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The issue of distracted driving has become a significant concern, leading to 
numerous fatalities and injuries. There is a pressing need to develop innovative 
approaches to identify and mitigate this problem. This paper proposes a lightweight 
deep learning model that uses MobileNetV2 as the base and includes attention 
mechanisms like the Squeeze and Excite (SE) module to identify distracted driver 
actions. The proposed model underwent rigorous training and testing using the 
American University in Cairo (AUC) distracted driver dataset, which includes ten 
distraction categories. The model was optimized through hyperparameter tuning, 
data augmentation, and class weighting. To validate the model’s effectiveness, a 
confusion matrix, frames per second (FPS), accuracy, precision, recall, and F1 score 
were used as evaluation metrics. The proposed model achieved 93% accuracy with 
a batch size of 32, learning rate of 0.0001, and 21 epochs. Furthermore, the 
proposed model was compared to the MobileNetV2 and other existing architectures 
regarding accuracy and parameters. The proposed method outperformed 
unmodified deep learning models and maintained a balance between accuracy and 
parameter utilization, while some other modified models performed slightly better. 
The proposed method shows promising potential for accurately detecting distracted 
drivers with efficiency.  
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1. Introduction 
 

Every year, approximately 30 to 50 million people suffer injuries, and about 1.3 million people die 
due to traffic accidents, according to the World Health Organization's statistics [1]. While many 
factors contribute to these numbers, distracted driving is the primary one. The National Highway 
Traffic Safety Administration (NHTSA) defines distracted driving as any activity that takes the driver's 
attention away from driving, such as using electronic devices, eating or drinking, talking with 
passengers, adjusting in-car technology, or engaging in other activities [2]. 

Driver distraction can occur in three different ways: visual, manual, and cognitive. Visual 
distractions happen when drivers take their eyes off the road, while manual distractions occur when 
they remove their hands from the steering wheel. Cognitive distractions occur when a driver's mind 
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is not fully focused on driving [3]. Drivers should be cautious of visual distractions since they can 
cause drivers to miss important visual cues like traffic signals, pedestrians, or other vehicles.  

Manual distractions, such as eating or changing the radio station, can make a driver lose control 
of their vehicle. Drivers face more distractions with the widespread use of smartphones and 
navigation systems. Some car manufacturers have added advanced infotainment systems, control 
interfaces, and display systems to their cars, which can be particularly distracting while driving. 
Cognitive distractions occur when a driver is not mentally focused on driving due to reasons like 
stress, fatigue, daydreaming, personal problems, or engaging in an intense conversation. This type of 
distraction can be dangerous since it can cause drivers to miss seeing important things on the road 
or react slowly in an emergency situation. 

It's important to be aware of driver distractions, which have become a critical concern and 
contribute to numerous accidents, endangering road life. Traditional methods for identifying and 
mitigating distractions while driving have limitations. However, with the introduction of deep 
learning, new approaches have opened up to tackle this issue effectively. The development of 
wearable technology with integrated sensors has made it possible to monitor the driver's 
physiological state, including electroencephalogram and electrocardiogram. Compared to behavioral 
and visual approaches, this method is more reliable. However, these devices can cause discomfort 
and restrict movement, and they can also be susceptible to interference caused by bodily phenomena 
like direct contact with the skin [4]. 

Researchers have developed various methods for recognizing distracted driving behavior based 
on deep learning. However, the cost of computing has become a challenge for model edge-oriented 
migration, and most automobiles' onboard electronics have significantly less powerful 
microcontrollers than mobile phones. Therefore, this paper focuses on two main problems: the 
inability to deploy trained models from traditional networks on edge devices and the relatively lower 
accuracy of lightweight networks. The model must be compact, efficient, and have fast processing 
time due to the restricted processing power of the edge devices in the car. The MobileNetV2 
network, with a total of 3,500,000 parameters, is an optimal choice for this application. It is a 
lightweight network that is sufficiently robust to handle the American University in Cairo (AUC) 
Distracted Driver Dataset. 

The paper proposes a deep-learning lightweight model based on MobileNetV2 to detect 
distracted driving actions. The proposed model aims to optimize the performance by adding a 
Squeeze and Excitation (SE) block and modifying the layers of MobileNetV2, becoming the name of 
MobileNetV2SE fusion. The study compares the accuracy and processing time of the proposed 
method with other models. The proposed method utilizes MobileNetV2, a lightweight architecture 
designed for mobile and embedded devices, to identify patterns of distracted driving and caution 
drivers to refocus on the road with satisfactory accuracy and processing time. The study uses the 
America University in Cairo (AUC) dataset to train the model, which contains 31 drivers of various 
genders and races from seven different nations, giving it a significant advantage over other datasets. 
In summary, the paper's contribution includes (i) proposing a new model based on MobileNetV2 to 
detect distracted driving, (ii) demonstrating its effectiveness by comparing it with other models, and 
(iii) providing a better way to detect risky driving behaviors, thus contributing to safer roads. 

The rest of this paper is organized as follows: Section 2 discusses the related work, while Section 
3 explains the steps taken to improve the existing MobileNetV2 network. The results are illustrated 
in Section 4, and the conclusion is presented in Section 5.  
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2. Related Work 
 
There are various methods to identify signs of driver distraction, with machine learning and deep 

learning being two popular approaches. These subfields of artificial intelligence teach algorithms how 
to learn from data and make predictions without explicit programming. Machine learning focuses on 
pattern recognition and decision-making, which is divided into three categories: supervised, 
unsupervised, and reinforcement learning. Deep learning, a subset of machine learning, mimics the 
human brain using artificial neural networks. It is particularly adept at learning hierarchical 
representations from complex, unstructured data such as images, text, and audio. Convolutional 
Neural Networks (CNNs) are commonly used for image recognition tasks. 

