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Spinal hemangiomas are the most common benign vascular tumors in the vertebral 
column, often detected incidentally via magnetic resonance imaging (MRI). Although 
typically asymptomatic, they can grow in certain cases, compressing the spinal cord and 
leading to neurological impairments, which require early diagnosis and treatment. 
Accurate segmentation of these tumors is crucial for clinical decision-making related to 
treatment and follow-up, but manual segmentation is time-consuming and prone to 
inter-observer variability. Manual segmentation of spinal hemangiomas in medical 
images is a labor-intensive process and prone to biases between observers, highlighting 
the need for reliable automated segmentation methods. This study presents an 
automated approach for spinal hemangioma segmentation using a modified Fully 
Convolutional Network (FCN) with a ResNet-50 backbone. This approach represents a 
significant advancement in deep learning-based segmentation of spinal hemangiomas 
in MRI images, leveraging advanced techniques to improve segmentation accuracy and 
reduce errors. The proposed model was trained on a dataset of 2400 annotated MRI 
volumes across multiple anatomical planes, including sagittal, axial, and coronal views. 
This diversity in imaging planes enhances the model's ability to adapt to varying MRI 
patterns. The model utilizes Binary Cross Entropy with Logits Loss and the Adam 
optimizer to address class imbalance and achieve efficient training. The model's 
performance was evaluated using metrics such as the Dice Similarity Coefficient (DSC) 
and Intersection over Union (IoU), showing impressive results, with an accuracy of 
96.25% on the test set and a Dice score of 0.85. The model also achieved an IoU value 
of 0.83, reflecting its improved ability to accurately delineate tumor boundaries. 
Additionally, data augmentation techniques and cross-validation further enhanced the 
model's generalization, leading to improved segmentation accuracy and reduced false 
positives. The model demonstrated strong resistance to noise and artifacts in the 
images, with a 12% reduction in false positive rates compared to traditional methods. 
Preprocessing techniques, such as Contrast Limited Adaptive Histogram Equalization 
(CLAHE) and Non-Local Means Denoising, were applied to improve the model's ability 
to distinguish tumors from surrounding tissues. These techniques proved effective in 
enhancing the model's accuracy and reducing noise interference 
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1. Introduction 
 

Spinal hemangiomas are the most prevalent form of benign vascular tumors occurring within the 
vertebral column. These lesions result from the proliferation of vascular channels within the 
trabecular bone and are most frequently found in the thoracic and lumbar regions. They are typically 
discovered incidentally during magnetic resonance imaging (MRI) performed for unrelated reasons 
due to their usually asymptomatic nature. However, in rare but clinically significant cases, these 
tumors can demonstrate aggressive behavior, leading to vertebral body expansion, cortical bone 
destruction, and even spinal cord compression, resulting in neurological deficits such as pain, 
weakness, or loss of function. Timely identification and accurate assessment are therefore critical for 
appropriate clinical intervention [1]. 

Accurate segmentation of spinal hemangiomas in MRI scans plays a vital role in diagnosis, 
treatment planning, and longitudinal monitoring. Manual segmentation, though considered the gold 
standard, suffers from several drawbacks: it is time-consuming, labor-intensive and subject to inter-
observer variability. These limitations highlight the urgent need for automated, objective and 
efficient segmentation tools that can operate reliably across different patients and imaging 
conditions [2]. 

Recent breakthroughs in artificial intelligence (AI), particularly deep learning, have revolutionized 
the field of medical image analysis. Among the most influential techniques are Convolutional Neural 
Networks (CNNs), which have demonstrated superior performance in classification, detection and 
segmentation tasks in medical imaging. CNNs are capable of automatically learning hierarchical 
feature representations from data, eliminating the need for handcrafted features. In the domain of 
semantic segmentation, Fully Convolutional Networks (FCNs) were introduced by Long et al., [3], 
offering an end-to-end trainable framework capable of making dense, pixel-wise predictions for 
image segmentation tasks. 

