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ARTICLE INFO ABSTRACT 

 The location model (LM) is a well-known statistical method for mixed variable 
classification problems. This method is commonly used to differentiate between the 
two observed groups based on classical estimation techniques. However, outliers can 
substantially distort classical parameter estimation, leading to inaccurate classification 
results, particularly a high misclassification error rate. To overcome this limitation, this 
paper proposes a robust LM called RLMmed, which employs the median as a robust 
location estimator. This median estimator is paired with a robust covariance matrix 
derived from the product of the median absolute deviation (MADn) and Spearman rank 
correlation. Simulation analyses were conducted under two sample sizes (n = 200 and n 
= 400) and three binary variable conditions (b = 2, b = 3, b = 4) with a fixed number of 
continuous variables (c = 15). For comparative purposes, simulated datasets were tested 
with two mean group separations (0.5 and 1.0) and five different levels of contamination 
(0%, 10%, 20%, 30% and 40%). Thus, a total of 60 simulation datasets were used to 
assess the performance of the proposed RLMmed. The results were then validated 
against the classical LM using real data (heart data). Both the simulation results and 
actual data consistently indicated that the RLMmed outperformed the classical LM. It 
achieved lower misclassification error rates across most contamination levels under all 
tested conditions. Moreover, RLMmed revealed the best achievement among the 
contaminated data inspected with a sample size of 400 and two measured binary 
variables. In conclusion, the developed RLMmed model is capable of addressing mixed 
variable classification problems in the presence of outliers, which is important before 
undertaking further classification analysis. 
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1. Introduction 
 

The classification of mixed variable types has garnered considerable attention in recent research 
due to its extensive applications across multiple disciplines. A variable that includes both categorical 
and continuous types can present challenges for statistical analysis [1–3]. It is important to develop 
statistical inference methods for mixed variables, as these approaches are being applied in various 
areas, such as medicine [4–6], engineering [7,8], and agriculture [9,10]. A well-known method for 
mixed variable classification is the location model (LM), which has attracted considerable interest for 
its ability to simultaneously handle categorical and continuous variables [11–13]. The LM effectively 
manages these variable types without requiring pre-processing separation, relying instead on a single 
model [13,14]. For example, categorical variables need not be converted into continuous variables, 
thereby maintaining the natural information and relationships between them. This ensures that 
important patterns of the data are not lost or distorted.  

Significant advancements have been made in the development of the LM, focusing on key areas 
such as variable selection/extraction [15,16]addressing empty cells [17,18], mitigating over-
parameterisation [19,20], and improving covariance matrix stability [21,22]. These works have 
greatly enhanced and improved the methodology of the LM, and it is widely applied in real-world 
applications. Researchers have shown that the model can accurately classify objects, even when 
mixed variables are involved [23–26]. This strengthens the LM as a well-known method, which places 
it as a reliable and useful tool in statistical classification studies.  

Despite its advantages, the LM has limitations. The LM solely performs well under non-
contaminated data scenarios, i.e., free from outliers. This is due to the theory of the LM model itself, 
which typically relies on the classical mean and classical covariance matrix for parameter estimation. 
Research indicates that classical estimators, such as the mean, are sensitive to outliers, which can 
significantly affect the central tendency [14,24,27,28]. Under these circumstances, the sample mean 
may not accurately represent the centre of the distribution, and the covariance may not accurately 
reflect the variability of the data. Thus, these parameters will be underestimated or overestimated, 
leading to a high misclassification rate. As a result, the performance of the classification model is 
degraded, thus affecting the accuracy of classification [29]. This limitation highlighted the need for 
modifications of the LM by merging robust estimators to mitigate the effect of outliers while 
preserving the LM's ability to handle mixed variable classification effectively. This paper employs the 
robust LM, utilising median-based robust methods. It was applied to investigate various 
contamination levels, binary classifications, and sample sizes to analyse their impact on classification 
performance. The RLMmed is then compared to the classical LM to assess its effectiveness. The main 
objective of this study is to demonstrate the superiority of RLMmed over classical LM in situations 
involving the presence of outliers. To attain this goal, two specific objectives were delineated: (i) to 
estimate location parameters utilizing median values in conjunction with a robust covariance matrix, 
and (ii) to evaluate the performance of RLMmed compared to classical LM through simulations 
conducted under varying levels of data contamination and conditions. 
 
