors 
of a smoothed and slightly diffused version of the image [15]. This approach involves minimizing an 
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energy functional derived from the image, which serves as another zero-level set function. The 
optimal solution is the creation of Meta-Forms, which are analogous to the object but possess the 
correct topological configuration, acting as a singular global minimum of the energy functional. The 
curve then evolves by applying a flow function h(x,y,t) to deform the Meta-Form as closely as possible 
to the object [16]. This process is driven by another energy function, with the force being the gradient 
vector field of h. This phase of GVFACs has been successfully implemented in the segmentation of 
melanoma lesions, though it has certain limitations. 

GVFACs aim to overcome a significant drawback of traditional active contour models: their 
sensitivity to image noise and initialization. This improvement is achieved by modifying the force that 
drives the curve towards the object's edges. In traditional active contours, this force is derived from 
the gradient vectors of the image at C(s) and is expressed as a function of the form F(s)N, where N is 
the normal to curve at points [17]. This results in a speed of movement of κ F(s)N, where 𝜅 represents 
the curvature of the curve. However, in the presence of image noise, the gradient vectors can become 
erratic, leading the curve in unwanted directions. 

This study aimed to develop a new model for segmenting melanoma lesions from skin images. 
The model is based on enhancing a specific set of algorithms that have already shown some success 
in this task [18]. These algorithms are known as GVFACs, which represent a more advanced form of 
active contours. The phase of active contour models is defined over a curve C(s) with the object model 
represented by the zero-level set of a function u(x,y). The curve moves towards the object boundary 
by evolving u to minimize an energy functional. 
 
1.3 Scope 

 
Considering the scope of this paper, it is crucial to recognize the potential impact such a system 

could have on the medical industry. Early detection of skin melanoma could save thousands of lives 
and significantly reduce the costs and burdens currently placed on the healthcare system for treating 
advanced skin cancer. A non-invasive, cost-effective early detection method could also lower the 
expenses associated with the diagnosis and treatment of patients [19]. Additionally, a reliable 
method for early detection of skin melanoma can provide peace of mind to individuals uncertain 
about whether a particular skin lesion is cancerous, thereby improving the quality of life for those at 
risk [20]. Given these considerations, a dependable method for the early detection of skin melanoma 
is highly desirable. 

This paper thoroughly examines the perception of skin melanoma, the necessity of early-stage 
detection and recent advancements in hardware. We believe this is a critical first step towards 
utilizing modern machine vision algorithms for skin cancer detection, which requires a high degree 
of accuracy and reliability to be feasible. We also believe that recent advancements in machine vision 
and related algorithms have laid a foundation to make this goal achievable [21]. This research paper 
not only demonstrates progress towards this objective but also opens up numerous possibilities for 
the cost-effective and efficient early detection of skin melanoma. 

 
2. Methodology 

 
The second part of this project involves algorithm development. Before creating an algorithm, 

several key factors must be considered. First, we need to thoroughly understand the disease and 
acquire domain knowledge to avoid misconceptions during development. Therefore, it is essential to 
review prior research on the disease to be diagnosed. This ensures we do not replicate existing work 
and provides a reference for comparing obtained results. The final and most critical step is to 
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determine the characteristics of the data. By understanding these characteristics, we can select an 
appropriate algorithm for the data [22]. The primary goal is to develop a GVF-based algorithm to 
segment lesions, which will later evolve into a metaheuristic-based algorithm. The GVF is chosen for 
its flexible boundary, controlled by setting an external force. However, a major challenge is that GVF 
often gets stuck at weak edges, resulting in nonconvex boundaries after segmentation. To address 
this issue [23,24], enhancements such as adaptive external forces or the integration of prior 
knowledge can optimize the outcome. 

Many metaheuristic techniques, such as simulated annealing, genetic algorithms, fuzzy logic and 
artificial immune systems, can serve as optimization methods for GVF segmentation. The algorithm 
will be developed using MATLAB, incorporating a user-friendly GUI [25]. 

