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This paper presents a method for mobile robot path planning in complex environments. 
First, an advanced Ant Colony Optimization (ACO) algorithm is introduced to find viable 
paths in a discrete grid environment, connecting the starting point to the destination. 
The proposed ACO algorithm incorporates a probabilistic prediction mechanism to 
enhance the efficiency of node selection. By integrating ACO's inherent heuristic factors, 
this approach offers directional intelligence and significantly increases the likelihood of 
the ant colony finding feasible initial paths. In   the improved ACO algorithm, both the 
pheromone and heuristic factors are integrated into the new probabilistic prediction 
mechanism, which further improves path planning efficiency. The effectiveness of the 
proposed algorithm was evaluated using three different planar environment models of 
varying sizes and complexities. The results show that the algorithm's performance is 
minimally influenced by its control parameters. Additionally, a comparative analysis was 
conducted to evaluate the proposed algorithm against A* and traditional ACO. The 
comparison results indicate that the proposed algorithm outperforms the others in 
terms of path length, runtime and success rate. 
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1. Introduction 
 

With the rapid development of technology, unmanned driving has become a significant 
innovation in the automotive industry, attracting attention from the public [1]. The path planning 
algorithm pertains to the technology that analyses and perceives the surrounding environment of a 
vehicle to devise a secure and efficient driving path for unmanned vehicles [2]. Its goal is to ensure 
that unmanned vehicles can make intelligent decisions in complex urban traffic environments, adapt 
to different road conditions [3-5], and coordinate with other road users to achieve a safer and more 
comfortable driving experience [6]. 

Central to the development of self-driving vehicles is the ability to abstract complex traffic 
environments into data that can be understood and processed by computers [7]. Path planning is a 
crucial technology in unmanned driving. The main aim of path planners is to determine an optimal or 
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near-optimal route free of collisions from the start point to the endpoint. The standards used to 
evaluate the best route differ according to the different robot adaptation scenarios [8]. Research on 
path planning can be divided into two main types: global path planning and local path planning. 
Initially, path planning methods were mainly focused on computer science and mathematics. 
Notably, Dijkstra's algorithm [9] and the A* algorithm [10] were among the initial significant 
algorithms used to determine the shortest path. However, as the environment scales up, these 
algorithms become increasingly complex, resulting in a decline in efficiency. Nevertheless, the real 
world is characterized by numerous unknown and intricate environments, necessitating the 
importance of random sampling path planning algorithms. The Random Rapidly-exploring Random 
Trees (RRT) algorithm accomplishes path planning through random sampling and the expansion of 
tree structures [11]. Unlike the A* algorithm, the RRT algorithm can operate without prior maps and 
relies solely on local perception. It proves to be a highly adaptive and scalable method, especially 
suitable for unknown environments, complex terrains, and high-dimensional state spaces [12]. 
However, due to the inherent nature of random sampling, it faces limitations in terms of time and 
computational efficiency. The field of path planning has introduced new methods, like intelligent bio-
inspired algorithms, reinforcement learning, and neural networks, to enhance efficiency during path 
searches and reduce computational costs. This has been achieved with the development of artificial 
intelligence. However, in expansive and highly complex environments, despite the application of 
these efficient methods, path planning still faces challenges, especially in finding feasible paths after 
multiple iterations [13-15]. 

This article introduces an innovative algorithm developed for planning robot paths within 
uninterrupted environments. The proposed upgrade to the ACO algorithm has the capability to 
identify the optimal or nearly optimal route in complex settings of diverse nature. The algorithm 
utilizes ACO to determine feasible paths in a discretized grid-based environment connecting the 
initial and final points [16]. To enhance the accuracy of ACO in determining viable primary routes, a 
probability prediction mechanism is implemented, enabling efficient selection of successive nodes 
and supplementing ACO's innate heuristic methodology for directional intelligence. This refinement 
appreciably amplifies ACO's effectiveness in planning feasible initial paths. In addition, the heuristic 
operation is enhanced by computing the aggregate angle information of path turns. Furthermore, 
this paper presents a new approach for path simplification which employs path reconnection 
techniques to create more efficient and seamless routes. The commonly accepted goals for path 
planning quandaries are generally threefold: (i) determining the shortest distance between the origin 
and destination points; (ii) minimizing directional variations in the path; and (iii) calculating the time 
necessary to navigate from the starting point to the end. The present study conducts a comparative 
analysis of three distinct path planning algorithms (the proposed algorithm, ACO and A*) in various 
simulated environments. The three main objectives of the proposed algorithm are evaluated against 
those of the other algorithms involved in this study. The subsequent sections of this paper are 
organized as follows: Section 2 offers a review of previous work, while Section 3 presents the 
proposed path planning method, including a detailed depiction of the algorithm, mathematical 
models, improved ACO path planner mechanisms. Section 4 presents and analyses the findings of the 
comparative experiments. Ultimately, Section 5 provides a conclusion to the study. 