 
2.1 Machine learning approaches 

 
A developed thesis utilizes machine learning techniques such as linear support vector machines 

(SVM), softmax, naïve Bayes, decision trees, and a 2-layer neural network to effectively identify 
distracted driving behaviors from images of drivers inside their vehicles [5]. The study achieved an 
impressive 92.24% accuracy rate, demonstrating the exceptional capability of the model to detect 
distracted driving incidents accurately. In another paper, the authors propose an innovative method 
that uses fuzzy set theory to evaluate driver distraction and situational awareness while performing 
secondary tasks [5]. The proposed method utilizes a rule-based fuzzy logic system that considers 
various factors, such as lane keeping and speed limit adherence, and can accurately identify and 
quantify driver distraction levels as a percentage based on safe vehicle dynamic performance. The 
proposed method is more accurate than previous laboratory-based approaches due to the inclusion 
of additional input measures. Besides, a study conducted analyzed seven different machine learning 
models, including SVM, decision tree (DT), logistic regression (LR), random forest (RF), AdaBoost 
(ADB), gradient boosting (GB), and CNN to distinguish between drivers and passengers [6]. The study 
concludes that the CNN and GB models are highly effective in accurately distinguishing between the 
two. 

 
2.2 Deep learning approaches 
 

When researching driving distraction, the most commonly used technique is the CNN, explicitly 
designed for image processing and recognition. The method used in most studies to detect driver 
attention differs depending on the type of distraction, such as cognitive, manual, and visual 
distraction. Deep learning approaches in distracted driving can be divided into three categories: 
heavy CNN models, lightweight CNN models, and lightweight CNN models combined with other 
techniques. 

 
2.2.1 Heavy CNN models 
 

Researchers have developed different methods to identify driver distraction using deep learning 
technology. Ezzouhri et al., [7] employed two CNN-based classification models, Visual Geometry 
Group 19 (VGG-19) and Inception-V3, to identify drivers' distracted activities and the Cross Domain 
Complementary Learning (CDCL) architecture was used to segment critical body parts. This approach 
achieved an average accuracy of over 96% on one dataset and 95% on another. In [8], the authors 
used Deep Learning-based categorization with the Residual Network-50 (ResNet-50) network to 
identify distracted drivers gazing elsewhere using the StateFarm dataset. This method achieved an 
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accuracy of 94%. The output generated by this method distinguished between different types of 
distracted behaviour using red and green colours. In [9], ResNet-50's deep features were merged 
with the SVM classifier to create ReSVM. ReSVM employs the deep features of the last multilayer 
perceptron convolution layer, which are derived from input photos of various sizes and lighting 
conditions. The SVM layer is then given the computed mean of the feature map for classification. This 
approach achieved up to 95.5% accuracy on four different datasets. 

Besides, a unique hybrid method was introduced in [10] that uses stacked Bidirectional Long 
Short-Term Memory (BiLSTM) Networks and a pre-trained convolutional neural network (CNN) 
architecture, InceptionV3, to capture the spectral-spatial characteristics of images. This method 
achieved an average accuracy of 92.7% on the AUC dataset. In [11], the authors proposed a deep 
learning framework for detecting distracted drivers using a pre-trained model, EfficientNet. The 
model utilizes a technique for analyzing images and identifying regions of interest (ROI) related to 
body parts and objects involved in distracting activities. Specifically, it employs five variations of the 
Efficientdet model (D0-D4) for detection purposes. Lastly, the cognitive feature of distracted driver 
behavior caused by the driver's drowsiness was determined by detecting the sequential blinking of 
the eyes [12]. The first steps are the blink detection and feature extraction from the Real-life 
drowsiness (RLDD) dataset. They structured drowsiness detection as a regression problem. Then, 
they incorporated a Hierarchical Multiscale LSTM (HMLSTM) module into the model. The regression 
output was discretized to produce a categorization label for each video segment. The voting process 
was applied on top of the categorization outcomes for every video segment. However, the downside 
of this method is that the dataset was not collected under driving conditions, and it is challenging to 
observe blinking if the video is at low frame rates. 

Most of the models used in studies are highly accurate, with a 90% success rate. However, this 
accuracy comes at the cost of computational complexity, making them unsuitable for real-time 
implementation and embedded deployment. To ensure a timely and efficient deployment, it is 
essential to develop distraction detection models with fewer parameters while maintaining their 
effectiveness. 

 
2.2.2 Lightweight CNN models 
 

There are mainly two approaches to creating a lightweight CNN. The first method involves 
compressing the existing network, which can be highly effective. This technique involves resizing the 
convolution kernels, freezing the convolution layers, and fully connecting later. The second approach 
is to build a new network module. Currently, most of the research is focused on the convolution 
operation. 

Abouelnaga et al., [13] proposed a system to identify distracted driving postures using face and 
hand detection. They used two pre-trained neural networks, InceptionV3 and AlexNet, for feature 
extraction and classification. However, they found a more straightforward model using only AlexNet, 
which maintained high accuracy for real-time applications. In [14], an innovative method was 
developed to identify distracted driving behavior in real-time. This was done by using a Visual 
Geometry Group-16 (VGG-16) model to classify images. However, this model is computationally 
expensive due to the large number of parameters. The authors improved the model's performance 
using the Faster Region -Based CNN (Faster-RCNN), a region-based CNN architecture, and the Part 
Affinity Fields (PAFs) to estimate the driver's pose. This approach produced a high accuracy result 
(98.9% accuracy training data and 97.7% accuracy validation data) with fewer false positives. Another 
approach used a real-time detection system that warned the driver of their distracted behavior using 
GoogleNet [15]. The system initially used a variety of deep learning architectures, such as Residual 
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Neural Network (ResNet), VGG-16, AlexNet, and GoogleNet. After evaluating all four CNNs, 
GoogleNet was found to be the most effective at detecting distractions, with an accuracy of 89% and 
a frequency of 11 Hz. 