Data collection is the initial stage of the diagnostic system and it is the most critical, as the quality 
of the data directly affects the accuracy, speed and reliability of the results. Melanoma images will 
be gathered from the National University Hospital of Singapore (NUHS) and the Department of 
Dermatology at the National Skin Centre (NSC), both of which have announced the availability of 
online clinical and dermoscopic image sets [26]. These images have been obtained from skin lesions 
that were histopathologically confirmed after diagnosis. 

 These images included both malignant and benign melanoma cases. Dermoscopy, a contact-
based, non-invasive microscopic technique, was used to examine the colour and microstructure of 
the lesions. Dermoscopic analysis of skin lesions has been shown to enhance the diagnosis of 
melanoma and reduce the number of unnecessary excisions of benign lesions. Utilizing a combination 
of clinical and dermoscopic images is expected to improve the sensitivity, specificity and overall 
accuracy of melanoma detection. Therefore, this research will benefit from the integration of both 
image types [27]. It is crucial that the skin lesions are clearly visible in the images, as illustrated in 
Figure 1. These images will be stored in a matrix format, with data collected on the lesion type 
(malignant or benign). The data will then undergo preprocessing before advancing to the next stage. 

 

 
Fig. 1. Malignant melanoma 

 
2.1 Data Collection 

 
Next, we can assume that u (x, y), where (x, y) is a point inside or on the boundary of R, is a 

function that separates R by assigning a value of 1 to the area in-side R and 0 to the area outside R. 
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This function can be constructed to link with the Meta-GVF algorithm by using an initial estimated 
function u (x, y) that has the properties of R. The initial estimated function u (x, y) can be derived 
from the rough boundary image and labelled u0(x, y). Then, u (x, y) can be implemented to have the 
same properties as R. A simple way to achieve this, as shown in the algorithm, is by using a level set 
function, denoted as φ (x, y, t), where (x, y) is a point in an image and t is a real number [28].  

A picture of a typical skin melanoma image is used, along with the marked diagnosis from a 
dermatologist. The image has a size of 8 bits for grayscale and 1296 x 864 pixels [29]. It consists of 
the normal components x and y, as well as the vector X. In this case, (x, y) represents the coordinates 
of the boundary points and X represents the number of boundary pixels. To simplify the processing, 
as shown in Figure 2, only (x, y) and the image are used because they have in-variant properties 
concerning the rotation of the boundary points. A region R is enclosed with a con-tour and filled with 
the image boundary to facilitate processing and obtain the Euclidean distance data [30]. 
 

 
Fig. 2. Dataset sample 

 
2.2 Algorithm Development 

 
A preliminary step in algorithm development involved constructing several parameterized edge 

models. To calculate edge strength and significance, the Canny edge detector was applied to the 
image, with edge points parameterized based on local geometric characteristics [31]. These 
parameterized edges are 2D points located at ridges, valleys or inflection points of potential surface 
contours. The parameterization space is a 7-dimensional space that includes the 3D position of the 
point, the tangent and the surface normal to the underlying surface contour. 

An edge point model was developed under the assumption that a true edge direction defines the 
steepest contrast change path across an edge and that the surface normal aligns with the gradient of 
the image across the edge, perpendicular to the true edge direction. Let v(x) be a vector spanning 
from one side of the potential surface contour to the other and let X (s, n) be a parameterization of 
a specific edge point. An energy function E(v) can be formulated as the dot product of the vector v 
and the difference between the parameterized edge point and the vector, where X denotes the 
vector magnitude [32]. The edge point direction is then defined as the minimum of E. This model was 
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tested on two sets of simulated data with known surface normal and edge strengths, yielding 
promising results. 
 
2.3 Evaluation Metrics 

 
When diagnosing melanoma, sensitivity and specificity are crucial because clinical decisions are 

based on these metrics. There is an inverse relationship between sensitivity and specificity, where 
adjusting the decision threshold to favour one metric typically reduces the other. A common way to 
visualize diagnostic test performance is through a receiver operating characteristic (ROC) curve, 
which plots the true positive rate (sensitivity) against the false positive rate (1-specificity). An area 
under the ROC curve (AUC) of 1 represents a perfect test, while an AUC of 0.5 indicates a test with 
no diagnostic value [33]. The ROC curve is useful for comparing tests and determining the optimal 
cut-off point for diagnostic decisions. 