 
2. Related Works  

 
Recently, the rapid development of autonomous robotics technology has sparked a great deal of 

research interest in autonomous robots, especially concerning automatic navigation algorithms. It 
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focuses on three types of automatic navigation algorithms: deterministic algorithms, bio-inspired 
algorithms and hybrid algorithms. 

 
2.1 Deterministic Algorithms 

 
The deterministic path planning algorithm is employed to find a clear path between a starting 

point and a destination. Widely used deterministic algorithms comprise Dijkstra and A*. Wang et al., 
[17] presents a study on a maze robot scenario and applies the Dijkstra algorithm for path planning. 
The model selects the shortest route while dealing with obstacles. The simulation outcomes affirm 
that the approach effectively tackles the path planning challenge posed by the maze robot. S. Julius 
Fusic et al., [18] investigated robot path planning and trajectory planning. By modifying parameters 
in the Dijkstra algorithm and creating scenarios in different environments, the paper successfully 
identifies effective paths for the robot to reach its destination. The mobile robot model, developed 
using V-REP simulation software, demonstrates the effectiveness of the deceleration method in 
terms of both time and velocity in the created environments for robot path planning. Fu et al., [19] 
introduced an improved A* algorithm optimized for industrial robot path planning. By planning local 
paths before neighborhood searches and optimizing paths in a post-processing stage, the algorithm 
enhances the search success rate and results in shorter and smoother robot paths. Due to the 
prolonged time taken by the A* algorithm in traversing the OPEN and CLOSED tables. To address this 
limitation, Peng et al., [20] proposed an improvement by introducing a new array storage method, 
resulting in an efficiency improvement of over 40%. The enhanced A* algorithm retains the original 
advantages while effectively boosting the operational efficiency of A*. An optimization algorithm is 
introduced to enhance the A* algorithm's efficiency and path smoothness by incorporating Jump 
Point Search (JPS), pruning unnecessary nodes, and applying Bézier curves for smoothing. Simulations 
and real-world experiments confirm its effectiveness in achieving shorter and smoother paths [21]. 

 
2.2 Bio-Inspired Algorithms 

 
The bio-inspired algorithm draws inspiration from biological principles and simulates the behavior 

of organisms in natural environments. These algorithms can search and optimize paths in complex 
environments, and are often used to solve real-world problems with uncertainty and dynamic 
variations. A self-adaptive Ant Colony Optimization (DEACO) is proposed, which improves the 
uncertain convergence time and random decisions through unique strategies. Experimental results 
demonstrate that DEACO outperforms traditional ACO in terms of convergence speed and search 
accuracy [22]. Li et al., [23] introduced an effective method for planning trajectories of multiple UAVs 
in a static environment using the improved MACO algorithm, demonstrating success in optimal 
solutions, collision avoidance, and smooth trajectory planning. Yang et al., [24] presents an effective 
Leader-Follower Ant Colony Optimization (LF-ACO) algorithm for collaborative multi-robot path 
planning. It introduces a new heuristic function, reconstructs the leader-follower structure and 
optimizes the path, successfully addressing path planning and formation problems in simulations and 
experiments conducted in MATLAB and ROS. Lin et al., [25] proposed a two-layer path planning 
method that utilizes an optimized artificial potential field and an improved dynamic window 
approach at the global and local layers, enabling a robot to navigate in a multi-obstacle environment. 
Through particle swarm optimization and fuzzy control, this method obtains a better global path and 
quickly responds to moving obstacles at the local level, effectively planning paths in both static and 
dynamic scenarios. 
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2.3 Hybrid Algorithms 
 