When collecting data for a real-time system that detects distracted driving, using only one camera 
sometimes may lead to false alarms. To improve accuracy, [16] installed a multi-angle camera 
surrounding the driver. The Deep Neural Networks (DNN) was used to identify driver behavior and 
warn early about potential risks via mobile phone usage. The system calculates the distance between 
the hand and mobile device regions and issues a warning based on proximity. The system achieved 
an accuracy of 95.7%. In [17], the authors developed a real-time distracted driver recognizer for 
driver warning purposes using a simple CNN that can run on low-computation devices. This network 
uses fundamental deep-learning layers such as convolution, average pooling, batch normalization 
(BN), and global average pooling. The final layer employs the Softmax function to identify ten 
different driver actions with an accuracy of 99.51%. Lastly, Lin et al., [18] developed a Lightweight 
Attention-based Network (LWANet) to achieve an optimum level between overall accuracy and 
computation cost. The proposed architecture uses an Inverted Residual Attention Module (IRAM) 
that significantly reduces computational expense. The authors have developed an Android 
application to transmit the TensorFlow model and evaluate the model's performance in real-time 
scenarios. Despite having limited trainable parameters and a small model file size, they achieved 
remarkable performance metrics with an accuracy of 98.45% and 99.37% on two different datasets. 

It is important to note that the current studies on driver distraction are limited in their approach. 
They only rely on one attribute to identify distraction, which is insufficient to guarantee driver safety. 
To make a system more intelligent, other factors like vehicle motion, vehicle surrounding 
environment, vehicle speed, and distance between vehicles should also be considered. For instance, 
a vehicle drifting between lanes could be a sign of inattentive or intoxicated driving, and intense 
emotions, such as extreme anger, could also negatively affect a driver's ability to drive safely. 
Therefore, studies have presented other approaches [16], [17] to reduce false alarms on distracted 
behavior that can lead to car accidents. 

 
2.2.3 Lightweight CNN models combined with other techniques 
 

A deep learning algorithm that uses object detection and bi-directional feature pyramid networks 
(BiFPN) was discussed in [19] to identify drowsiness and distracted behavior in drivers. The algorithm 
was trained on the Driver Monitoring Dataset (DMD), which includes cognitive and manual 
distraction scenarios. The model employs an advanced data augmentation approach to improve its 
generalization ability and utilizes the original network's C3 module to enhance crucial feature 
information and mute irrelevant data. The neck network was enhanced with the BiFPN module to 
streamline multi-scale feature fusion while minimizing computational load. The resulting model 
demonstrates high identification accuracy, quick detection speed, and low memory usage. Lin et al., 
[20] present a methodology that includes both driving scenarios and driver behavior for a better 
safety-level decision. This study utilizes a 3D object identification approach, a modified MobileNetV3 
algorithm, and a decision algorithm. To increase the model's accuracy and real-time performance for 
the MobileNetV3, the authors included a residual weighted squeeze-and-excite (RWSE) and 
implemented Hsigmiod activation. The decision method determines the safety level rating and 
considers the leading vehicle's speed and distance. Lastly, Alotaibi et al., [21] have suggested using 
deep learning to solve the driver behavior detection problem. The performance of detecting driver-
distracted action improved to 99.3% (StateFarm dataset) using a Hierarchical Recurrent Neural 
Network (HRNN) and a combined model with an Inception module and a ResNet. This technique 



Journal of Advanced Research Design 
Volume 145, Issue 1 (2026) 149-164 

154 
 

recognizes the category of manual distractions, which include reaching behind, chatting on the 
phone, texting, eating, drinking, adjusting the audio, entertainment, or GPS, and doing one's hair and 
makeup. However, their model's components required more calculation time to analyze a single 
sample than ResNet and HRNN. 

In summary, various techniques can be used to detect distracted drivers, such as machine 
learning and deep learning. Some standard machine learning algorithms include SVM, Naive Bayes, 
and decision trees. However, machine learning techniques exhibit reduced efficiency and accuracy 
compared to deep learning methods like the CNN model. Some studies have focused on increasing 
prediction performance using models like AlexNet, VGG-16, VGG-19, UNet, ResNet v5, and others. 
However, as accuracy increases, these models become unsuitable for embedded deployment due to 
their complexity and lack of real-time deployment architecture. Therefore, the focus should be on 
simple, lightweight models that embedded systems can use without significantly reducing accuracy. 

 
3. Proposed MobileNet V2SE Fusion Model 
 

The MobileNet V2SE model improves upon the original MobileNet V2 architecture by 
incorporating the SE module and an additional layer in the output layer. This helps capture channel 
relationships and extract complex features, improving accuracy and generalization. The model uses 
several techniques to enhance generalization, stability, and convergence speed, such as Global 
Average Pooling, dense layers with rectified linear unit (ReLU) activation, Dropout, and batch 
normalization. Finally, the model includes a dense output layer with softmax activation that assigns 
probabilities to ten specific driving behavior classes. In this section, the MobileNet V2 architecture is 
briefly explained. Then, the detail of MobileNet V2SE construction is discussed, which is divided into 
four subsections: SE module, classification layer, freeze layer, and model configuration. Lastly, the 
evaluation methods and simulation environment will be explained. 

 
3.1 MobileNet V2 architecture 

 
MobileNetV2 is a convolutional neural network architecture designed for efficient usage on 

mobile and edge devices. Google developed it to enhance the original MobileNetV1. The key concept 
behind MobileNetV2 is depthwise separable convolution, which uses an efficient building block called 
an Inverted Residual Block that repeats throughout the network. Each Inverted Residual Block 
includes several layers: depthwise convolution, batch normalization, linear bottleneck, and shortcut 
connection that work together to improve the model's performance. 

