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This paper presents the application of the Modified TOR (MTOR) method, 
implemented using CUDA, for solving Poisson's equation through the iterative 
Finite Difference (FD) method. The study aims to provide a detailed description 
of the MTOR method for solving Partial Differential Equations (PDEs) on both 
standard and rotated meshes, employing CUDA for parallel processing. The 
MTOR method uses a red-black ordering strategy during iteration; consequently, 
the calculation of red cells utilizes the updated values of their four neighbouring 
black cells, and vice versa. To evaluate the performance of these iterative 
methods, robot path planning and image blending problems were tested. Our 
results highlight the advantages of employing parallel methods on Graphics 
Processing Units (GPUs) in terms of iterations and computational time, compared 
to their sequential counterparts. In the path planning simulation, the parallel 
implementations exhibited over 20 times faster execution compared to their 
corresponding sequential versions. Similarly, in the image blending problem, the 
parallel implementations achieved more than a 6-fold improvement in speed 
compared to the sequential methods. 
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1. Introduction 
 

In this paper, we develop a parallel numerical technique on a Graphics Processing Unit (GPU) 
device and provide a comprehensive description of discretization and parallelization for solving 
partial differential equations. Parallel computing is crucial for handling large-scale problems in fields 
like weather forecasting, planetary sciences, engineering, and more, where reducing computing time 
and achieving speedup are critical. Recent studies focus on solving numerical models using various 
approaches on GPUs, driven by advancements in GPU cards taken from the previous studies [1-3]. 
Large-scale problems involving sets of PDEs and parameters require high resolutions and significant 
computational resources. Finite Difference (FD) schemes are widely used in numerical models for 
engineering and applied science. This work focuses on developing parallel algorithms based on the 
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Modified Two-Parameter Over-Relaxation (MTOR) schemes to solve numerical models. We apply 
these parallel solvers to solve robot path planning problems using Laplace’s equation and image 
composition problems using Poisson’s equation. CUDA C++ and FD schemes are employed to solve 
the two-dimensional Poisson’s equation in parallel, leveraging their effectiveness and simplicity. We 
implement sequential and parallel versions of these iterative methods, including their modified 
variants, on standard and rotated meshes. The efficiency and accuracy of the proposed methods are 
evaluated through their application to robot path planning and image blending problems.  

While significant advancements have been made in leveraging GPU-based parallel computing to 
solve large-scale problems involving partial differential equations (PDEs), challenges remain in 
optimizing computational efficiency and accuracy for specific applications such as robot path 
planning and image processing. Existing studies primarily focus on general GPU acceleration 
techniques, but there is limited exploration of parallelized iterative methods, especially the MTOR 
schemes, tailored for solving PDEs like Laplace’s and Poisson’s equations on various mesh 
configurations. Furthermore, the integration of these methods for practical applications, such as real-
time robot navigation and seamless image composition, remains underexplored. 

This study addresses these gaps by developing a GPU-based parallel numerical technique 
employing MTOR schemes to solve PDEs efficiently. The contributions include:  

 
i. Algorithm Development: Design and implementation of parallel algorithms for MTOR schemes 

on both standard and rotated meshes to solve Laplace’s and Poisson’s equations. 
ii. Application to Real-World Problems: Demonstration of the effectiveness of the proposed 

methods in solving robot path planning problems using Laplace’s equation and image blending 
tasks using Poisson’s equation. 

iii. Performance Evaluation: Comprehensive evaluation of the proposed parallel methods in terms 
of computational efficiency, speedup, and accuracy, using CUDA C++ for high-performance 
implementations.  

iv. Comparative Analysis: Presentation of sequential and parallel versions of the iterative methods, 
highlighting the benefits of parallelization and the role of mesh configurations. 

 
By addressing computational challenges and demonstrating practical applications, this study 

advances the use of parallel computing techniques for solving PDE-based problems in engineering 
and applied sciences. 

This paper is organized as follows. In Section 2, both the modeling problem and the two-
dimensional decomposition method on the standard and rotated meshes are introduced. The 
sequential and parallel implementations of the proposed iterative methods are presented, as well as 
the applications of the Laplace’s and Poisson’s equations to model the respective path planning and 
image blending problems are also explained. Section 3 presents the results of numerical experiments 
on path planning and image blending problems. Finally, the conclusions are provided in Section 4. 
 