Hybrid algorithm path planning refers to the integration of different path planning algorithms to 

fully leverage their respective strengths in addressing complex path planning problems. This 
approach typically enhances the performance and robustness of path planning, making it suitable for 
diverse environments and tasks. Chen et al., [26] proposed an improved Unmanned Surface Vehicle 
(USV) path planning algorithm that integrates ant colony optimization and artificial potential field 
methods. Through simulations and field experiments, the effectiveness of this algorithm in complex 
environments has been validated. This algorithm enhances path planning efficiency and improves 
the navigation safety of USVs. He et al., [27] presented a hybrid algorithm to tackle the problem of 
path planning for multiple UAVs in a three-dimensional environment, which integrates the 
timestamp segmentation model, enhanced particle swarm optimization, and modified symbiotic 
organism search methods. The experimental results exhibit remarkable advancements in accuracy, 
convergence speed, stability, and robustness compared to five other algorithms, thoroughly 
validating its efficacy. Previous studies focus on optimizing traditional path planning algorithms like 
Dijkstra, A*, bio-inspired and hybrid algorithms, improving efficiency and smoothness. In contrast, 
the proposed algorithm introduces a probabilistic prediction mechanism within the ACO framework. 
This mechanism enhances efficiency, prevents local optima and dead-ends, and increases the success 
rate of path planning. It also improves adaptability in complex environments, offering more reliable 
and feasible paths compared to traditional methods. 

The main contributions of this paper can be summarized as follows: 
 

i. Firstly, an advanced ACO algorithm is presented for discovering viable paths within a discrete 
grid environment, connecting the starting and destination locations. The proposed ACO 
integrates a probabilistic prediction mechanism for a more efficient node selection, merging 
ACO's inherent heuristic factors to offer directional intelligence and substantially enhance the 
probability of the ant colony planning feasible initial paths.  

ii. Secondly, in the improved ACO algorithm, the pheromone and heuristic factors of this 
algorithm are integrated into the newly proposed probability prediction mechanism, allowing 
for more efficient path planning.  

iii. Thirdly, a path reconnection procedure is utilized to acquire paths characterized by favorable 
length and smoothness. 

 
3. Proposed Path Planning Method 

 
In this section, we propose a heuristic algorithm to address the limitations of the traditional ACO 

algorithm, particularly its tendency to get trapped in local optima and its inability to avoid dead-ends, 
especially when encountering C-shaped obstacles. Our novel algorithm utilizes an enhanced ACO 
framework to determine the optimal path in a complex environment. We introduce three key 
mechanisms in our heuristic algorithm, starting with a mechanism to adjust the probability of 
selecting the next step. Additionally, we implement an improved heuristic function to enable forward 
planning and prevent the algorithm from getting stuck in deadlock situations. These improvements 
result in a new variant of the algorithm, called Enhanced Ant Colony Optimization (EACO), which 
incorporates the proposed mechanisms. Figure 1 illustrates the flowchart of the proposed EACO for 
finding optimal paths in a complex environment. 
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Fig. 1. The proposed EACO flowchart for path  
planning in a complex environment 

 
3.1 Model and Mathematical 

 
The proposed algorithm gains from the environmental modelling approach. Therefore, all 

simulation and comparison work of this paper's proposed algorithm was carried out on a grid-based 
map. Initially, the ACO algorithm allocated a relevant heuristic value to all environment nodes. In 
classical ACO, each ant may select one of eight potential nodes as its next node, provided there are 
no obstacles nearby, when examining the current node. Figure 2 depicts this scenario, with N 
representing the current node and N1, N2, N3, N4, N5, N6, N7 and N8 representing the eight possible 
next nodes. The probability of each node being selected is determined by a combination of 
pheromone and heuristic values. The enhanced ACO algorithm generates feasible paths between the 
starting point and destination. The improved ACO creates this path. Then, each path's coordinates 
transform into a solution. Figure 3 displays the initial feasible path in green. To calculate the distance 
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between two cells, it is crucial to acquire the x-y coordinates of the center point of a cell. This can be 
achieved by using Eq. (1) based on the cell number. 