The depthwise convolution layer applies a 3x3 kernel size and a stride of 1 to each channel in the 
input feature map. This layer is computationally efficient, reducing the number of parameters 
compared to traditional convolutional layers. After convolution, the output is normalized using batch 
normalization. Then, a linear bottleneck layer is added, which involves a 1x1 convolution operation, 
batch normalization, and linear activation. The expansion factor of the input channels determines 
the number of output channels in the linear bottleneck layer. The linear bottleneck layer improves 
the network's capacity and allows richer representations to learn. 

MobileNetV2 adds a shortcut connection between the input and output of each Inverted Residual 
Block to maintain high accuracy while improving efficiency. This shortcut connection goes around the 
layers inside the block and directly adds the input to the output. Using this shortcut connection helps 
to propagate gradients and allows information to flow efficiently through the network. The Inverted 
Residual block reduces the number of parameters while maintaining high accuracy. MobileNetV2 



Journal of Advanced Research Design 
Volume 145, Issue 1 (2026) 149-164 

155 
 

uses an efficient layer architecture by incorporating the linear bottleneck and inverted residual 
structure, taking advantage of the low-rank nature of the problem. 

The neural network undergoes multiple iterations of basic building blocks to obtain several final 
layers. These layers help convert the feature map into either class probabilities or regression outputs, 
depending on the task. The final layers consist of global average pooling, fully connected layers, and 
activation functions like softmax or sigmoid. MobileNetV2 has effectively balanced accuracy and 
efficiency by incorporating inverted residuals, linear bottlenecks, depthwise separable convolutions, 
and multi-scale feature fusion. These design choices have aided MobileNetV2 in achieving state-of-
the-art performance across various tasks and benchmarks, all while operating efficiently on mobile 
and embedded devices. Figure 1 shows the original MobileNet V2 architecture. 

 

 
Fig. 1. MobileNetV2 architecture 

 
3.2 MobileNet V2 architecture 
3.2.1 SE module in MobileNet V2 

 
In [22], the SE module was introduced and found to effectively improve the performance of 

neural networks across various tasks, including image classification, object detection, and natural 
language processing. This attention mechanism enhances the feature representation power of 
convolutional neural networks (CNNs). An advantageous aspect of the SE module is that it can be 
seamlessly incorporated into existing deep-learning network models without requiring extensive 
redesign of the network structure or parameter tuning [23]. 

The SE module comprises a squeezed and excited operation, as illustrated in Figure 2. The 
squeezed operation reduces the spatial dimensions of each feature map to a single channel by 
applying global average pooling. The resulting channel-wise features are then fed into an excited 
operation, which learns a set of channel-wise weights used to modulate each feature map's 
importance. The excited operation comprises two fully connected layers and a sigmoid or ReLU 
activation function. Element-wise multiplication applies the resulting attention scores to the feature 
maps. 

Here, the SE modules integrate at the conclusion of inverted residual blocks, strategically placed 
following the depth-wise convolutional layers within each block (including Block 1, Block 2, Block 3, 
Block 4, and Block 5), as illustrated in Figure 3. 
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Fig. 2. A SE block 

 

 
Fig. 3. MobileNetV2SE fusion 

 
To implement the SE module, a class called SEModule is used. This class takes two input 

parameters: the number of channels and the reduction ratio. The reduction ratio determines how 
many channels will be removed in the excitation phase. The SEModule class then uses a Global 
Average Pooling layer to perform the squeezing operation on the input feature maps. This step 
reduces the dimensions of the feature maps, resulting in a channel-wise representation.  

The channel-wise features are then passed through an excitation layer consisting of two fully 
connected (Dense) layers. The first dense layer uses ReLU activation to reduce the number of 
channels, while the second dense layer restores the original number of channels using sigmoid 
activation. This sequential excitation layer allows the model to learn channel-specific attention 
weights, which indicate the importance of each channel. The channel-wise attention scores are 
computed in the call method, which applies the squeeze layer to the input feature maps. This 
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representation is passed through the excitation layer to obtain the channel-wise attention values. A 
reshape operation is performed to adjust the shape of the excitation output to match the original 
input dimensions. Finally, the attention scores are computed by element-wise multiplication 
between the input feature maps and the excitation output.  

Overall, the SE module provides a modular and flexible approach to incorporating attention 
mechanisms within model architectures. By adapting feature maps, the SE module enables the model 
to focus on relevant channels and enhance its ability to recognize image patterns. However, the SE 
module can also increase the computational complexity of a neural network. It is crucial to evaluate 
the trade-offs between performance and complexity when deciding whether or not to use the SE 
module. 

 
3.2.2 Classification layer V2 

 
A Global Average Pooling layer is included to reduce the spatial dimensions of the feature maps 

while preserving channel-wise information. This pooling operation helps in reducing the model's 
complexity and parameter count, thus making it more computationally efficient. An additional dense 
layer with 1024 units and ReLU activation is added to extract more complex and higher-level features. 
This layer enhances the model's capacity to learn more sophisticated representations and 
differentiate between different classes. 

To prevent overfitting, a dropout layer with a rate of 0.2 is applied. It randomly sets a fraction of 
the units to zero during training iterations. This regularization technique encourages model 
generalization and reduces reliance on specific features. Batch normalization is used to normalize the 
activations of the preceding dense layer. This enhances training stability and convergence speed by 
normalizing the activations. In addition, batch normalization improves the model's ability to 
generalize and produce reliable predictions. Finally, a dense output layer with softmax activation is 
incorporated to produce a probability distribution over the classes. This allows the model to assign 
class probabilities to input samples, facilitating classification tasks. 