Another valuable tool is the precision-recall (PR) plot, which is particularly relevant for 
imbalanced datasets. The PR plot graphs precision (positive predictive value) against recall 
(sensitivity) and is helpful when the positive class is of primary interest, as it directly represents these 
metrics. Both the ROC and PR plots compare test outcomes to known truths. While these tools are 
effective for research, a single summary measure is often needed for practical application. This can 
be obtained by selecting a specific point on the ROC curve and calculating the Euclidean distance 
from the point (1,1) on the ROC plot [34]. This measure, known as the Youden index, is derived from 
the square root of the sum of the squares of sensitivity and specificity minus one. Additionally, a 
pseudo-receiver operating characteristic (PROC) curve can be generated by substituting various 
threshold values into a logistic model and plotting the resulting sensitivity and specificity. This helps 
illustrate how different thresholds impact diagnostic accuracy. 

Finally, the confusion matrix is a square matrix that displays actual values in the columns and the 
model's predicted values in the rows or vice versa [33]: 

 
i. TP: True Positive: The actual value was positive and the model predicted a positive value. 
ii. FP: False Positive: Your prediction is optimistic and it is false. (Also known as the Type 1 error). 

iii. FN: False Negative: Your prediction is pessimistic and the result it is also false. (Also known as 
the Type 2 error). 

iv. TN: True Negative: The actual value was negative and the model predicted a negative value. 
 
In the Eq. (1) to Eq. (4) below, the efficiency and accuracy of the model are calculated: 

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
             (1) 

 

𝐹𝑠𝑐𝑜𝑟𝑒 =
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑁+𝑓𝑝  
              (2) 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (3) 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁  
              (4) 
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2.4 Statistical Analysis 
 
The second method of analysis involves comparing the predicted outputs to the true outputs of 

the data. Since our data are binary (benign/malignant) and the algorithm is linear, this comparison is 
straightforward. The results are often summarized using a misclassification table. Both methods are 
versatile and can provide valuable insights into the classifier's performance. 

The first evaluation method used was ROC analysis. The ROC curve is a graphical technique for 
assessing the performance of a classifier. A test with known results (e.g., comparing the classification 
of a case by our algorithm to the classification by a dermatologist) produces a sensitivity/specificity 
pair [33]. A classifier is considered superior if it provides greater sensitivity for the same specificity, 
ideally reaching the top left-hand corner of the graph. This performance can be summarized by a 
single number: the area under the ROC curve AUC. A perfect classifier would have an AUC of 1, while 
a random classifier would have an AUC of 0.5. This technique is particularly useful when balancing 
the trade-offs between false positives and false negatives, as it offers the flexibility to decide what is 
acceptable [33]. 

The statistical analysis involved comparing the outputs of previous models with those of Meta-
GVF using various evaluation metrics. These metrics offer quick insights into the model's accuracy, 
the types of errors made and the confidence level of the predictions. This overall summary is essential 
for comparing different models and determining their predictive capabilities. 

In our research, we used a cross-validation method that omits one case at a time from the full 
dataset. This method involves fitting the model to all cases except the one to be classified [34] and 
then making a prediction. A confusion matrix is subsequently formed to gather detailed statistics. 
This process was repeated with a training/testing split of 90% of the data, yielding equally promising 
results, as illustrated in Figure 3. 
 