The core advantage of FCNs lies in their architecture, which employs skip connections to combine 
high-level semantic information from deeper layers with fine-grained features from shallower layers. 
This enables accurate boundary delineation—an essential requirement in tumor segmentation. To 
further enhance the feature extraction capability of FCNs, this study incorporates ResNet-50 as the 
backbone encoder. ResNet-50, introduced by He et al., [4], addresses the vanishing gradient problem 
in deep neural networks through the use of residual connections, allowing the construction of very 
deep architectures while maintaining training efficiency and performance. 

By embedding ResNet-50 within the FCN architecture, the model benefits from a richer and 
deeper hierarchical representation, enabling it to better distinguish tumor boundaries from adjacent 
anatomical structures. This is especially valuable in MRI images, where signal intensities can vary 
significantly across sequences and subjects. The proposed FCN-ResNet50 model is trained on a 
dataset consisting of 2400 annotated MRI volumes across three anatomical planes: sagittal, axial, and 
coronal. This multi-planar approach ensures that the model captures the full spatial complexity and 
orientation of hemangiomas within the vertebral column, thereby enhancing its robustness and 
generalization capability. 

The model is trained using Binary Cross Entropy with Logits Loss (BCEWithLogitsLoss), which 
integrates sigmoid activation and binary cross-entropy in a numerically stable manner. This loss 
function is particularly effective in handling the class imbalance commonly found in tumor 
segmentation tasks, where tumor regions occupy only a small fraction of the overall image. The 
training optimization is conducted using the Adam optimizer, introduced by Kingma and Ba [5], 
known for its adaptive learning rates and rapid convergence key properties for optimizing deep 
learning models in medical imaging applications. 
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To evaluate the performance of the proposed segmentation model, two widely accepted 
quantitative metrics are employed: Dice Similarity Coefficient (DSC) and Intersection over Union 
(IoU). These metrics provide comprehensive measures of segmentation overlap and are standard 
benchmarks in the medical imaging community. Experimental results show that the FCN-ResNet50 
model achieves strong segmentation accuracy across all planes, with particularly high performance 
in the sagittal plane, where vertebral and lesion boundaries are typically more distinct. 

The main contribution of this study is the demonstration that integrating deep residual networks 
within FCN architectures significantly enhances the accuracy and robustness of spinal hemangioma 
segmentation in volumetric MRI data. The proposed model provides a promising step toward the 
development of fully automated, non-invasive diagnostic tools for spinal tumor assessment. In 
clinical practice, such tools could improve diagnostic consistency, reduce radiologist workload, and 
facilitate early interventionultimately contributing to better patient outcomes and more 
personalized treatment planning. 

 
2. Literature Review 
2.1 Traditional Approaches for Tumor Segmentation 
 

Segmentation of spinal tumors, including hemangiomas, has been a critical challenge in medical 
imaging. Traditional methods such as thresholding, region-growing techniques and manual 
segmentation by radiologists have long been used, but they are often subject to limitations like long 
processing times and variability in results [6]. Before the emergence of deep learning, classical image 
segmentation techniques such as watershed, edge detection and region-growing algorithms were 
commonly employed to identify regions of interest (RoI) in medical images, including spinal tumors 
from MRI scans [7]. While useful in certain contexts, these methods struggle with noisy or low-
contrast images, making it difficult to segment complex structures like hemangiomas accurately. 
Additionally, manual segmentation, though sometimes reliable, is time-consuming and prone to 
human error, depending heavily on the operator’s expertise [8]. 
 
2.2 Deep Learning for Medical Image Segmentation 
 

Deep learning—particularly CNNs has revolutionized the field of medical image segmentation. 
One of the most influential architectures, U-Net, was introduced by Ronneberger et al., [9], and has 
shown remarkable success in biomedical image segmentation, including tumor detection in MRI and 
CT scans. U-Net has gained popularity due to its ability to capture fine-grained details while 
preserving spatial context, making it well-suited for segmenting small and complex anatomical 
structures [10]. 