2. Methodology  

 
A simulated dataset was generated from a multivariate normal distribution to assess the 

performance of the proposed RLMmed. The data set was specifically designed to illustrate a two-
group classification problem, incorporating variations in the number of binary variables, levels of 
contamination, sample sizes, and two degrees of mean separation between the observed groups. 
The specific parameters used in the data generation process are detailed in Table 1. 
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 Table 1 
Parameters Setting for Data Simulation 

Data Setting 
(𝑐, 𝑏) 

Sample Size 	
  (𝑛!, 𝑛") 

Contamination 
Percentage (𝜀) 

𝑐 = 15, 𝑏 = 2 (100, 100) (0, 0.1, 0.2, 0.3, 0.4) 
𝑐 = 15, 𝑏 = 2 (200, 200) (0, 0.1, 0.2, 0.3, 0.4) 
𝑐 = 15, 𝑏 = 3 (200, 200) (0, 0.1, 0.2, 0.3, 0.4) 
𝑐 = 15, 𝑏 = 4 (200, 200) (0, 0.1, 0.2, 0.3, 0.4) 

 
Based on the simulation setting, 60 simulation data points were generated. The data are then 

divided into testing and training sets. A test set consists of an object k, where k = 1, 2, 3, …, n, which 
is sequentially omitted, while the remaining n–k objects are used as the training set. The training set 
is then utilised to estimate parameters, μ	and	∑,	before developing the RLMmed. 

Outliers in the training set were managed using the median as a location estimator and a robust 
covariance matrix derived from a median-based approach. This process begins by sorting the 
continuous data in ascending order to calculate the median for each cell, denoted as yr. Bickel [30] 
emphasised that the median is a good alternative to the classical mean. The median is a highly robust 
estimator because it is not affected by outliers up to 50% of the entire data. Along with the highest 
BP of 50%, the median is straightforward to calculate and is frequently preferred by many researchers 
[31,32][33,34]. The equation for calculating the median is illustrated in Eq. (1). 

Median =   (1) 

Next, robust covariance matrices is derived from the multiplication of the MADn and Spearman rank 
correlation as depicted in Eq. (2).  

  (2) 

The MADn is calculated using Eq. (3) for each group as a robust scale measure. The constant h	is set 
to 1.4826 to ensure the estimator accurately and unbiasedly estimates the standard deviation under 
a normal distribution [25,28). 

  (3) 

In multivariate analysis, the MADn estimator is an effective alternative to the sample standard 
deviation (σ) in computing the robust covariance matrix in the presence of outliers [35]. Croux & 
Dehon [36] claimed that using a robust covariance matrix in classification analysis can reduce the 
misclassification rate for contaminated data at both low and high levels. In the following step, 
Spearman’s rank correlation is calculated based on Eq. (4) to determine the relationship between the 
variables.  

  (4) 

Finally, the robust covariance matrix is derived from the multiplication of the MADn and Spearman 
rank correlation, as depicted in Equation 6. To tackle the sensitivity challenges commonly linked with 
classical estimators, it is advisable to use pairwise robust scale and location estimators [37–39]. 
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  (5) 

The proposed RLMmed fused the median as a location estimator and the robust covariance matrix 
as a scale estimator, thus producing a new model in LM studies. In constructing RLMmed, the mean 
estimator is substituted with the median estimator, and a robust covariance matrix replaces the 
classical covariance. This results in a novel and innovative approach. The classification rule of 
RLMmed is expressed in Eq. (6). 

  (6) 

From Equation (6), the predicted group of the extracted objects, k, is obtained. If the prediction is 
accurate, the error (ε) is assigned a value of 0; otherwise, it is assigned a value of 1. The total error is 
computed based on the leave-one-out error rate through Eq. (7). 

  (7) 

The new model’s performance (Eq. (7)) is evaluated using the misclassification rate. The model with 
the lowest error rate is deemed the most optimal.  
 