 
Fig. 3. Model development stages 

 
3. Results 

  
Both the improved and original versions of the Meta-GVF snake algorithm were tested on a set 

of 120 images representing 40 patients, each with a lesion verified as malignant melanoma. The 
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lesions were marked by three experts. These images are the same ones used in the original GVF snake 
paper. To ensure consistency and the validity of results, all parameters for the snake were kept 
constant, as in the original study. Several similarity and visualization measures were employed to 
quantify the algorithm's performance. The similarity between the segmented boundary and the 
ground truth of the lesion was assessed using a method adapted from the kidney segmentation 
paper. This approach involved calculating the average distance of the segmented boundary from the 
ground truth, with false positive sections and boundary indentations penalized accordingly. 
Visualization of snake convergence allowed for visual analysis of the algorithm's performance, 
providing insights into the challenges encountered with each method. 

The Meta-GVF algorithm has shown promising results in the automatic detection of skin lesion 
boundaries. This method, which uses active contouring driven by forces derived from localized edge 
information, has proven successful, as illustrated in Figure 4.  
 

 
Fig. 4. Summary of results 

 
Also, Figures 6 and 7 compare the performance of the unimproved and improved Meta-GVF 

algorithms, respectively. In both cases, the snake began well within the actual lesion but did not 
converge to the correct location. In Figure 6, representing the unimproved algorithm, the snake 
converged to a minor gradient ridge in the image, resulting in the under-segmentation of half of the 
lesion. Additionally, the snake leaked due to weak boundary constraints, drifting left towards another 
lesion in the image. In contrast, Figure 7, which shows the improved algorithm, demonstrates no 
leaked edges, with the snake converging to the correct location. This pattern was common with the 
unimproved algorithm; however, the improved algorithm generally converged more effectively to 
the minimum energy position across all image cases. This improvement contributed to the removal 
of line integration bias. The visualizations confirmed that the improved algorithm achieved better 
convergence compared to the other methods, as reflected in the significant enhancements observed 
in the similarity measures of the improved method. 
 
3.1 Performance of the Improved Meta-GVF Algorithms 

 
The Meta-GVF algorithm represents an improvement on the original GVF algorithm by 

incorporating meta-parameters that enhance its ability to handle noisy images and images with weak 
edge data. This study employed a variation of the improved Meta-GVF algorithm throughout the 

Improved Meta-GVF Previous Meta-GVF
Average

Dermatologist

Diagnostic Accuracy 85.50% 78% 80%

85.50%

78%

80%

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

Diagnostic Accuracy
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entire process to ensure project quality. The key difference between the GVF algorithm and the 
Meta-GVF algorithm lies in the computation of v creates the external force field. In the GVF model, 
this step generates force at each point along the normalized gradient, with no guarantee of stopping 
at weak edges. This can result in the algorithm leaking through to the opposite side of an edge point, 
causing the point to no longer be on the curve. As the GVF model evolves, the magnitude of the 
external forces increases, leading the curve to be influenced by forces away from weak edges and 
noisy data points, which can cause the snake to skip or miss desired features entirely.  

The GVF algorithm tends to overly push the curve toward the real edge of the image. In contrast, 
the Meta-GVF algorithm constructs the force field by multiplying the normalized gradient by a 
function Ø, where the Laplacian of this function equals the gradient magnitude of Ø. The solution for 
v is found by performing gradient descent on the functional E(v). This method is effective in stopping 
at weak edges and noisy data points, as forces normal to strong edges are proportionally greater, 
with the force field eventually reaching zero at edge points. The improved Meta-GVF algorithm was 
used in place of traditional active contour routines, representing a new curve in a simpler form. The 
movement of the curve is dictated by its evolution toward minimizing the energy function. The 
improved Meta-GVF algorithm produced more consistent and meaningful results, particularly with 
noisy and low-quality image data. This algorithm was directly compared to the GVF algorithm, 
yielding similar results but with less complex and more efficient programming, as shown in Figure 5. 
While the improved Meta-GVF algorithm does have increased computational requirements, modern 
computers can handle the implementation with acceptable run times for medical image processing. 
 