 
3.2.3 Freeze layer 
 

When using a MobileNetV2 model, deciding which layers to freeze depends on the similarity 
between the current task and the task for which the model was originally trained. Freezing fewer 
layers can be beneficial if the target dataset significantly differs from the dataset on which the model 
was pre-trained. This allows more layers to be updated and enables the model to adapt to the new 
dataset. The best freezing configuration is determined through evaluation to identify the 
configuration that yields the highest accuracy and best generalization capabilities on the target 
dataset. In transfer learning scenarios, only a portion of the model needs further training while 
retaining the general features learned by the earlier layers. 

 
3.2.4 Model configuration 

 
The model's weights are optimized using the Adam optimizer with a learning rate of 0.0001, which 

is a widely used and efficient optimization algorithm. The model's performance is evaluated using 
the accuracy metric, and categorical cross-entropy is used as the loss function. During training, the 
model is trained on the training data and validated using the validation data. The number of training 
epochs determines how often the model iterates over the entire training dataset.  
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To track the model's progress and save the best-performing model weights, two callbacks are 
employed: checkpoint and earlystop. The checkpoint callback saves the model weights after each 
epoch if they yield the best validation performance so far. The earlystop callback stops the training 
process early if the metric does not improve over a predefined number of epochs. The class_weight 
parameter handles class imbalance issues in the training data by giving more importance to 
underrepresented classes.  

By implementing these strategies, the model aims to optimize its weights using the Adam 
optimizer and minimize the categorical cross-entropy loss. The provided training loop ensures that 
the model is trained for the specified number of epochs, while the callbacks and class weights 
contribute to better generalization and handling of class imbalances. 

 
3.3 Evaluation Metrics and Simulation Environment 

 
The following metrics were used to assess MobileNet V2SE fusion performance:  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"	$	!%
!"	$	!%	$	&"	$	&%

                                (1) 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"	$	&"

                                 (2) 
 
𝑅𝑒𝑐𝑎𝑙𝑙 = !"

!"	$	&%
                                  (3) 

 
𝐹1	𝑠𝑐𝑜𝑟𝑒 = '("")*+,-,./	×1*+233)

")*+,-,./	$	1*+233
                                (4) 

 
True positive (TP) refers to an instance where the model correctly predicted the positive class, 

True negative (TN) refers to an instance where the model correctly predicted the negative class, false 
positive (FP) refers to an instance where the model incorrectly predicted the positive class, and a 
false negative (FN) refers to an instance where the model incorrectly predicted the negative class. 
 
𝐹𝑃𝑆 = %56	.7	-2683*

*/9	:,6*;-:2):	:,6*
                                 (5) 

 
Frames per second (FPS) is a commonly used metric to evaluate a model’s performance when 

applied to real-time data streams such as video.  
The simulation was performed using a central processing unit (CPU) powered by an Intel(R) Core 

(TM) i5-9300H CPU @ 2.40GHz, running on the Windows 11, 64-bit operating system, and with 8GB 
Random Access Memory (RAM). The Python programming language was executed on an NVIDIA 
GeForce GTX 1050 Ti GPU. The proposed model was trained and tested on the American University 
in Cairo (AUC) distracted driver dataset, with 70% of the data used for training and 30% for testing 
purposes. Table 1 is the dataset description.  

 
 
 
 
 
 
 
 



Journal of Advanced Research Design 
Volume 145, Issue 1 (2026) 149-164 

159 
 

Table 1 
Dataset description 

Class Description Train Valid Test No. of 
Image 

0 Drive Safe 1708 732 266 2706 

1 Texting with 
right-hand 913 392 133 1438 

2 
Using a phone 
with right-
hand 

603 259 114 976 

3 Texting with 
left-hand 

520 224 100 844 

4 Using a phone 
with left-hand 

665 285 90 1040 

5 Adjust radio 527 226 90 843 
6 Drink 513 220 63 796 

7 
Reaching 
behind while 
driving 

483 208 63 754 

8 Hair and 
Makeup 

488 210 66 764 

9 
Conversing 
with 
passengers 

965 414 138 1217 

 
4. Results and Discussion  
 

Table 2 shows the results of the classification model used to identify distracted driver behavior. 
These tables present information about precision, recall values, and F1 scores. Regarding precision, 
most classes had a low rate of false positives, except for C0, C6, C8, and C9. The recall values indicate 
that most classes successfully identified positive instances, although C0, C6, C8, and C9 had more 
false negatives. F1 scores were high across most classes, indicating strong overall performance in 
terms of both precision and recall. The different levels of difficulty of the classification tasks can 
explain the discrepancies observed in the F1-scores between classes C1 to C4 and classes C6 to C9. 
Classifying distracted driver behavior presents challenges due to the wide range of behaviors and 
their varying levels of subtlety.   

Table 3 presents a comparison of MobileNet V2 and MobileNet V2SE models using macro average 
(M.A) and weighted average (W.A) values. 

 
Table 2 
Precision, recall and fi score for MobileNet v2 and MobileNet V2se 

Class 
MobileNet V2 MobileNet V2SE 
Precision Recall F1 Precision Recall F1 

0 0.60 0.6 0.67 0.98 0.86 0.91 
1 0.85 0.85 0.90 0.93 1.00 0.96 
2 0.66 0.66 0.79 0.98 1.00 0.99 
3 0.60 0.60 0.74 0.98 1.00 0.99 
4 1.00 1.00 0.81 0.94 1.00 0.97 
5 0.91 0.91 0.94 1.00 1.00 1.00 
6 0.75 0.75 0.71 0.79 0.89 0.84 
7 0.94 0.94 0.48 0.77 0.98 0.86 
8 0.89 0.89 0.74 0.98 0.76 0.85 
9 0.46 0.46 0.55 0.86 0.87 0.86 
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Table 3 
Macro average and weighted average  for MobileNet V2 and MobileNet V2SE 

Metrics MobileNet V2 MobileNet V2SE 
M.A  W.A M.A W.A 

Precision 0.76 0.79 0.82 0.93 
Recall 0.77 0.72 0.94 0.93 
F1 Score 0.73 0.73 0.92 0.93 

 
The confusion matrix, shown in Figure 4, indicates that the model faced difficulties in accurately 

identifying "drinking" and "makeup/hair" instances. Specifically, the model misclassified seven 
instances of "drinking" as other behaviors, and 16 instances of "makeup" application were 
misclassified as different behaviors. These findings highlight the model's relatively lower accuracy in 
detecting these two specific types of behavior. 