3. Results 
 

This section discusses the result of the misclassification rate for classical LM and RLMmed to 
measure the performance of both models. Two different mean group separations were used. 
Following (Everitt & Merette, 1990) μc = 0.5 and μc = 1.0 represent the separation between small and 
large groups in investigating the effectiveness of the newly constructed rule. 
 
3.1 Misclassification Rate under Normal Distribution 
 

Based on Table 1, the misclassification rate is used as a performance measure to compare the 
classical LM and RLMmed models according to the sample size (n) and the number of binary variables 
(b). In a small sample size (100, 100) with b = 2, classical LM recorded a lower misclassification rate 
of 23.0% compared to RLMmed, which recorded 35.5%, indicating that classical LM is more efficient 
in handling small data sizes. When the sample size increases to (200, 200) with the same number of 
binary variables, the misclassification rate for classical LM was 21.5%, while RLMmed still shows a 
higher error of 25.3%. This demonstrated that the classical LM still outperforms RLMmed. As the 
number of binary variables increases to 3 and 4 with the same sample size, both models show a rise 
in misclassification rate, but the classical LM maintains a lower rate. At b = 3, the misclassification 
rate of classical LM is 26.0%. In comparison, RLMmed has a misclassification rate of 28.5%. At b = 4, 
the misclassification rate of classical LM rises slightly to 26.3%, whereas RLMmed exhibits a notable 
increase to 35.3%. Overall, classical LM exhibits better and more consistent performance under 
various conditions, particularly when the sample size is larger or the binary size is smaller. This 
suggests that classical LM is more stable and efficient in managing mixed variable challenges 
compared to RLMmed, which shows improved performance when either the data dimension is 
smaller or the sample size is larger. 
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Table 1 
Misclassification Rates for Datasets under Normal Distribution (small group separation = 0.5) 

    Sample Size 
(𝑛!, 	𝑛") 

Binary Variables 
𝑏 

Classical LM RLMmed 

(100, 100) 2 0.230 0.355 
(200, 200) 2 0.215 0.253 
(200, 200) 3 0.260 0.285 
(200, 200) 4 0.263 0.353 

 
Similar findings have been revealed in Table 2, where the misclassification rates were used to 

evaluate the performance of classical LM and RLMmed models under normal distribution with a large 
group separation. These results demonstrated that the classical LM consistently recorded a much 
lower misclassification rate than RLMmed, thus indicating better performance. In conditions of 
sample size (100, 100) and with the binary variables 2, classical LM recorded a misclassification rate 
of only 6%, while RLMmed recorded a much higher rate of 19%. This significant difference indicates 
that classical LM is more efficient in classifying for these conditions. With an increased sample size of 
(200, 200) and binary variables remaining constant at b = 2, the misclassification rate for classical LM 
decreased to 3.8%, whereas RLMmed recorded a rate of 11.5%. Increasing the sample size helps 
reduce the misclassification rate for both models; however, the classical LM still performs 
significantly better. 

Once the number of binary variables increases to b = 3, the misclassification rate of classical LM 
only slightly increases to 4.5%, while the misclassification rate of RLMmed increases to 13.5%. This 
indicates that classical LM is more stable and can handle higher data dimensions well, compared to 
the RLMmed, which shows a more significant increase in misclassification rate. When b equals 4, with 
a sample size of (200, 200), the misclassification rate for classical LM rises to 6%, while RLMmed 
shows an increase in misclassification rate to 25.3%. These results affirmed that RLMmed becomes 
less stable as the number of binary variables increases, even with a larger sample size. At the same 
time, classical LM continues to perform better and consistently. 