2. Methodology  
 

Numerical methods based on PDE have been widely used in robotics and image processing 
applications. These methods involve solving linear systems of equations generated from the PDE 
solution on a given mesh. In the previous works [4-9], the established sequential Successive Over-
Relaxation (SOR), Accelerated Over-Relaxation (AOR), and Two-Parameter Over-Relaxation (TOR) 
methods, as well as the modified versions MSOR, MAOR and MTOR are implemented to solve various 
linear problems. All these iterative methods are implemented on a standard mesh by applying the 
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standard Full-Sweep (FS) iteration, thus the standard versions are also known as FSSOR, FSAOR and 
FSTOR, whereas the modified versions are called FSMSOR, FSMAOR, and FSMTOR which extracted 
from prior studies [9]. The modified versions support parallel processing, and their corresponding 
implementations are known as Parallel FSMSOR (P-FSMSOR), Parallel FSMSOR (P-FSMAOR) and 
Parallel FSMTOR (P-FSMTOR) methods, respectively. On a rotated mesh, the Half-Sweep (HS) 
iteration procedure is applied to reduce computational complexity. Previously, the iterative 
algorithms implemented on a rotated mesh were utilized to solve a wide range of problems [10-14]. 
It was shown that the implementation of HS iteration procedure on a rotated mesh drastically speed 
up the computational time with the same order of accuracies. In the next sections, we present the 
development of sequential rotated variants, namely HSSOR, HSAOR and HSTOR found in prior studies 
[10,13,15], whilst the rotated modified variants are called HSMSOR, HSMAOR, and HSMTOR methods 
drawn from preceding studies [9,14,16]. 
  
2.1 Modeling Problem and Discretization 

 
The two-dimensional Poisson’s equation is solved in the rectangular mesh  𝛺 = [0 ≤ 𝑥 ≤ 𝑀] ×

[0 ≤ 𝑦 ≤ 𝑁] and is written as in Eq. (1). 
 

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
= 𝑓(𝑥, 𝑦), (1) 

 
with boundary conditions in Eq. (2). 
 
𝑈(𝑥, 𝑦) = 𝑔(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝜕𝛺.            (2) 

 
The area is divided uniformly into several cells with mesh size ℎ, where and 𝑥𝑖 = 𝑖ℎ and 𝑦𝑗 = 𝑗ℎ 

with 𝑖 = 1, 2, 3, … ,𝑀 and 𝑗 = 1, 2, 3, … ,𝑁. 

Assuming a homogenous mesh, each second derivative in Eq. (1) is approximated with centered 
FD expressed as in Eq. (3) and (4). 

 
𝜕2𝑈

𝜕𝑥2
≈

𝑈(𝑥−ℎ,𝑦)−2𝑈(𝑥,𝑦)+𝑈(𝑥+ℎ,𝑦)

ℎ2
       (3) 

 

𝜕2𝑈

𝜕𝑦2
≈

𝑈(𝑥,𝑦−ℎ)−2𝑈(𝑥,𝑦)+𝑈(𝑥,𝑦+ℎ)

ℎ2
       (4) 

 
Replacing both Eqs. (3) and (4) into Eq. (1) we obtain Eq. (5) 
 

𝑈(𝑥 − ℎ, 𝑦) + 𝑈(𝑥 + ℎ, 𝑦) + 𝑈(𝑥, 𝑦 − ℎ) + 𝑈(𝑥, 𝑦 + ℎ) − 4𝑈(𝑥, 𝑦) = ℎ2𝑓(𝑥, 𝑦)    (5) 
 
Eq. (5) can be summarized as Eq. (6). 
 
𝑈𝑖−1,𝑗 + 𝑈𝑖+1,𝑗 + 𝑈𝑖,𝑗−1 + 𝑈𝑖,𝑗+1 − 4𝑈𝑖,𝑗 = ℎ2𝑓𝑖,𝑗        (6) 

 
On a rotated mesh [10], the centered FD approximation is given as Eq. (7) and (8) 
 

𝜕2𝑈

𝜕𝑥2
≈

𝑈(𝑥−ℎ,𝑦−ℎ)−2𝑈(𝑥,𝑦)+𝑈(𝑥+ℎ,𝑦+ℎ)

ℎ2
        (7) 
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𝜕2𝑈

𝜕𝑦2
≈

𝑈(𝑥−ℎ,𝑦+ℎ)−2𝑈(𝑥,𝑦)+𝑈(𝑥+ℎ,𝑦−ℎ)

ℎ2
         (8) 

 
Similarly, by substituting Eqs. (7) and (8) into Eq. (1), we obtain Eq. (9). 
 

𝑈(𝑥 − ℎ, 𝑦 − ℎ) + 𝑈(𝑥 + ℎ, 𝑦 − ℎ) + 𝑈(𝑥 − ℎ, 𝑦 + ℎ) + 𝑈(𝑥 + ℎ, 𝑦 + ℎ) − 4𝑈(𝑥, 𝑦)
= 2ℎ2𝑓(𝑥, 𝑦) 

      (9) 

 
where it can be rewritten as in Eq. (10). 
 