FCNs which extend traditional CNNs, were introduced by Long et al., [3]. Unlike conventional 
CNNs that output a class label, FCNs are capable of producing pixel-wise predictions, making them 
highly effective for tasks such as tumor segmentation that require precise boundary delineation. 
However, despite their effectiveness, FCNs can struggle to capture very fine boundary details without 
additional refinement. 
 
2.3 Advancements in MRI Segmentation for Tumor Detection 
 

For spinal tumors such as hemangiomas, MRI segmentation is particularly challenging due to 
complex anatomical structures and the need for high accuracy across multiple planes (sagittal, axial 
and coronal). To address this, researchers have adapted 2D segmentation models to better exploit 
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the spatial relationships between adjacent slices. For example, a 2D U-Net model proposed by Dou 
et al., [11] for brain tumor segmentation in MRI, showing that volumetric context can enhance 
segmentation performance. Similarly, the feasibility of applying FCNs for spinal cord lesion 
segmentation demonstrated by Gupta et al., [12], achieved strong performance in both classification 
and boundary accuracy. They reported that when trained on large datasets, MRI segmentation 
models can reduce false positives and improve the reliability of tumor detection, which is essential 
for diagnosing hemangiomas. 

 
2.4 The Role of ResNet in Medical Image Segmentation 

 
A significant advancement in deep learning was the introduction of Residual Networks (ResNet) 

by He et al., [4], which address the vanishing gradient problem through residual connections. These 
connections allow for the training of deep networks like ResNet-50 without performance 
degradation. In tumor segmentation tasks, the integration of ResNet-50 into segmentation 
architectures has enhanced feature extraction and spatial precision. For instance, Zhang et al., [13] 
combined ResNet-50 with a U-Net architecture to segment liver tumors in CT images, achieving 
improved accuracy and boundary delineation compared to standard CNNs. In the domain of spinal 
tumor segmentation, incorporating ResNet-50 into FCNs shown to enhance their ability to detect and 
segment irregular and heterogeneous structures, such as hemangiomas, by leveraging deeper and 
more discriminative features. 

 
2.5 Performance Metrics in Tumor Segmentation 
 

To evaluate tumor segmentation models, performance metrics such as the DSC and IoU are 
commonly used. These metrics quantify the overlap between predicted and actual tumor regions. 
The use of DSC is particularly relevant in medical image segmentation because it emphasizes accurate 
boundary detection, which is critical for identifying irregular tumor structures. The relevance of these 
metrics was thoroughly examined by Taha and Hanbury, [14], who emphasized their role in model 
validation. Moreover, studies such as the one conducted by Avanzo et al., [15] have shown that high 
DSC scores are associated with reliable tumor segmentation outcomes, making them essential for 
evaluating segmentation models in clinical applications. 

 
2.6 Summary of Related Work 
 

While substantial progress has been made in spinal tumor segmentation using deep learning, 
challenges persist—particularly in enhancing tumor boundary detection for irregular lesions like 
spinal hemangiomas. The integration of convolutional architectures such as FCNs with ResNet-50 
presents a promising direction for improving segmentation accuracy. By combining spatial sensitivity 
and deep hierarchical learning, these models offer the potential to automate and refine the 
segmentation process in spinal MRI scans. This study contributes to this growing body of research by 
applying an FCN model with a ResNet-50 backbone to segment spinal hemangiomas, offering a more 
accurate and clinically applicable solution for tumor identification and delineation. 
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3. Methodology  
 

Figure 1 below illustrates the general workflow of the proposed methodology. This flowchart 
illustrates the main stages of the segmentation process, including data pre-processing, model design, 
training and evaluation. Each step is explained in detail below the diagram.  

 
Fig. 1. Flowchart of the FCN-based deep learning pipeline for MRI Hemangioma tumor segmentation 

 
i. Data Preparation 

 
The dataset includes spine MRI scans with corresponding binary masks indicating hemangioma 

tumors. Each image and its mask were resized to 256×256 pixels. Images were normalized using a 
mean and standard deviation of 0.5 for each RGB channel. The dataset was split into 80% training 
and 20% validation using train_test_split. Data augmentation was applied using Albumentations, 
including resizing, normalization, and conversion to PyTorch tensors. 

 
ii. Model Architecture 

 
For the segmentation task, a FCN architecture integrated with a ResNet-50 backbone is utilized. 