 

 
Fig. 4. Confusion matrix of MobileNet V2SE 

 
 
Figure 5 shows that the training loss curve decreases and stabilizes over time. Similarly, the 

validation loss curve also decreases and reaches a stable point, with only a small difference compared 
to the training loss curve. This indicates that the model is performing well. It is well-balanced between 
complexity and generalization, and no sign of overfitting or underfitting, since both training and 
validation performances remain reasonable and consistent. Overall, the results demonstrate a 
harmonious relationship between training and validation performance, the model is effective. 
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Fig. 5. The loss of MobileNet V2SE during training 
and validation 

 
The MobileNet V2SE achieved an FPS measurement of 53, while the original MobileNetV2 

achieved 55.64 FPS when run on an NVIDIA GeForce GTX 1050 GPU, as shown in Table 4. The 
difference can be attributed to the addition of the SE module in the MobileNetV2. The SE module 
introduces extra learnable weights and biases associated with the fully connected layers in the 
excitation operation, which boosts the model's performance on various tasks. However, the increase 
in parameters count results in additional computation during both training and inference phases, 
leading to more calculations and a higher computational workload.  

 
Table 4 
FRS and parameters 

Model FRS Total parameters 
MobileNet V2 55.65 2,257,984 
MoileNet V2SE 53.00 3,790,234 

 
The results presented in Table 5 show that the MobileNet V2SE approach achieves an accuracy 

of 93%, which is higher than MobileNetV2 in [24] with 89.38% and the initial finetuning phase with 
only 72%. This means that the "SE" module enhances the overall performance of the MobileNetV2 
model. Furthermore, the MobileNet V2SE performs better than pre-trained models like AlexNet [13], 
InceptionV3 [13], and VGG [25] in terms of balancing accuracy and parameter utilization. The 
MobileNet V2SE achieves a desirable balance between accuracy and model complexity, highlighting 
the potential for size reduction while preserving competitive accuracy. However, when compared to 
other modified models like modified VGG [25], MobileVGG [26], LWANet [18], Lightweight CNN [27], 
MobileNetV2-tiny [28], and EFFNet [29], MobileNet V2SE exhibits slightly lower performance. 
Nevertheless, the MobileNet V2SE demonstrates proficiency with specific modified models such as 
InceptionV3 + BiLSTM [10] and Inception + HRNN [21].  

According to Table 5, MobileNet V2SE performs moderately when compared to other modified 
models. Different models have varying ways of performing due to differences in their structures, such 
as the number of layers, receptive fields, and feature extraction capabilities. These differences 
directly affect a model's accuracy. Additionally, a model's ability to understand complex patterns in 
data depends on the number of parameters it has. Models with more parameters, such as VGG, can 
identify intricate features better, but they are more prone to overfitting when trained with limited 
data. The "SE" module in MobileNetV2 can enhance a model's performance. These modules allow 
the model to prioritize and focus on more informative features, which can improve its accuracy. 
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Table 5 
Comparison of MobileNet V2SE with others models 

Model Accuracy (%) Parameters 
(million) 

Dataset 

AlexNet [13] 93.65 62 AUC 
Inception [13] 95.17 24 AUC 
VGG [25] 94.44 140 AUC 
Modified VGG [25] 95.54 15 AUC 
Inception V3 + BiLSTM  [10] 92.77 24.33 AUC 
LWANet [18] 98.45 1.22 AUC 
Lightweight CNN [27] 95.36 0.46 AUC 
Inception + HRNN [21] 92.36 - AUC 
MobileVGG [26] 95.24 2.20 AUC 
MobileNet V2-tiny [28] 94.77 2.78 AUC 
EFFNet [29] 98.97 4.57 AUC2 
MobileNet V2 [24] 89.38 3.50 AUC 
MobileNet V2 (fined-tunned) 72.00 3.50 AUC 
MobileNet V2SE 93.00 3.75 AUC 

 
5. Conclusion 

 
Distracted driving leads to many injuries and deaths each year. To address this issue, a model 

called the MobileNetV2 network has been introduced to detect distracted drivers. This study aimed 
to improve the accuracy of the lightweight MobileNetV2 model. This was achieved by analysing the 
MobileNetV2 model and its hyperparameters and finding values that would improve accuracy. The 
model's performance was evaluated using different configurations of hyperparameters, leading to 
the identification of the best values to maximize accuracy. The best settings for batch size, learning 
rate, number of epochs, and optimizer were 32, 0.0001, 21, and Adam, respectively.  

SE modules were added to the MobileNetV2 model to improve its accuracy. This was done by 
placing the SE module after the depth-wise convolutional layers in each block, resulting in a 
significant accuracy improvement of 21%. The MobileNet V2SE model was compared to other 
approaches to analyse its accuracy. It was found that the MobileNet V2SE model had a balance 
between accuracy and parameter utilization, outperforming pre-trained models like AlexNet, 
InceptionV3, and VGG. It achieved competitive accuracy with fewer parameters compared to VGG 
and Inception V3. However, the MobileNet V2SE model showed slightly lower performance than 
other modified models.  