 

{
𝑥 = 𝑐𝑒𝑖𝑙 (

𝑁

𝑆𝑖𝑧𝑒𝑟𝑜𝑤
)

𝑦 = 𝑚𝑜𝑑(𝑁, 𝑆𝑖𝑧𝑒𝑐𝑜𝑙)
                                                                                                                                      (1)            

 
Where, 𝑁 is the number of cells, 𝑐𝑒𝑖𝑙 and 𝑚𝑜𝑑 are the functions to calculate the row and col. 𝑆𝑖̇𝑧𝑒𝑟𝑜𝑤 
and 𝑆𝑖̇𝑧𝑒𝑐𝑜𝑙 are the row and col of model. In the improved ACO algorithm, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 value is defined 
through Eq. (2). 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

∑ √(𝑥𝑖+1−𝑥𝑖)2+(𝑦𝑖+1−𝑦𝑖)2
𝑁−1

𝑖=1

+
1

∑ arccos
𝑐𝑖+𝑏𝑖−𝑎𝑖

√𝑏𝑖𝑐𝑖
2

𝑁−2

𝑖=1

                                                                  (2) 

 
Where, 𝑥𝑖  and 𝑦𝑖 are node 𝑖 coordinate, 𝑎𝑖 , 𝑏𝑖 ,  𝑐𝑖 are the sides of three nodes. 𝑎𝑖 , 𝑏𝑖 ,  𝑐𝑖 can be 
defined by Euclidean distance function: 

 

𝑑𝑖𝑠 tan 𝑐𝑒 = √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2                                                                                                (3)                                     

 

 
Fig. 2. Eight potential nodes in ACO algorithm 
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Fig. 3. 15*15 grid environment and initial path 

 
3.2 Original ACO Model 

 
In traditional ACO, ants release pheromones as they forage for food, and other ants are able to 

detect these pheromones. Over time, these pheromones gradually evaporate, leaving a higher 
concentration of pheromones on shorter paths. As a result, effective selection of the optimal path is 
achieved. To implement this algorithm: (a) First, the parameters for the ACO must be initialised, 
including the maximum number of iterations (𝐼𝑡𝑒𝑟𝑚𝑎𝑥), the population size (𝑝𝑜𝑝), the heuristic factor 
(𝛽), the pheromone factor (𝑎) and the pheromone evaporation rate (ρ), among others. (b) Next, the 
roulette wheel method is used to determine the next node in the environmental model. (c) Finally, 
once each ant has established a path from the starting point to the destination, the pheromone levels 
at each node are adjusted according to the fitness of the path. 

 
3.3 Improved ACO Mechanisms 

 
In the enhanced ACO, one mechanism is proposed to improve ACO. Firstly, a novel heuristic 

mechanism is proposed to increase the probability of finding a path in complex environment. ACO 
algorithm builds on the basis of the original ACO and focuses on the accuracy of finding viable paths. 
In addition to levels and fitness value, the enhanced ACO algorithm introduces a dynamic selection 
mechanism, which takes into effect the number of choices available at each individual decision point. 
Dynamic selection probabilities can be defined by Eq. (4). 

 

𝑝𝑖𝑗 =
[𝜏(𝑖,𝑗)]𝛼∗[𝜂(𝑖,𝑗)]𝛽

∑ [𝜏(𝑟,𝑐)]𝛼∗[𝜂(𝑟,𝑐)]𝛽
𝑟,𝑐∈𝑠

 ∗
𝑁𝑖𝑗,𝑝𝑟𝑒

∑ 𝑁𝑟𝑐,𝑝𝑟𝑒
𝑟,𝑐∈𝑠

                                                                                                   (4) 

 
Where, 𝑁𝑖𝑗,𝑝𝑟𝑒 represents the number of nodes, 𝜏(𝑖, 𝑗) represents the pheromone value, 𝜂(𝑖, 𝑗) is the 

heuristic information. Secondly, the path planning approach has been improved through the 
incorporation of advanced prediction techniques inspired by Model Predictive Control. This involves 
using predictive calculations to determine the probability of mobility for the next node, and improved 
heuristic factors for selecting nodes. We use normalization principles to distribute the likelihood of 
selecting each node, as demonstrated in Eq. (5) and (6). 
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{
𝑝𝑖𝑗 ∗

𝑁𝑖𝑗,𝑝𝑟𝑒

∑ 𝑁𝑟𝑐,𝑝𝑟𝑒
𝑟,𝑐∈𝑠

0    𝑁 ≤ 2                  

      𝑁 > 2            

                           

                                                                                                          (5) 

 

𝑝𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑝𝑢𝑝𝑑𝑎𝑡𝑒

𝛴𝑝𝑢𝑝𝑑𝑎𝑡𝑒
                                                                                                                                 (6) 