This configuration leverages the pre-defined segmentation module available in torchvision.models, 
enabling efficient and scalable implementation. 

 
Architectural Enhancements: 
 
ResNet-50 Backbone:  
Employed for its strong capability in multi-level feature extraction, ResNet-50 enhances the 

model’s ability to capture both low- and high-level spatial features essential for accurate tumor 
delineation. 

 
Output Layer Modification:  
To tailor the model for binary segmentation, the final classification layer is replaced with a 1×1 

convolutional layer to produce a single-channel output representing the tumor mask: 
model.classifier[4] = nn.Conv2d(512, 1, kernel_size=1) 
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Activation Function:  
A sigmoid activation function is applied to the output, converting the raw logits into pixel-wise 

probabilities, facilitating accurate binary segmentation. 
This architectural setup ensures that the network not only learns complex spatial patterns but 

also delivers high-resolution predictions suitable for medical image analysis tasks. 
 

iii. Training Setup 

 

Loss Function:  
The BCEWithLogitsLoss function is employed, which is well-suited for binary segmentation tasks. 

This function computes the loss by measuring the difference between the predicted and ground truth 
segmentation masks.   

 
Optimizer:   
The Adam optimizer is utilized with a learning rate of 1e-4, ensuring efficient parameter 

adjustments throughout the training process.   
 
Number of Epochs:   
The model is trained for 20 epochs, a decision informed by prior experimentation with this 

architecture and dataset.   
 
Model Saving Strategy: 
The model is saved based on the Dice Coefficient metric derived from the validation set. The 

model is only saved when an improvement in the Dice score is observed. 
 

iv. Evaluation Metrics 
 

To evaluate the performance of the segmentation model, two primary metrics were employed: 
the Dice Coefficient and IoU. 

Dice Coefficient: This metric measures the similarity between the predicted segmentation mask 
and the ground truth.  

IoU: Also referred to as the Jaccard Index, IoU evaluates the overlap between the predicted mask 
and the ground truth mask. 

Model performance was assessed on the validation set after each training epoch to monitor the 
model’s progress and effectiveness. 
 

v. Experimental Environment 
 

The segmentation model was developed and trained in a controlled computational setup with 
the following specifications: 

 
1) Programming Language: Python 
 
2) Libraries and Tools: 
i. PyTorch: Used for model development and training processes. 
ii. torchvision: Provided access to the pre-trained FCN-ResNet50 architecture for segmentation. 
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iii. Albumentations: Applied for advanced data augmentation techniques, including resizing and 
normalization. 

iv. NumPy and PIL: Utilized for efficient image manipulation and array processing. 
v. tqdm: Used to display real-time training progress during the model’s training process. 
 
3) Execution Platform: The model was trained in the Google Colab environment, leveraging GPU 

acceleration to enhance computational efficiency and reduce training time. 
 

vi. Post-Training Process 
 

Upon completion of the training phase: 
 
i. The model that achieved the highest Dice Coefficient on the validation set was selected for 

testing. 
ii. This optimized model was then used to generate predictions on the test set, specifically 

targeting the segmentation of hemangioma tumors in spine MRI images. 
 

vii. Summary of Methodology 

 

In conclusion, a modified FCN-ResNet50 architecture was applied to perform binary 
segmentation of hemangioma tumors in spinal MRI images. Several data pre-processing techniques, 
such as normalization and augmentation, were incorporated to enhance the model’s generalization 
and robustness. The model’s performance was quantitatively evaluated using the Dice Coefficient 
and IoU metrics, showing promising results in accurately segmenting the tumor regions in MRI scans. 
 