In general, the results in Tables 1 and 2 show that classical LM reduces misclassification rates more 
effectively than RLMmed, particularly when the separation between groups is larger. Increasing the 
sample size improves the performance of both models. The classical LM demonstrates a consistently 
lower misclassification rate in all cases, regardless of sample size or the number of binary variables. 
On the other hand, RLMmed expresses less stable performance, especially when the number of 
binary variables increases, which leads to a significant increase in the misclassification rate. 
Therefore, classical LM is more suitable for classification analysis in all tested conditions under 
normal circumstances due to its efficiency and stability in handling data, regardless of small or large 
group separations, compared to RLMmed. 
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Table 2 
Misclassification Rate for Normal Distribution (large group separation = 1.0) 

Sample Size 
(𝑛!, 	𝑛") 

Binary Variables 
𝑏 

Classical LM RLMmed 

(100, 100) 2 0.06 0.19 
(200, 200) 2 0.03 0.115 
(200, 200) 3 0.04 0.135 
(200, 200) 4 0.06 0.253 

 

3.2 Misclassification Rate under Contamination Condition (small group separation) 
Table 3 displays the misclassification rates in contaminated scenarios, which were analysed based on 
sample size (n), number of binary variables (b), and the level of contamination (ε). The results showed 
a significant difference in performance between the classical LM and RLMmed models, with lower 
misclassification rates indicating better model performance. 

In a non-contaminated scenario (ε = 0), classical LM recorded a lower misclassification rate than 
the RLMmed for all conditions. For example, for sample sizes (100, 100) with b = 2, classical LM 
recorded a misclassification rate of 0.23, while RLMmed recorded 0.35. However, as contamination 
increased from ε = 0 to ε = 0.4, the performance of classical LM decreased, resulting in an increment 
in the misclassification rate. For instance, with ε = 0.1, the misclassification rate of classical LM 
increased to 0.53, whereas RLMmed was 0.45, showing that RLMmed had a higher resistance to 
contamination. 

For larger sample sizes of 200 in both groups with b = 2, the classical LM initially exhibits a lower 
misclassification rate without contamination (ε = 0), which is 0.21 compared to 0.25 for RLMmed. 
However, as the contamination level increases, RLMmed shows a more stable misclassification rate 
than the classical LM. For example, at ε = 0.3, the misclassification rate of classical LM is 0.50, while 
RLMmed is only 0.44, and the misclassification rate of RLMmed is even steadier when ε = 0.4. 

Similar patterns are observed once the number of binary variables increases to 3 and 4. In the 
case of uncontaminated (ε = 0), classical LM is still superior. For example, for b = 4, the 
misclassification rate of the classical LM is 0.26, while RLMmed is 0.35. However, RLMmed 
demonstrates a more stable and robust performance as the contamination percentage increases. At 
ε = 0.4  and b = 4, the misclassification rate of the classical LM remains at 0.50, whereas RLMmed 
successfully reduces the rate to 0.45, reflecting its ability to cope with contaminated data. Among all 
conditions with small group separation, RLMmed achieves the best performance with a sample size 
of 400, two binary variables, and a level of contamination of 0.1. In summary, classical linear models 
are more appropriate for application in uncontaminated environments due to their consistently 
lower misclassification rates across varying sample sizes and quantities of binary variables. However, 
RLMmed shows a clear advantage when contamination occurs due to its stability in handling 
contaminated data. Therefore, the choice of model depends on the level of contamination in the 
data, with classical LM being suitable for clean data and RLM being more effective for data containing 
contamination. 
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Table 3 
Misclassification Rate in Contaminated Scenarios (small group separation = 0.5) 

 
3.3 Misclassification Rate under Contamination Condition (large group separation) 
 

The results for large group separation, as presented in Table 4, indicate that the misclassification 
rates for all conditions are lower compared to a small group separation for both the classical LM and 
RLMmed models. For sample sizes of 400 and two binary variables with a 0.3 level of contamination, 
RLMmed recorded a lower misclassification rate of 0.37 compared to 0.42 of the classical LM. The 
classical LM encounters difficulties with larger sample sizes, whereas RLMmed consistently 
demonstrates superior performance. For instance, for two binary variables with a sample size of 400 
and a level of contamination of 0.1, RLMmed achieved a lower misclassification rate of 0.23 
compared to 0.27 of the classical LM. Similarly, at a level of contamination of 0.4, the performance 
of RLMmed continued to outperform the classical LM. 