The MobiltNet V2SE has achieved high accuracy, but may not work as well in low-lighting 
conditions. This is because the dataset used to train the model was captured in brighter settings. To 
address this, it would be helpful to collect a different dataset that covers driver behavior during both 
daytime and nighttime, especially in dimly lit environments. In the future, this technology can be 
used in different real-world scenarios, including computer vision systems to monitor and analyze 
driver conditions in real time. By adding driver conditions as an extra feature in car safety systems, it 
can improve their effectiveness and responsiveness, making driving safer for everyone. 
 
Acknowledgement 
The authors would like to acknowledge the Faculty of Engineering, Universiti Malaysia Sarawak, for the 
support in the preparation of this article. This research was not funded by any grant. 

 
 



Journal of Advanced Research Design 
Volume 145, Issue 1 (2026) 149-164 

163 
 

References 
[1]  WHO, "Road traffic injuries," World Health Organization, 20 June 2022. [Online]. Available: 

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries. [Accessed 3 October 2023]. 
[2]  NHTSA, "Distracted Driving Dangers and Statistics," United States Department of Transportation, 2020. [Online]. 

Available: https://www.nhtsa.gov/risky-driving/distracted-driving. [Accessed 5 October 2023]. 
[3] Yellman, Merissa A., Leah Bryan, Erin K. Sauber-Schatz, and Nancy Brener. "Transportation risk behaviors among high 

school students-Youth risk behavior survey, United States, 2019." MMWR supplements 69, no. 1 (2020): 77. 
https://doi.org/10.15585/mmwr.su6901a9  

[4] Kashevnik, Alexey, Roman Shchedrin, Christian Kaiser, and Alexander Stocker. "Driver distraction detection methods: 
A literature review and framework." IEEE Access 9 (2021): 60063-60076. 
https://doi.org/10.1109/ACCESS.2021.3073599  

[5] Feng, Demeng, and Yumeng Yue. "Machine Learning Techniques for Distracted Driver Detection." (2019). 
[6] Torres, Renato, Orlando Ohashi, and Gustavo Pessin. "A machine-learning approach to distinguish passengers and 

drivers reading while driving." Sensors 19, no. 14 (2019): 3174. https://doi.org/10.3390/s19143174  
[7] Ezzouhri, Amal, Zakaria Charouh, Mounir Ghogho, and Zouhair Guennoun. "Robust deep learning-based driver 

distraction detection and classification." IEEE Access 9 (2021): 168080-168092. 
https://doi.org/10.1109/ACCESS.2021.3133797  

[8] Bahari, Muhammad Saiful Haqem Saiful, and Lucyantie Mazalan. "Distracted driver detection using deep learning." In 
2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA), pp. 198-203. IEEE, 2022. 
https://doi.org/10.1109/CSPA55076.2022.9781938  

[9] Abbas, Tahir, Syed Farooq Ali, Mazin Abed Mohammed, Aadil Zia Khan, Mazhar Javed Awan, Arnab Majumdar, and 
Orawit Thinnukool. "Deep learning approach based on residual neural network and SVM classifier for driver's 
distraction detection." Applied Sciences 12, no. 13 (2022): 6626. https://doi.org/10.3390/app12136626  

[10] Mase, Jimiama Mafeni, Peter Chapman, Grazziela P. Figueredo, and Mercedes Torres Torres. "A hybrid deep learning 
approach for driver distraction detection." In 2020 International Conference on Information and Communication 
Technology Convergence (ICTC), pp. 1-6. IEEE, 2020. https://doi.org/10.1109/ICTC49870.2020.9289588  

[11] Sajid, Faiqa, Abdul Rehman Javed, Asma Basharat, Natalia Kryvinska, Adil Afzal, and Muhammad Rizwan. "An efficient 
deep learning framework for distracted driver detection." IEEE Access 9 (2021): 169270-169280. 
https://doi.org/10.1109/ACCESS.2021.3138137  

[12] Ghoddoosian, Reza, Marnim Galib, and Vassilis Athitsos. "A realistic dataset and baseline temporal model for early 
drowsiness detection." In Proceedings of the ieee/cvf conference on computer vision and pattern recognition 
workshops, pp. 0-0. 2019. https://doi.org/10.1109/CVPRW.2019.00027  

[13] Abouelnaga, Yehya, Hesham M. Eraqi, and Mohamed N. Moustafa. "Real-time distracted driver posture 
classification." arXiv preprint arXiv:1706.09498 (2017). 

[14] Draz, Hafiz Umer, Muhammad Zeeshan Khan, Muhammad Usman Ghani Khan, Amjad Rehman, and Ibrahim Abunadi. 
"A Novel Ensemble Learning Approach of Deep Learning Techniques to Monitor Distracted Driver Behaviour in Real 
Time." In 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA), pp. 251-256. IEEE, 
2021. https://doi.org/10.1109/CAIDA51941.2021.9425243  

[15] Tran, Duy, Ha Manh Do, Weihua Sheng, He Bai, and Girish Chowdhary. "Real-time detection of distracted driving 
based on deep learning." IET Intelligent Transport Systems 12, no. 10 (2018): 1210-1219. 
https://doi.org/10.1049/iet-its.2018.5172  

[16] Jin, Chongchong, Zhongjie Zhu, Yongqiang Bai, Gangyi Jiang, and Anqing He. "A deep-learning-based scheme for 
detecting driver cell-phone use." IEEE access 8 (2020): 18580-18589. 
https://doi.org/10.1109/ACCESS.2020.2968464  

[17] Nguyen, Duy-Linh, Muhamad Dwisnanto Putro, and Kang-Hyun Jo. "Distracted driver recognizer with simple and 
efficient convolutional neural network for real-time system." In 2021 21st International Conference on Control, 
Automation and Systems (ICCAS), pp. 371-375. IEEE, 2021. https://doi.org/10.23919/ICCAS52745.2021.9649760  