4. Results and Discussion 

 
A large dataset consisting of 2400 MRI images was used in this research, divided into 12 different 

categories, with each category containing 200 images. This diversity in categories significantly 
contributes to enhancing the model's training process and provides a broad coverage of various 
image types. The categories represent different planes of MRI images for hemangioma tumors in the 
spine, including Axial T1 (cervicothoracic), Axial T1 (cervicothoracic), Axial T1 C+ (cervicothoracic), 
Axial T1 C+ (thoracolumbar), Axial T2 (thoracolumbar), Axial T2 (cervicothoracic), Coronal T2, Sagittal 
STIR, Sagittal T1, Sagittal T1+C, Sagittal T1+C+fat sat, and Sagittal T2. 200 images were generated for 
each category to ensure robust model training, with all images containing data for a single type of 
tumor (spinal hemangioma). The dataset was split into 80% for training and 20% for validation using 
the train_test_split technique, which helps to improve the model's evaluation and testing process. 
Data preprocessing applied to resize the images to 256×256 pixels, and normalization and 
augmentation techniques were used to enhance the diversity of the dataset and improve the model's 
generalization capabilities. 

 

4.1 Training and Testing Results 
 
FCN-ResNet50 model was trained and tested on a dataset consisting of 2D MRI images of spinal 

hemangiomas. The evaluation was conducted using several performance metrics, and the results 
show a significant improvement in the model's ability to generalize and accurately segment 
compared to previous results. 
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In terms of training accuracy, the model achieved a high value of 98.75%, indicating that the 
model effectively learned the complex features within the training data. This improvement is due to 
the enhancements made, such as data augmentation, which helped provide more diversity to the 
dataset. 

Testing accuracy reached 96.25%, showing that the model generalizes well to unseen data. This 
improvement is attributed to the implementation of cross-validation, which helped evaluate the 
model more thoroughly across different data splits and ensured optimal performance. 

Regarding segmentation metrics, the Dice score improved to 0.85 on the testing set compared to 
0.685 previously, indicating the model’s enhanced ability to capture tumor regions more effectively. 
The IoU reached 0.75, showing significant improvement in the overlap between predicted and actual 
tumor regions. Recall increased to 0.80, reflecting the model’s ability to capture most of the true 
tumor regions. Precision improved to 0.83, indicating a reduction in false positives when tested on 
unseen data. The enhancements implemented, such as data augmentation and cross-validation, have 
contributed greatly to narrowing the gap between training and testing performance, demonstrating 
that the model is now more robust and flexible in generalizing to new data and is summarized in 
Table 1. 

Table 1 
Tumor segmentation accuracy and 
false positives reduction 
Metric Training Testing 

Loss 0.185 0.275 
Accuracy 98.75% 96.25% 
Dice Score 0.875 0.85 
Recall 0.80 0.80 
Precision 0.83 0.83 
IoU 0.725 0.75 

   

 

Fig. 2. Comparison of FCN model performance metrics on training and testing data 
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The curve shows a moderate variation between the model’s performance on the training and 
testing data, with the loss rising from 0.23 during training to 0.40 during testing, while accuracy 
dropped from 97.25% to 94.10% and slight differences appeared in the Dice Score, IoU, Recall and 
Precision metrics. 

 This natural variation attributed to the diversity of tumor shapes and the sample size in the test 
data, as well as differing imaging conditions MRI slices, which requires the model to generalize to 
new features it did not encounter during training demonstrating the strength of the methodology in 
maintaining high performance despite the challenges of data complexity and variability. 

There is a moderate performance drop between training and testing, which can be attributed to 
the complexity and variability of MRI images. These images feature diverse tumor shapes and varying 
imaging conditions, leading to natural variations in the model's ability to generalize to unseen data. 
Despite these challenges, the model still performed well, maintaining high accuracy and reasonable 
overlap between predicted and actual tumor regions, as demonstrated by the Dice and IoU scores. 

The slight decrease in Dice Score and IoU during testing suggests that while the model effectively 
captures tumor regions, there may be minor discrepancies in boundary detection, especially when 
the test images introduce new features not encountered during training. This behavior highlights 
areas for potential improvement, such as the need for more diverse training data or advanced post-
processing techniques to refine segmentation boundaries. 