As the number of binary variables increased to three and four for the same sample sizes, RLMmed 
maintained superior performance, consistently showing lower misclassification rates. For example, 
at a high contamination (ε = 0.4) with four binary variables, RLMmed achieved a misclassification rate 
of 0.42 compared to 0.47 for the classical LM. Notably, across all conditions, the lowest 
misclassification rate (0.23) was recorded by RLMmed with a sample size of 400, two binary variables, 
and at 0.1 contamination. RLMmed remained superior in most scenarios, particularly in dealing with 
a higher percentage of outliers in the datasets.  

Overall, these findings highlighted the robustness of RLMmed in handling outliers across all data 
contamination conditions, especially for a larger sample size (n = 400) and a binary number (b = 2). 
While the classical LM sometimes outperformed RLMmed with a large sample size (n = 400) and at 
binary, b = 3, RLMmed generally shows better performance in most scenarios tested. 

 
 
 
 

Sample Binary Classification  Level of contamination (𝜀) 
Size 
𝑛 

Variables  
𝑏 

 Methods 0 0.1 0.2 0.3 0.4 

200 
(100, 100) 

2 Classical LM 0.23 0.53 0.56 0.52 0.54 
RLMmed 0.35 0.45 0.53 0.51 0.48 

 
400 

(200, 200) 
2 Classical LM 0.21 0.42 0.43 0.50 0.52 

RLMmed 0.25 0.39 0.51 0.44 0.45 
 

400 
(200, 200) 

3 Classical LM 0.26 0.44 0.53 0.44 0.53 
RLMmed 0.28 0.40 0.54 0.48 0.50 

 
400 

(200, 200) 
4 Classical LM 0.26 0.50 0.50 0.50 0.50 

RLMmed 0.35 0.46 0.48 0.51 0.45 
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Table 4 
Misclassification Rate in Contaminated Scenarios (large group separation = 1.0) 

 
3.4 Overall Comparison of Performance between RLMmed and Classical LM 
3.4.1 Sample Sizes and Number of Binary Variables  
On average, the performance of RLMmed for small group separation demonstrates superior results 
compared to classical LM across all sample sizes and number of binary variables. However, RLMmed 
performs better at a sample size of 400 for large group separation with b = 2 and b = 4. Table 5 
indicates that RLMmed produces a lower misclassification rate than the classical LM. For a small 
group separation in which the distance between the groups is less distinct, the RLMmed can handle 
contamination data for all observed samples and the measured binary. For instance, with a sample 
size of 400 and the number of binary variables of two, RLMmed achieves a misclassification rate of 
0.45, lower than the classical LM at 0.50. Similarly, RLMmed consistently indicates lower 
misclassification rates for a large group separation. However, as the number of binary variables 
increased, the data became complex since the number of multinomial cells increased. Thus, the 
difference in misclassification rates between the two models became smaller. The capability of 
RLMmed to achieve competitive performance in both small and large group classifications 
underscores its robustness and adaptability in addressing classification challenges.   
3.4.2 Sample Sizes and Number of Binary Variables  

RLMmed, as indicated in Table 6, demonstrated a significantly lower average misclassification rate 
across all contamination levels for small and large group separations. Nevertheless, for larger group 
separation, as the level of contamination increases, the performance gap between RLMmed and 
classical LM becomes smaller, with misclassification rates getting closer. For example, at ε = 0.3 both 
models have a misclassification rate of 0.44, showing that larger group separation helps reduce the 
effect of contamination on classification accuracy. RLMmed is more robust in handling 
contamination, even in smaller group separation. It consistently performs well, making it a reliable 
choice to perform classification tasks in situations with data that contains many outliers.  
 
 
 
 

Sample Binary Classification  Level of contamination (𝜀) 
Size 
𝑛 

Variables  
𝑏 

 Methods 0 0.1 0.2 0.3 0.4 

200 
(100, 100) 

2 Classical LM 0.06 0.39 0.44 0.47 0.49 
RLMmed 0.19 0.35 0.49 0.52 0.48 

 
400 

(200, 200) 
2 Classical LM 0.03 0.27 0.43 0.42 0.44 

RLMmed 0.11 0.23 0.43 0.37 0.41 
 

400 
(200, 200) 