[18] Lin, Yingcheng, Dingxin Cao, Zanhao Fu, Yanmei Huang, and Yanyi Song. "A Lightweight Attention-Based Network 
towards Distracted Driving Behavior Recognition." Applied Sciences 12, no. 9 (2022): 4191. 
https://doi.org/10.3390/app12094191  

[19] T. Li, Y. Zhang, Q. Li, and T. Zhang, "AB-DLM: An Improved Deep Learning Model Based on Attention Mechanism and 
BiFPN for Driver Distraction Behavior Detection," IEEE Access, vol. 10, p. 83138-83151, 2022. 
https://doi.org/10.1109/ACCESS.2022.3197146  

[20] Lin, Peng-Wei, and Chih-Ming Hsu. "Innovative Framework for Distracted-Driving Alert System Based on Deep 
Learning." IEEE Access 10 (2022): 77523-77536. https://doi.org/10.1109/ACCESS.2022.3186674  

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.nhtsa.gov/risky-driving/distracted-driving
https://doi.org/10.15585/mmwr.su6901a9
https://doi.org/10.1109/ACCESS.2021.3073599
https://doi.org/10.3390/s19143174
https://doi.org/10.1109/ACCESS.2021.3133797
https://doi.org/10.1109/CSPA55076.2022.9781938
https://doi.org/10.3390/app12136626
https://doi.org/10.1109/ICTC49870.2020.9289588
https://doi.org/10.1109/ACCESS.2021.3138137
https://doi.org/10.1109/CVPRW.2019.00027
https://doi.org/10.1109/CAIDA51941.2021.9425243
https://doi.org/10.1049/iet-its.2018.5172
https://doi.org/10.1109/ACCESS.2020.2968464
https://doi.org/10.23919/ICCAS52745.2021.9649760
https://doi.org/10.3390/app12094191
https://doi.org/10.1109/ACCESS.2022.3197146
https://doi.org/10.1109/ACCESS.2022.3186674


Journal of Advanced Research Design 
Volume 145, Issue 1 (2026) 149-164 

164 
 

[21] Alotaibi, Munif, and Bandar Alotaibi. "Distracted driver classification using deep learning." Signal, Image and Video 
Processing 14, no. 3 (2020): 617-624. https://doi.org/10.1007/s11760-019-01589-z  

[22] Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." In Proceedings of the IEEE conference on 
computer vision and pattern recognition, pp. 7132-7141. 2018. https://doi.org/10.1109/CVPR.2018.00745  

[23] Zhu, Xizhou, Dazhi Cheng, Zheng Zhang, Stephen Lin, and Jifeng Dai. "An empirical study of spatial attention 
mechanisms in deep networks." In Proceedings of the IEEE/CVF international conference on computer vision, pp. 
6688-6697. 2019. https://doi.org/10.1109/ICCV.2019.00679  

[24] Hossain, Md Uzzol, Md Ataur Rahman, Md Manowarul Islam, Arnisha Akhter, Md Ashraf Uddin, and Bikash Kumar 
Paul. "Automatic driver distraction detection using deep convolutional neural networks." Intelligent Systems with 
Applications 14 (2022): 200075. https://doi.org/10.1016/j.iswa.2022.200075  

[25] Baheti, Bhakti, Suhas Gajre, and Sanjay Talbar. "Detection of distracted driver using convolutional neural network." 
In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 1032-1038. 2018. 
https://doi.org/10.1109/CVPRW.2018.00150  

[26] Baheti, Bhakti, Sanjay Talbar, and Suhas Gajre. "Towards computationally efficient and realtime distracted driver 
detection with mobilevgg network." IEEE Transactions on Intelligent Vehicles 5, no. 4 (2020): 565-574. 
https://doi.org/10.1109/TIV.2020.2995555  

[27] Nguyen, Duy-Linh, Muhamad Dwisnanto Putro, Xuan-Thuy Vo, and Kang-Hyun Jo. "Light-weight convolutional neural 
network for distracted driver classification." In IECON 2021-47th Annual Conference of the IEEE Industrial 
Electronics Society, pp. 1-6. IEEE, 2021. https://doi.org/10.1109/IECON48115.2021.9589212  

[28] Zhuang, Qinghe, Zhehao Dai, and Jia Wu. "Deep active learning framework for lymph node metastasis prediction in 
medical support system." Computational Intelligence and Neuroscience 2022 (2022). 
https://doi.org/10.1155/2022/4601696  

[29] Khan, Taimoor, Gyuho Choi, and Sokjoon Lee. "EFFNet-CA: an efficient driver distraction detection based on 
multiscale features extractions and channel attention mechanism." Sensors 23, no. 8 (2023): 3835. 
https://doi.org/10.3390/s23083835  

[30] Razak, Siti Fatimah Abdul, Sumendra Yogarayan, Azlan Abdul Aziz, Mohd Fikri Azli Abdullah, and Noor Hisham Kamis. 
"Physiological-based Driver Monitoring Systems: A Scoping Review." Civil Engineering Journal 8, no. 12 (2022): 
3952-3967. https://doi.org/10.28991/CEJ-2022-08-12-020  

https://doi.org/10.1007/s11760-019-01589-z
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/ICCV.2019.00679
https://doi.org/10.1016/j.iswa.2022.200075
https://doi.org/10.1109/CVPRW.2018.00150
https://doi.org/10.1109/TIV.2020.2995555
https://doi.org/10.1109/IECON48115.2021.9589212
https://doi.org/10.1155/2022/4601696
https://doi.org/10.3390/s23083835
https://doi.org/10.28991/CEJ-2022-08-12-020

