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This study uses metaheuristic optimization algorithms to minimize the total 
production cost (TPC) in a hybrid flow shop scheduling (HFS) environment. Scheduling 
jobs in manufacturing systems is vital for fulfilling customer demands and improving 
efficiency. In this research, four well-established metaheuristic algorithms, namely 
Tuned Particle Swarm Optimization (TPSO), Standard particle swarm optimization 
(PSO), Sine cosine algorithm (SCA) and Arithmetic optimization algorithm (AOA), were 
explored for TPC optimization in HFS environment. Through experimental analysis, 
TPSO consistently provided the best solutions regarding mean fitness, outperforming 
other algorithms in a maximum of 12 benchmark test problems. Taguchi's Design of 
Experiment (DOE) was utilized to identify the most influential parameter 
configurations for PSO. The findings highlight the effectiveness of TPSO in minimizing 
production costs and improving productivity in HFS. This research contributes to 
production scheduling and offers insights for organizations striving to optimize 
manufacturing systems utilizing the HFS environment.  
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1. Introduction 
 

Production scheduling refers to assigning jobs to available machines in manufacturing systems to 
optimize single or multiple objectives. The scheduling of jobs is essential to meet the customers’ 
demands and avoid delays while enhancing the efficiency of the manufacturing system. Scheduling 
can be classified into job shop and flow shop categories, depending on the flow of resources. One of 
the well-established flow shops is known as a hybrid flow shop (HFS) [1]. The HFS is a manufacturing 
setup comprising multiple stages, each with numerous parallel machines. Each job must pass through 
the stages in the same order, being processed on one of the machines at each stage. The HFS poses 
a complex combinatorial optimization challenge, especially when it comes to determining the 
sequence of job processing and the assignment of jobs to machines. Both of these factors serve as 
design variables in the standard HFS [2]. 
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When the cost is the objective function in HFS, it is known as the cost-based hybrid flow shop 
(CHFS). Many researchers have contributed to the CHFS optimization field with various optimization 
objectives related to cost in HFS production systems. In the literature, the dominant optimization 
objectives in CHFS were production and energy costs [3]. In some problems, the makespan was 
somehow optimized in multi-objective cost criterion problems [4]. In addition to these primary costs, 
other factors such as material, tardiness and storage costs were also taken into account [5,6]. 
Moreover, specific papers have also considered transportation, rejected jobs, operating, setup, 
overtime, adjustment and resource allocation costs [7-10].  

Organizations strive to optimize total production cost (TPC) to increase productivity and reduce 
the economic imbalance [11]. The main expenses encountered in manufacturing are the material, 
transportation, electrical energy, maintenance, tardiness, accessories, labour and late penalty [12]. 
This paper covered four significant costs: labour costs, the electrical energy cost of the machine in 
operating condition, the preventive maintenance cost of the running machines to produce parts and 
late penalty costs when jobs are not completed on their due dates. Accumulating these four costs 
leads to the TPC, which is the optimization objective in this paper.  

High-level optimisation techniques are used to optimize the objective function in CHFS, known as 
the metaheuristic’s algorithms. The metaheuristics algorithms are used to find the optimal solution 
for a given problem under constraints. Metaheuristics are divided into three categories: nature-
inspired, population-based and intelligent swarm. In this paper, four popular and well-established 
metaheuristics algorithms named Tuned particle swarm optimization (TPSO), Standard particle 
swarm optimization (PSO), Sine cosine algorithm (SCA) and Arithmetic optimization algorithm (AOA) 
were selected for optimization of TPC. The algorithm that consistently gives the best solution over 
the number of iterations and optimization runs even for large and small-scale optimization problems 
is declared the best optimization algorithm. 

PSO is a population-based metaheuristic inspired by the collective behaviour observed in bird 
flocks. It can optimize complex combinatorial optimization problems. However, some standard 
controlling input parameters in PSO influence the objective function. These parameters are the 
inertia weight w, personal weight c1 and global weight c2. The c1 and c2 are also known as correction 
factors or constant of acceleration. Changing the values of these parameters in their respective 
ranges is called tuning [13]. In PSO, parameters such as w, c1 and c2, population size and number of 
iterations directly influence efficiency and reliability. The orthogonal array technique, alongside 
signal-to-noise (S/N) ratios, is employed to pinpoint the optimal parameter configurations, enhancing 
performance characteristics. This paper used the Taguchi design of experiment (DOE) to investigate 
the best parameter settings for PSO, which returns the best fitness value [14].  