3 Classical LM 0.04 0.35 0.46 0.40 0.45 
RLMmed 0.13 0.31 0.48 0.43 0.48 

 
400 

(200, 200) 
4 Classical LM 0.06 0.42 0.46 0.48 0.47 

RLMmed 0.25 0.41 0.43 0.47 0.42 
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Table 5 
Average Misclassification Rates Across Sample Sizes and Number of Binary Variables based on Group 
Separation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 6 
Average Misclassification Rate Across Contamination Percentages 

Classification 
Method 

Mean Group Separation     Contamination Percentages 
  0.1            0.2           0.3        0.4 

Classical LM 0.5 0.48 0.53 0.5 0.53 
RLMmed  0.43 0.51 0.48 0.47 

Classical LM  0.36 0.45 0.44 0.46 
RLMmed 1 0.33 0.45 0.44 0.45 

 
RLMmed generally demonstrates superior performance at both levels of mean group separations 
(0.5 and 1.0). This is attributed to its capability to maintain high accuracy even in challenging 
scenarios with smaller group separations. On the other hand, classical LM shows weaknesses in 
handling data with smaller group separations and only marginal improvements when the group 
separation is larger. This indicates that RLMmed is a more suitable approach, particularly when the 
data exhibits less distinct group separation or faces classification difficulties. 
 
3.5 Real Dataset 
The proposed location model is examined on a real dataset, heart data. The heart data contains 303 
patients with heart disease who were studied at the Cleveland Clinic and taken from the UCI 
repository (Janosi et al., 1988).  The data consists of 139 patients with heart disease (π1); others are 
free from the disease (π2). The data contains five continuous variables and two binary variables. Table 
7 displays the performance of classical LM and RLMmed. The results show that RLMmed performs 
better than classical LM.  
 
 
 
 
 

Sample Binary Classification Average misclassification rate 
Size 
𝑛 

Variables  
𝑏 

 Methods   

200 
(100, 100) 

2 Classical LM 0.54 0.45 
RLMmed 0.49 0.46 

400 
(200, 200) 

2 Classical LM 0.5 0.39 
RLMmed 0.45 0.36 

400 
(200, 200) 

3 Classical LM 0.49 0.42 
RLMmed 0.48 0.42 

400 
(200, 200) 

4 Classical LM 0.50 0.46 
RLMmed 0.47 0.43 

μ 0.5c = μ 1c =
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Table 7 
Misclassification Rate Across Contamination Percentages 

Classification 
Method 

Misclassification Rate 

Classical LM 0.52 
RLMmed 0.45 

 

4 Discussions 
The results reveal distinct advantages and limitations for each model in contaminated and non-
contaminated settings, highlighting the importance of a robust estimator based on a median in the 
LM in scenarios with data contamination. Classical LM performs exceptionally well in non-
contaminated data or at low contamination levels, reflecting its suitability for classifying mixed 
variables in normal distribution. However, its performance is significantly affected as contamination 
levels increase, leading to higher misclassification rates, especially in scenarios with smaller group 
separation. This outcome is anticipated because the classical language model is sensitive to outliers, 
attributable to its dependence on mean-based estimations. 

On the other hand, RLMmed demonstrates a more resilient performance as contamination 
increases. This robustness can be attributed to its median-based approach, which mitigates the 
influence of outliers. For instance, RLMmed demonstrated competitive misclassification rates at 
moderate contamination levels, particularly when the separation between groups is less 
pronounced. This stability indicates that RLMmed may be more suitable in applications when data 
contamination is anticipated and group separation is small. 

The results also indicate that the mode’s performance depends on the criteria of the datasets, 
specifically the number of binary variables measured, the sample sizes observed, and the group 
separation. However, RLMmed maintains lower misclassification rates in contaminated data, while 
the classical LM produces great results in non-contaminated scenarios, i.e., data with a normal 
distribution. 
 
5 Conclusions 
Classical LM is the best choice for clean data with clear group separation, while RLMmed is more 
suitable for use in contaminated data or even with smaller group separation. Overall, RLMmed offers 
better robustness against data contamination, making it a more flexible and effective solution to 
address the challenges of outliers in mixed variables classification. 
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