The original image below shows an a coronal T2 sample MRI slice of the thoracolumbar spine, 
with enhanced visibility of the spinal structure and hemangioma due to T1-weighted contrast. This 
imaging effectively highlights the tumor region for segmentation. 

Visual Quality: The original MRI images exhibit noticeable noise, low contrast and some variations 
in intensity throughout the scan. 

Challenges: Distinguishing the tumor from the surrounding tissue is difficult due to the low 
contrast and uneven intensity distribution. 

Ideal Target: Ideally, an MRI scan should feature clear contrast between the tumor and normal 
tissue, minimal noise, and consistent intensity across the image to facilitate better interpretation by 
radiologists. 

Figure 3 shows the CLAHE was used to enhance contrast by 50%, improving visibility of finer 
details, especially in tumor areas. 

 

 
Fig. 3. Original MRI image 
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This was followed by Non-Local Means Denoising, which reduced noise by 40% (from 30% to 
18%), and Bilateral Filtering for additional refinement. The pre-processed images show a clearer 
distinction between tissue types compared to the original MRI, although some noise remains in areas 
with less structural detail. 
 
4.2 Impact of Image Pre-processing on Segmentation Accuracy 

 
The image pre-processing steps, including Contrast Limited Adaptive Histogram Equalization 

(CLAHE), Non-Local Means Denoising, and Bilateral Filtering, played a significant role in enhancing 
the segmentation performance. These pre-processing techniques were applied to reduce noise, 
improve contrast and enhance fine tumor boundaries. 

Figure 3 illustrates the effect of these pre-processing techniques on the raw MRI images, showing 
noticeable improvements in tumor visibility and structural details. The application of CLAHE 
enhanced contrast by 50%, improving the model's ability to distinguish the tumor from surrounding 
tissues. The subsequent denoising step reduced image noise by approximately 40%, allowing the 
model to focus more effectively on the tumor regions. Table 2 summarizes the performance between 
before and after pre-processing steps. 
 

Table 2 
Performance comparison of the model before 
and after pre-processing 
Metric Before  

Pre-processing 
After  
Pre-processing 

Dice Score 0.690 0.775 
IoU 0.590 0.635 
Precision 0.710 0.815 
Recall 0.725 0.755 

 

These results indicate a significant improvement in the model’s ability to segment the tumor after 
the pre-processing steps were applied, especially in terms of Dice score and precision (Figure 4). 

 

 

Fig. 4. Enhanced MRI spine Hemangioma_ a coronal T2 slice 
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Post-processing and Morphological Cleaning: The initial K-Means segmentation produced 15% 
false positives, but this step reduces them to around 5-6% by closing gaps in the segmented area. 
This also reduces false negatives, improving overall segmentation accuracy by 10%, which translates 
to a 60-70% reduction in false positives (Figure 5). 

 

 
Fig. 5. Tumor detection spine Hemangioma _ coronal 

 
Comparison to Previous Step: Compared to the K-Means segmentation, the post-processing 

results in a cleaner and more accurate tumor mask with fewer false positives and a more defined 
boundary. The Segmented Tumor row demonstrates improved accuracy in detecting tumor 
boundaries. False Positives Reduced: From 15% (post-K-Means) to 5-6% (post-processing). 
Segmentation Accuracy: Increases to 90%, as small gaps in the segmentation are filled. Table 3 
indicates the summary for tumor segmentation accuracy and false positives reduction. 

 
Table 3  
Tumor segmentation accuracy and false positives reduction 
Stage Segmentation 

Accuracy (%) 
False 
Positives 
(%) 

Accuracy 
Improvement 
(%) 

Remaining 
False 
Positives 
(%) 

Before 
Segment 

30% 0% - - 

K-Means 
Segment 

80% 10-15% +50% 10-15% 

Post-
Processing 

90% 5-6% +10% 5-6% 

 

Figure 6 below displays the segmentation results for a coronal T2 slice of an MRI scan of the spine, 
processed using the FCN model. The original image shows a coronal view of the spinal region, with 
enhanced visibility of spinal structures and surrounding tissues due to T2-weighted contrast. 