Besides PSO, two other widely recognized metaheuristics named SCA and AOA were chosen 
based on recent advancements to evaluate their performance against TPSO. The AOA iteratively 
adjusts the values of the decision variables to minimize an objective function, using simple arithmetic 
operations like addition, subtraction, multiplication and division at each step [15]. Natural 
phenomena inspire it and evolve the solution towards an optimal value over successive iterations. 
The SCA is a metaheuristic optimization algorithm that uses sinusoidal waves and randomly 
generated numbers to develop candidate solutions toward the optimal value [16]. It initializes a 
random population of solutions and then calculates new solutions by exploring the current best 
solution using the sine and cosine functions. Over successive iterations, it converges toward the 
global optimum. 

The paper is structured as follows: Section two elaborates on the standard PSO and its operational 
principles. Section three details the Taguchi DOE. Section four concerns the experimental setup and 
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testing of the benchmark test problems using TPSO, PSO, AOA and SCA. Section five of the paper 
presents the results and discussions. Finally, the paper will end up with conclusions. 

 
2. Particle Swarm Optimization (PSO) 

 
The PSO algorithm begins by initializing a population of random candidate solutions, referred to 

as particles. Each particle possesses a position and velocity, representing a potential solution within 
the search space. Particles iteratively fly through the multi-dimensional search space to find the 
optimal position according to a fitness function. Critical PSO concepts include particle position (Xi) 
and particle velocity (Vi). Some other variables are the personal best (Pbest) and global best (Gbest) 
[17].  

Xi represents a candidate solution in the multi-dimensional problem space. Each axis represents 
one dimension of the search space and an exact position on that axis represents one element of the 
overall solution. The position is updated over-optimization as the particle flies through the parameter 
space. The final position represents an approximate or exact solution for the objective function.  

Vi dictates position change, representing the step size and direction that a particle in the swarm 
will move in to update its position. High velocity leads to more global exploration, while low velocity 
supports more precise local exploitation. Pbest and Gbest influence the velocity found so far by the 
swarm. Setting appropriate velocities facilitates the exploration of the search space. 

Each particle keeps track of the best solution it has found so far individually at a particular position 
known as the personal best or Pbest solution for that particle. Comparing the current solution to the 
Pbest enables improvement based on an individual's exploration through the search space over the 
algorithm iterations. 

At each iteration, the global optimum solution found so far across all particles in the swarm is 
broadcast to every other particle. This global best-known position, Gbest, allows information sharing 
between particles. Particles can use the Gbest to improve their movement through the search space. 
Communication of the swarm's overall best solution improves convergence. In PSO, each particle 
with inertia weight w is manipulated based on Eq. (1) and Eq. (2): 
 
𝑉𝑖(𝑡 + 1)  =  𝑤𝑉𝑖(𝑡)  +  𝑐1𝑟1 ∗ (𝑃𝑏𝑒𝑠𝑡 −  𝑋𝑖(𝑡))  +  𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 −  𝑋𝑖(𝑡))        (1) 
 
𝑋𝑖(𝑡 + 1)  =  𝑋𝑖(𝑡)  +  𝑉𝑖(𝑡 + 1)            (2) 
 

Where 𝑉𝑖(𝑡 + 1) and 𝑋𝑖(𝑡 + 1) are the new velocities and new positions for the particles over 
the defined iterations. 𝑉𝑖(𝑡) is the velocity of a particle at its current position and 𝑋𝑖(𝑡) is the current 
position of the particle. Where r1 and r2 are the random numbers taken in range 1<r1, r2<0, once 
the velocity for the particle has been updated, the position can be updated using Eq. (2) to find the 
new solution for the candidates [13]. 
 
3. Taguchi Design of Experiment (DOE) for PSO Parameters Settings 

 
Taguchi design is a statistical approach using orthogonal array analysis to determine the best 

parameter setting (factors and levels). A suitable orthogonal array is chosen according to the number 
of parameters and levels under investigation. The Taguchi orthogonal arrays dictate the specific 
combinations of parameter levels used in each experimental run [18]. Data analysis is then done to 
calculate signal-to-noise (S/N) ratios, which indicate the factor levels that maximize robustness to 
noise. The optimal levels are interpreted to define the best parameter settings [13]. 