 
The improved ACO algorithm pseudo-code is presented in Algorithm 1. By using this method, the 

optimised algorithm significantly increases the proportion of successful path generation. 
Algorithm 1: Enhanced ACO For Feasible Initial Path 
 

 
 
4. Result 

 
In this section, we evaluated the effectiveness of the suggested EACO across three distinct 

environmental models, as illustrated in Figure 4. The three environmental models vary in terms of 
dimensions, contour, and blockage density. This assortment of environmental models affords an 
opportunity to investigate the proposed algorithm's success rate, path duration, and run-time. Figure 
5 presents the dimensionless path lengths and runtimes. As anticipated, Figure 5 indicates that the 
parameter set (pop=50, Iter=50) yields the shortest paths, whereas the parameter set (pop=5, Iter=5) 
results in the longest paths. Concurrently, the parameter set (pop=5, Iter=5) consistently manifests 
the fastest runtimes. In addition to the parameters pop and Iter, we also conducted a thorough 
parameter tuning process using the single-variable method to adjust each parameter for optimal 
performance. This included fine-tuning the key ACO parameters, such as 𝑎 (the importance of 
pheromone), β (the importance of the heuristic factor), and ρ (pheromone evaporation coefficient). 
The final optimal parameter settings for these parameters were found to be 𝑎 = 6, β = 2, and ρ = 0.1. 
These values were consistently used throughout the experiments and contributed to the robustness 
and efficiency of the EACO algorithm. 
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Fig. 4. Three different environment models 

 

 
Fig. 5. Path length and run-time for 20 executions 

 
In order to compare the superiority of the proposed EACO algorithm, the path planning lengths, 

runtime, and success rates of A*, ACO, and EACO algorithms were compared in three different 
environments. The comparison results are shown in Table 1. The data in Table 1 are the average 
values obtained by running each algorithm with different parameters 20 times in each environment. 
From the table, it can be observed that EACO is able to plan the shortest path in all three different 
environments, and it also has the fastest runtime.   

 
Table 1 
Comparison of path length, run-time and success rate 

Model Algorithm Path Length Run-time Success Rate 

Map1 A* 15.0710678 1.373417 100% 

 ACO 15.3781747 0.045339 100% 

 EACO 14.9040531 0.035628 100% 

Map2 A* 22.1421356 3.329968 100% 

 ACO 24.5906637 0.24391 100% 

 EACO 22.1448604 0.156305 100% 

Map3 A* 34.4852814 24.39297 100% 

 ACO 36.847518 0.29791 92% 

 EACO 32.5417043 0.183545 100% 
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Fig. 6. Comparison of different algorithm optimal paths 

 
This indicates that the EACO algorithm is more stable and computationally efficient compared to 

the original ACO algorithm. Figure 6 displays the optimal paths of different algorithms in three 
different environments. 

 
5. Conclusions 

 
This paper presents the EACO algorithm, a new approach for robot path planning in complex 

environments. The algorithm can find optimal or near-optimal paths in any complex environment. To 
start with, we introduce an advanced ACO algorithm to explore feasible paths in a grid-based 
environment that connects the start and end points. To increase the effectiveness of node selection 
in the ACO algorithm, we integrate a probabilistic prediction mechanism that combines ACO's 
heuristic factors. This improves the likelihood of planning feasible initial paths for the ant colony. The 
improved ACO algorithm also incorporates pheromone and heuristic factors into the newly proposed 
probability prediction mechanism, thus enhancing path planning efficiency. Additionally, a method 
of path reconnection is utilised to obtain paths characterised by advantageous length and 
smoothness. 

Path length and planning time are the chosen objectives to assess the quality of the obtained 
paths. A composite objective function enables adjustments of the fitness function to achieve paths 
that meet the desired criteria for path length and smoothness. Comparative research using A* and 
ACO demonstrates that the EACO algorithm exhibits superior performance concerning path length, 
runtime, and success rate. Notably, it achieves shorter computation times while maintaining similar 
path lengths. The findings indicate that the EACO algorithm can rapidly plan optimal paths and ensure 
optimal or almost-optimal smoothness. It is recommended that future work involves extending the 
EACO algorithm to scenarios with moving obstacles and incorporating multi-robot path planning. 
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