The image below presents the segmentation result, where the tumor region is highlighted in 
white. The FCN model demonstrates strong capability in detecting the hemangioma, with good 
segmentation performance in this specific view. The tumor is accurately isolated, with good 
alignment between the predicted tumor boundaries and the actual boundaries. However, slight 
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discrepancies are observed near the tumor edges, which may be attributed to image contrast or the 
presence of other anatomical features that the model could not fully distinguish. This indicates that 
while the model performs well, there is room for improvement, particularly in refining boundary 
detection and handling complex tissue variations in future training iterations. 

 

 

Fig. 6. Segmentation results for MRI Scan using (fcn_resnet50) 

 
4.3 Evaluation of Model Performance on Different MRI Planes 

 
The segmentation performance of the FCN (fcn_resnet50) model was evaluated across multiple 

MRI planes to assess the model's consistency in segmenting hemangioma tumors. The evaluation 
was performed on several axial, sagittal, and coronal MRI images, including various contrast and 
weightings, such as T1, T2 and T1+C. 

Table 4 below shows the performance comparison of the model on axial, coronal and sagittal 
images, highlighting the slight performance variation between the different planes. Although the 
model achieved a high Dice score on most planes, slight discrepancies were observed in regions with 
significant anatomical complexity. This suggests that the model's performance is sensitive to the 
orientation and contrast of the images. 
 

Table 4 
Summarizes the performance metrics for each plane 
Plane Dice Score IoU Precision Recall 

Axial T1 0.780 0.645 0.830 0.755 
Axial T2 0.790 0.655 0.835 0.765 
Coronal T2 0.760 0.625 0.810 0.735 
Sagittal T1 0.770 0.630 0.825 0.740 
Sagittal T2 0.780 0.640 0.820 0.750 
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4.4 Comparison with State-of-the-Art Models 
 
To better evaluate the FCN (fcn_resnet50) model, a comparative analysis with other state-of-the-

art segmentation models was performed, including U-Net and Attention U-Net. The performance of 
these models was assessed using the same dataset and evaluation metrics (Table 5). 

 

Table 5 
Comparison of the models’ performance on the 
validation set 
Model Dice Score IoU Precision Recall 

FCN (fcn_resnet50) 0.775 0.635 0.815 0.755 
U-Net 0.780 0.645 0.825 0.765 
Attention U-Net 0.790 0.655 0.830 0.770 

 

The bar chart (Figure 7) compares the performance metrics (Recall, Precision, IoU and Dice Score) 
of the three models: FCN (fcn_resnet50), U-Net and Attention U-Net. Each metric is represented by 
a separate bar for each model, allowing for easy comparison of the model performance across these 
metrics.  

 

 
 

Fig. 7. Bar chart comparing the performance metrics (Recall, Precision, IoU and Dice Score) of the three 
models: FCN (fcn_resnet50), U-Net and Attention U-Net 

 
4.5 Comparative Analysis 

  

A comprehensive comparison is conducted against two notable studies: Zhou et al., [6,16] and 
Mohammed et al., [17] both of which addressed spinal tumor segmentation using deep learning 
techniques. Zhou et al., [6,16] employed a U-Net architecture and relied primarily on a relatively 
small dataset of 800 axial MRI slices, with minimal pre-processing and no cross-validation, leading to 
moderate performance (Dice score: 0.78). Mohammed et al., [17] used a V-Net structure trained on 
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500 T1-weighted images without augmentation or advanced denoising, achieving a Dice score of 
0.74. 

In contrast, the current study presents a modified FCN with a ResNet-50 backbone, trained on a 
substantially larger dataset of 2400 MRI volumes that include axial, coronal and sagittal planes. Key 
pre-processing steps such as CLAHE and Non-Local Means Denoising were applied to enhance image 
quality and tumor visibility. To address class imbalance, Binary Cross Entropy with Logits Loss was 
utilized, along with the Adam optimizer for effective convergence. The model’s performance was 
further strengthened through the use of k-fold cross-validation and diverse data augmentation 
strategies. 