Journal of Advanced Research Design 

Volume 132 Issue 1 (2025) 41-51  

44 

As the Taguchi method is applied to PSO in this paper, the parameters to be considered are inertia 
weight w, personal weight c1 and global weight c2. These are the potential parameters which 
influence the fitness/objective function. This paper's fitness is TPC, so the TPC was calculated for all 
nine experiments (L9) using the associated parameter settings. The optimum parameters were 
declared corresponding to the best fitness value. The proposed methodology to conduct the Taguchi 
(DOE) is as follows: 

The fitness function to be calculated is the TPC, expressed in Eq. (3): 
 
𝑀𝑖𝑛 𝑓(𝑥) = 𝐶𝐿 + 𝐶𝐸 + 𝐶𝑅 + 𝐶𝑃                        (3) 

 
The fitness was calculated for five optimization runs and the results were noted. The formulas to 

calculate associated costs are expressed below. 
Labour cost, CL: The labour cost represents the wages paid to workers for a particular time period. 

In this paper, CL is taken constant based on average cost per hour. Additionally, only one worker can 
operate one machine. CL is calculated by multiplying all machines' total operating time and hourly 
wage rates. The operating times used are expressed in minutes. Parameters used include the jobs J, 
the overall production stages S and the number of machines M. Pjms additionally represents the 
minute processing time for job j on machine m at stage s. Eq. (4) is used to calculate the labour cost. 
The 𝛼𝑗𝑠𝑚 is a binary variable with constraints representing the operational condition of machines and 

can be seen in Eq. (4): 
 

𝐶𝐿 = (∑ ∑ ∑ 𝑡𝑗𝑠𝑚 ∙ 𝛼𝑗𝑠𝑚
𝑀
𝑚=1

𝑆
𝑠=1

𝐽
𝑗=1 ) × (

Hourly pay rate

60
)         (4) 

𝛼𝑗𝑠𝑚 = {
1, if job 𝑗 is processed on machine 𝑚 at stage 𝑠
0, otherwise

 

 
Energy cost, CE: The electricity cost is the energy utilized by machines while operating the jobs. 

Electricity utilized for other purposes, such as lighting and ventilation, is excluded. Additionally, 
standby power consumption when machines are idle is not factored into the electricity cost. The 
calculation is based on the power rating of each machine and its total run time. Specifically, the 
machine processing time of machines is multiplied by machines power ratings to determine the 
power consumption of machines. This paper considers non-identical machines, so the power ratings 
for machines in the same production stage may vary, impacting the total energy usage. In Eq. (5), the 
first term calculates the total energy used across all machines in watt-minutes. The second term 
converts this into kWh and multiplies it by the average electricity rate to determine the total 
electricity cost. Psm represents the power rating in watts for each machine m. To calculate the CE, Eq. 
(5) was used, 
 

𝐶𝐸 = (∑ ∑ ∑ 𝑡𝑗𝑠𝑚 ∙ 𝑝𝑠𝑚 ∙ 𝛼𝑗𝑠𝑚
𝑀
𝑚=1

𝑆
𝑠=1

𝐽
𝑗=1 ) × (

Average electricity tariff

60×1000
)        (5) 

 
Maintenance cost, CR: The maintenance cost refers to expenses incurred to keep production 

assets in proper working order [19]. Maintenance is typically categorized as either preventive or 
corrective. This paper only considers scheduled-based maintenance costs that are tied to machine 
usage. Maintenance scheduling will be determined according to a maximum recommended 
operating duration tailored to each machine model. The maintenance needs and expenses per 
machine will vary depending on its operating time accrued and durability specifications. The required 
number of maintenance sessions is calculated by dividing the total run time of machine m in stage s 
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(represented by Tsm) by the advised maximum operating duration trsm for that machine and then 
rounding up, as shown in Eq. (6). This determines how many complete maintenance cycles need to 
be performed to cover the total usage: 
 

𝐶𝑅 = ∑ ∑ ⌈
𝑇𝑠𝑚

𝑡𝑟𝑠𝑚
⌉ × 𝑟𝑠𝑚

𝑀
𝑚=1

𝑆
𝑠=1             (6) 