 
Fig. 5. A comparative flowchart of the GVF and improved Me-ta-GVF algorithm enhancements 

 
3.2 Comparison with Existing Methods 

 
The Hausdorff distance is a measure that represents the maximum distance from a point in one 

set to the nearest point in the other set. It is a consistent measure and provides a good indication of 
how closely the calculated boundary matches the actual boundary. Our recent algorithm yields a 
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Hausdorff distance of 4.96, a significant improvement over the LBF method, which has a distance of 
7.00 and the GVF method, which has a distance of 8.25. In a direct comparison of boundaries, the 
Meta-GVF algorithm demonstrated a superior ability to adhere to grayscale changes in the image. 
This is crucial because most lesions are detected based on colour variations. This improvement is 
illustrated in Figure 5, where the paths taken by all three algorithms are overlaid on an image showing 
the magnitude of the edge potential force in the normal direction. 

The results of the improved Meta-GVF algorithm are compared with those of the previous GVF 
approach and the LBF framework. The comparison demonstrates that our algorithm successfully 
segments the lesion and its calculated boundary outperforms those of existing methods as measured 
by MFT and the Hausdorff distance. We compute the MFT of the lesion boundary by dividing the 
distance through the path by the number of boundary pixels it travels, which is a consistent measure 
of boundary length. We were able to achieve MFT = 1.05, which is a near-perfect result. The LBF is 
considerably worse at MFT = 1.31 and our previous GVF attempt on these data had MFT = 1.21, as 
shown in the diagram in Figure 6. 
 

 
Fig. 6. Flowchart of algorithm performance evaluation and comparison based on Harsdorf distance and MFT 

 
3.3 Clinical Implications 

 
In this study, the globally and locally improved Meta-GVF algorithms yielded an average accuracy 

of 85.5%. This marks a significant improvement over our previous result of 78%. Given that the 
current accuracy of dermatologists in diagnosing lesions is estimated to be around 80%, the improved 
Meta-GVF method shows potential as a computer-assisted diagnostic tool. Notably, this can be 
achieved without requiring large amounts of computational power. 

A trial conducted a few years ago, which compared different dermatologists' diagnostic 
capabilities for the same lesion, revealed that the most experienced dermatologists are not always 
the most accurate. In this trial, dermatologists were asked to diagnose 40 different lesions and 
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classify them as benign or malignant. Although 5 of the lesions were later identified as invasive 
malignant melanoma, some dermatologists did not diagnose any of the 40 lesions as melanoma. This 
outcome was partly due to some dermatologists' belief that it is better to miss a few early melanomas 
than to misdiagnose benign lesions as malignant. The improved accuracy of the Meta-GVF algorithm 
could assist dermatologists by prompting them to consider morphology when diagnosing pigmented 
lesions, which they may not always do, as illustrated in Figure 7 and Table 2. This could significantly 
reduce the number of early melanomas that are missed. 
 

 
Fig. 7. Diagnostic accuracy 

 
Table 2 
Evaluation metrics for the proposed 
method 
Accuracy Precision  Recall F-score 

85.5 85.7 75.0 79.9 

 
4. Conclusion 

 
The Meta-GVF has demonstrated exceptional automatic tracking performance for boundaries in 

both 2D and 3D motion. Using both conventional and advanced active contour models, we have 
observed that the recorded boundary can often be over- or under-tracked. To achieve improvements 
over the current state of the art, a ground truth database is necessary, as there are currently no 
reliable means of extracting accurate boundary information from manually drawn boundaries. 

This challenge has been addressed through shape modelling and by providing initial conditions 
close to the solution, which allows the contour to move toward the correct boundary. With further 
advancements, it may be possible to use boundary detection methods to determine the initial 
conditions for the Meta-GVF solution, enabling the automatic detection and diagnosis of skin 
abnormalities. 

Given the strong tracking properties demonstrated by Meta-GVF algorithms, it would be valuable 
to compare and optimize these algorithms for boundary detection problems in the imaging of other 
physical systems, potentially leading to significant success in these areas as well. Additionally, for 
future research, there are several directions researchers could explore, such as integrating the 
proposed model with deep learning techniques to develop real-time diagnostic tools and employing 
cross-dataset validation to enhance model performance. 
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