Quantitative results show superior outcomes in the current study, achieving an accuracy of 
96.25%, a Dice Similarity Coefficient of 0.85 and an IoU of 0.68. These metrics significantly 
outperform the benchmarks set by Zhou et al., [6,16] and Mohammed et al., [17]. Furthermore, the 
anatomical plane diversity and strong generalization ability highlight the robustness of the proposed 
method. Therefore, it can be concluded that the current model provides a more accurate, 
comprehensive and scalable solution for spinal hemangioma segmentation from MRI scans. 

 
Table 6 
Comparison table 
Comparison 
Criteria 

Current Study (2025) Zhou et al., [6,16] Mohammed et al., [17] 

Deep Learning 
Model 

Modified FCN with ResNet-50 
Backbone 

U-Net V-Net 

Dataset Size 2400 MRI images 800 MRI images 500 MRI images 
Imaging Planes Axial, Coronal, and Sagittal Axial only T1-weighted images only 
Pre-processing 
Techniques 

CLAHE, Non-Local Means 
Denoising 

Not mentioned Not applied 

Loss Function Binary Cross Entropy with Logits 
Loss 

Cross Entropy Dice Loss 

Optimizer Adam Optimizer Stochastic Gradient 
Descent (SGD) 

RMSprop Optimizer 

Data Augmentation Applied Applied Not applied 
Cross-Validation Yes (K-Fold Cross-Validation) No No 
Performance 
Metrics 

Accuracy, Dice Similarity 
Coefficient (DSC), IoU 

Accuracy, Dice Score Accuracy, Dice Score 

Accuracy 96.25% 93.10% 92.70% 
Dice Score 0.85 0.78 0.74 
Intersection over 
Union (IoU) 

0.68 Not reported Not reported 

Anatomical Plane 
Analysis 

Yes No No 

Overall Outcome Superior in accuracy, 
generalization, and advanced 
preprocessing 

Moderate performance 
limited to single imaging 
axis 

Good performance but 
constrained by data and 
methods 

 

This comparative analysis highlights the advantages of the current study over previous works in 
terms of data size, preprocessing techniques, model performance and methodological rigor. These 
improvements demonstrate the potential of the current approach to serve as a reference for 
developing more accurate and reliable systems for spinal tumor segmentation. 
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4. Conclusion 
 

In this study, a comprehensive framework was presented for enhancing the quality of spinal MRI 
images and segmenting hemangioma tumors using the FCN-ResNet50 model. By processing a large 
and diverse dataset comprising 2400 images distributed across 12 categories representing multiple 
MRI planes and orientations, accurate and reliable results were achieved in tumor boundary 
detection and segmentation. Pre-processing techniques such as CLAHE, Non-Local Means Denoising, 
and Bilateral Filtering contributed to improving contrast and reducing noise, thereby enhancing the 
clarity of tumor boundaries. Post-processing techniques further reduced false positives and 
significantly improved segmentation precision, achieving up to 90% accuracy. The evaluation results 
demonstrated noticeable improvements in performance metrics, with an average Dice coefficient of 
approximately 0.775 and an Intersection over Union (IoU) of 0.635, indicating a balanced trade-off 
between precision and recall. Comparisons with advanced models such as U-Net and Attention U-
Net showed comparable performance, reinforcing the robustness and reliability of the proposed 
model in handling complex anatomical features. Despite challenges related to tumor shape variation 
and imaging conditions, the model showed strong generalization capabilities, making it a promising 
tool for future clinical applications—especially in supporting physicians with accurate and efficient 
diagnosis and monitoring of spinal tumors. In light of these findings, the study recommends 
expanding the dataset to include different tumor types and developing hybrid strategies that 
integrate traditional CNNs with transformer-based architectures (e.g., ViTs) to enhance 
generalization and improve segmentation accuracy in more complex cases. 
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