 
Late penalty cost, CP: A late penalty fee is charged to the manufacturer if they fail to fulfil order 

quantities by the delivery deadline agreed upon with the customer. In this research, a penalty will be 
applied daily if the requested number of job units is not completed by the specified due date. The 
longer an order is overdue, the greater the late penalty cost accrued. The term 𝐶𝑗 represents the 

actual completion date when the job order is finished production while 𝐷𝑗  is the due date. The term 

𝑌𝑗  in Eq. (7) calculates the lateness factor in days by finding the difference between 𝐶𝑗 and 𝐷𝑗 . 𝐶𝑃 in 

Eq. (8) determines the overall late penalty cost, which increases with the longer the lateness factor 
𝑌𝑗 . The lateness factor 𝑌𝑗 is multiplied by penalty charges to calculate CP using Eq. (8): 

 

𝑌𝑗 =  (
𝐶𝑗

Working time per day in minutes
) − 𝐷𝑗            (7) 

𝑌𝑗 = {
𝑦𝑗        if 𝑦𝑗 > 0

0       else     
 

𝐶𝑃 = ∑ 𝑌𝑗
𝐽
𝑗=1 × Daily penalty charges           (8) 

 
The PSO parameter settings are depicted in Table 1. The three fundamental potential parameters 

(w, c1, c2) were set in their ranges and labelled A, B and C. Throughout the experiment, consistency 
was maintained by keeping parameters constant, including 300 iterations, a population size of 30 and 
conducting 5 optimization runs.  

Table 1 
Factors and levels settings for PSO  
Parameter Level 

1 2 3 

A(w) 0.8 1.4 1.8 
B(C1) 1.2 1.6 2 
C(C2) 1.2 1.6 2 

 
The Taguchi experimental setup L9 orthogonal array is depicted in Table 2. 
 

Table 2 
Taguchi experimental setup: Orthogonal array L9 
DOE A B C Mean f (MYR) 

1 0.8 1.2 1.2 1136.78 

2 0.8 1.6 1.6 1320.016 

3 0.8 2 2 1213.799 

4 1.4 1.2 1.6 1151.133 

5 1.4 1.6 2 1157.508 

6 1.4 2 1.2 1087.167 

7 1.8 1.2 2 996.0775 

8 1.8 1.6 1.2 1057.524 

9 1.8 2 1.6 1149.695 
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After conducting the Taguchi method and evaluating the fitness, the means and S/N ratio plots 
were framed (Figure 1 and 2). 

 

 
Fig. 1. Means plot 

 

 
Fig. 2. S/N ratios plot 
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4. Total Production Cost Optimization 
 
A computational experiment was conducted to optimize TPC, employing the TPSO, Standard PSO, 

SCA and AOA. The purpose of the computational experiment was to investigate the performance of 
the proposed algorithms while optimizing the TPC. 

 
4.1 Computational Experiment 

 
To optimize the TPC, a computational experiment was conducted using the proposed TPSO, PSO, 

AOA and SCA. Three hypothetical benchmark test problems were considered defied by Carlier and 
Neron and the proposed algorithms were implemented [20]. The benchmark problems are well-
established popular hypothetical approaches to evaluate the HFS scheduling problems. The 
benchmark test problems and machine configurations are depicted in Table 3. The processing time 
for jobs is randomly generated within the range of {3,20}. The machine configuration indicates the 
quantity of machines at each stage. 

 
Table 3 
Benchmark test problems configurations 
Test Problem No. of Jobs No. of Machines Machines Configuration 

J10C5a2 10 5 2 2 1 2 2 
J10C5b1 10 5 1 2 2 2 2 
J10C5c1 10 5 3 3 2 3 3 

 
The performance of the proposed metaheuristics was compared to find the best optimal solution 

for each test problem. The algorithm which consistently provides the best fitness within maximum 
test problems was declared the best optimization algorithm in this paper. The PSO has already been 
utilized in many CHFS problems. However, this paper presents the TPSO to enhance the performance, 
so the experiment for the PSO was conducted based on the optimum parameter settings. After this, 
the PSO was tested for the same set of three problems using the default parameters settings. Finally, 
the benchmark problems were optimized using the AOA and SCA and the results were compared with 
TPSO. The population size was set to 50, having iterations of 1000 with 5 optimization runs for all 
three benchmark problems. 

 
5. Computational Results 

 
The fundamental indicator was calculated using the proposed algorithms for all three benchmark 

problems. The indicators are the mean fitness, standard deviation (SD), maximum and minimum of 
average fitness values and the mean computational time (CPU time). These indicators identify the 
performance and efficiency of the proposed algorithms. The indicators for all three benchmark 
problems with the associated proposed algorithm are shown in Table 4. 

The computational experiment shows that the TPSO algorithm consistently achieved the best 
optimization results regarding fitness across all three benchmark problems except problem J10c5a2 
due to the higher SD shown in Table 4. Specifically, for the J10c5a2 problem, PSO obtained the lowest 
mean and minimum value of fitness average. However, the SCA recorded the best SD and maximum 
value, while the CPU time for PSO was outperformed for problem j10c5a2. Similarly, for the J10c5b1 
and J10c5c1 problems, TPSO had superior results over other algorithms regarding mean fitness. 
Regarding the SD, SCA ranked first in all three benchmark problems. The CPU time was recorded as 
the minimum for the PSO in problems j10c5a2 and j10c5b1, while AOA ranked in problem j10c5c1. 
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Table 4 
Computational results for benchmark test problems 
Problem Indicator TPSO PSO AOA SCA 

J10c5a2 Mean 1085.915 1069.183 1234.443 1144.551 
 SD 155.4929 162.3392 139.9214 80.26634 
 Max 1322.375 1223.433 1414.111 1224.69 
 Min 810.1266 817.9357 1064.12 1026.613 
 CPU time 106.6707 69.51446 139.9797 72.1417 

J10c5b1 Mean 953.4681 983.607 1005.838 1032.565 
 SD 116.0176 178.2303 193.2568 84.1077 
 Max 1095.072 1213.911 1257.546 1121.871 
 Min 174.3345 734.1997 748.699 897.5344 
 CPU time 147.203 69.80002 70.31076 77.9153 

J10c5c1 Mean 453.4142 578.9981 469.0988 459.2085 
 SD 5.495403 127.3499 3.166313 4.777544 
 Max 465.6403 769.9084 472.6058 464.6857 
 Min 445.2667 461.5053 465.8212 451.6955 
 CPU time 107.6293 87.22908 86.53432 110.1811 

    
Overall, the TPSO had dominated results across all three benchmark problems, achieving superior 

optimization performance over other algorithms. Meanwhile, the PSO and AOA algorithms had 
comparable or slightly faster CPU times on some problems. It was concluded from the main findings 
that the TPSO approach is the best and most effective algorithm among the three tested for solving 
these types of optimization problems. The consistent and superior performance of TPSO across 
multiple benchmark instances demonstrates its capabilities and potential as an optimization tool for 
real-world applications. 

 
5.1 Discussions 

 
The proposed methodology and algorithms' limitations and potential drawbacks must be 

acknowledged. Firstly, heavy reliance is placed on the availability and quality of input data, meaning 
any inaccuracies may impact performance and generalizability. Additionally, assumptions about data 
distribution and relationships were assumed, which may not always hold in real-world scenarios. 
Furthermore, challenges may arise due to the computational complexity of our algorithms, 
necessitating efficient optimization strategies for large-scale applications. Lastly, despite extensive 
experiments and evaluations, specific edge-case scenarios may exist where effectiveness is limited. 
Addressing these limitations and exploring potential solutions are important directions for future 
research. 

Our research findings carry important implications and potential applicability across various 
industrial contexts. As our study only concentrated on a specific industry (PCB fabrication), the 
underlying principles and methodologies can be extended to similar industries. The insights from our 
research offer valuable guidance for decision-making processes, resource allocation and 
performance optimization in diverse industrial settings. For example, sectors such as electronics, 
automotive, aerospace, defence, Pharmaceutical and textile can utilize our findings to enhance 
operational efficiency and product quality and minimize the total production cost. Moreover, the 
methodologies developed in our study can be tailored to address specific challenges and 
requirements in different industrial contexts, facilitating the transferability and generalizability of our 
findings. 

This study has successfully applied the algorithms in addressing the research problem, there are 
opportunities for further enhancements and modifications to improve their performance and 
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effectiveness. One potential avenue for future research is to investigate alternative optimization 
algorithmic variations that may offer better computational efficiency or convergence properties. 
Additionally, incorporating additional data sources into the algorithms could enhance their predictive 
power and robustness. Furthermore, exploring hybrid approaches that combine multiple algorithms 
could improve accuracy and generalizability. Another area for improvement is the parameter tuning 
process, where more sophisticated methods, such as Bayesian optimization, can be explored to 
search for optimal parameter settings automatically. Finally, considering the dynamic nature of the 
problem, developing adaptive algorithms that can continuously learn and update their models in real 
time can strong future direction. Algorithms can improve performance and applicability by 
addressing these potential enhancements and modifications in various practical scenarios. 

While our proposed approach demonstrates promising results in tackling the research problem, 
it is crucial to recognize the potential challenges and limitations that could emerge during its 
implementation in real-world manufacturing systems [21]. One key challenge is integrating our 
approach with existing manufacturing systems and processes. Implementing new methodologies and 
algorithms requires changes to the existing infrastructure, software systems and data collection 
mechanisms. This integration process may involve technical complexities, compatibility issues and 
potential disruptions to the ongoing production operations. Additionally, the availability and quality 
of data needed to feed into the algorithms can pose a challenge. Manufacturing systems generate 
vast amounts of data, but ensuring its accuracy, completeness and timeliness is crucial for the success 
of our approach. Data privacy and security concerns must also be addressed to protect sensitive 
information. 

Furthermore, the scalability of our approach to larger manufacturing systems or multi-site 
operations is another consideration. Such scenarios' computational requirements and resource 
constraints may require optimization techniques, parallel processing capabilities or distributed 
computing architectures. Moreover, the human factor should not be overlooked. The successful 
implementation of our approach relies not only on the technological aspects but also on the 
willingness of the workforce to adapt to new processes, acquire new skills and embrace changes. 
Conducting pilot studies, collaborating with industry partners and involving key stakeholders in the 
implementation process can help identify and address potential obstacles. Future research can focus 
on developing frameworks or guidelines for successfully deploying our approach in diverse 
manufacturing environments. Considering these challenges and limitations, we can ensure a more 
realistic and practical implementation of our proposed approach in real-world manufacturing 
systems. 
 
6. Conclusion 

 
This study focused on minimizing the TPC in HFS scheduling. The performance of four established 

metaheuristic algorithms known as Tuned Particle Swarm Optimization (TPSO), Standard Particle 
Swarm Optimization (PSO), Sine Cosine Algorithm (SCA) and Arithmetic Optimization Algorithm 
(AOA) was assessed. The aim was to identify the most effective optimization algorithm for achieving 
TPC optimization in HFS and to determine the optimal PSO parameters setting. Through meticulous 
tuning of PSO using statistical software, key parameters such as inertia weight w, personal weight c1 
and global weight c2 were adjusted, resulting in enhanced efficiency and reliability. The Taguchi 
Design of Experiment (DOE) was carried out to determine the optimal parameter settings for TPSO. 
The best parameter settings that yielded the lowest TPC were identified by conducting a list of 
experiments and calculating the TPC for different parameter combinations. The performance of TPSO 
was compared with three other algorithms: PSO, AOA and SCA. Overall, in most problems, TPSO 



Journal of Advanced Research Design 

Volume 132 Issue 1 (2025) 41-51  

50 

showed promising results. TPSO outperformed in terms of TPC optimization across the maximum 
benchmark test problems. Moreover, TPSO obtained the minimum fitness value across all three 
benchmark test problems. The findings highlight the significance of metaheuristic algorithms, 
particularly TPSO, in addressing optimization problems in HFS scheduling. The results obtained from 
this study can provide valuable insights and guidance to organizations striving to minimize TPC and 
improve productivity in their manufacturing systems. 

In summary, this research significantly contributes to production scheduling by showcasing the 
effectiveness of TPSO in minimizing TPC in HFS. The proposed methodology, combining metaheuristic 
algorithms and the Taguchi DOE, offers a practical approach to optimizing the performance of 
manufacturing systems. Future research can explore further enhancements to the algorithms and 
investigate their applicability in different industrial contexts. 
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