𝑈𝑖−1,𝑗−1 + 𝑈𝑖+1,𝑗−1 + 𝑈𝑖−1,𝑗+1 + 𝑈𝑖+1,𝑗+1 − 4𝑈𝑖,𝑗 = 2ℎ2𝑓𝑖,𝑗.      (10) 

 
Eqs. (6) and (10) represent the discretized Poisson’s equation for the standard and rotated meshes, 

respectively. The distance between each cell for the respective standard and rotated meshes are ℎ 

and √2ℎ. 
 
2.2 Sequential Iterative Methods 
 

We should first discuss the sequential iterative methods that are executed on a single CPU before 
moving on to their corresponding GPU parallel versions. 
 
2.2.1 Full-sweep iteration 
 

The classic Gauss-Seidel (GS) iterative scheme of Eq. (6) can be written as Eq. (11). 
 

𝑈𝑖,𝑗
(𝑘+1) =

1

4
[𝑈𝑖−1,𝑗

(𝑘+1) +𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘+1) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗]     (11) 

 
From Eq. (11), we can obtain the SOR iterative scheme that applies a relaxation factor and is 

written as Eq. (12). 
 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗

(𝑘+1) + 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘+1) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] + (1 − 𝜔)𝑈𝑖,𝑗

(𝑘)    (12) 

 
In [5], the AOR iterative scheme was developed and given as in Eq. (13). 
 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗

(𝑘) + 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗]+

𝛼

4
[𝑈𝑖−1,𝑗

(𝑘+1) − 𝑈𝑖−1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘+1)

− 𝑈𝑖,𝑗−1
(𝑘) ] + (1 − 𝜔)𝑈𝑖,𝑗

(𝑘) 
         (13) 

  
Where, an accelerated parameter 𝛼 is added. Note that if 𝛼 = 𝜔, the original SOR is obtained. An 
extension to the AOR is the TOR method [6] that utilizes two accelerated parameters 𝛼 and 𝛽 to 
provide more tuning options during the iteration procedure. The TOR iterative scheme is given as in 
Eq. (14). 
 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗

(𝑘) +𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] +

𝛼

4
[𝑈𝑖−1,𝑗

(𝑘+1) − 𝑈𝑖−1,𝑗
(𝑘) ] + 

𝛽

4
[𝑈𝑖,𝑗−1

(𝑘+1) −

𝑈𝑖,𝑗−1
(𝑘) ] + (1 − 𝜔)𝑈𝑖,𝑗

(𝑘)    
  (14) 
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Obviously, if 𝛼 = 𝛽, then the TOR will reduce to the AOR method as mentioned in previous study 
[5]. Eqs. (12), (13), and (14) represent the iterative schemes for FSSOR, FSAOR and FSTOR, respectively. 
 
2.2.2 Half-sweep iteration  
 

Furthermore, the GS iterative scheme on a rotated mesh can be derived from Eq. (10) and given 
as shown in Eq. (15). 

 

𝑈𝑖,𝑗
(𝑘+1) =

1

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘+1) + 𝑈𝑖+,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗]       (15) 

 
Based on Eq. (15), the respective iterative schemes for HSSOR, HSAOR and HSTOR methods are 

given in Eqs. (16), (17) and (18), respectively. 
 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) + 𝑈𝑖+1,𝑗−1
(𝑘+1) + 𝑈𝑖−1,𝑗+1

(𝑘) + 𝑈𝑖+,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗] + (1 − 𝜔)𝑈𝑖,𝑗

(𝑘)           (16) 

 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘) + 𝑈𝑖+1,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗]+

𝛼

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) − 𝑈𝑖−1,𝑗−1
(𝑘)

+ 𝑈𝑖+1,𝑗−1
(𝑘+1) − 𝑈𝑖+1,𝑗−1

(𝑘) ] + (1 − 𝜔)𝑈𝑖,𝑗
(𝑘) 

  (17) 

 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘) + 𝑈𝑖+1,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗]+

𝛼

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) − 𝑈𝑖−1,𝑗−1
(𝑘) ] +

𝛽

4
[𝑈𝑖+1,𝑗−1

(𝑘+1) − 𝑈𝑖+1,𝑗−1
(𝑘) ] + (1 − 𝜔)𝑈𝑖,𝑗

(𝑘)   
 (18) 

    
The HS iteration procedure involves only black cells. During the iteration, all white cells are ignored 

and are only calculated after the convergence criterion is met using the Gauss-Seidel formula, Eq. (11). 
 
2.2.3 Full-sweep iteration with modified variants 
 

As an extension to the FSSOR, FSAOR and FSTOR methods, their modified variants FSMSOR, 
FSMAOR and FSMTOR methods were developed by employing Red-Black ordering strategy, as shown 
in Figure 1 (left), and applying two different relaxation parameters, ωr and ωb, for the respective red 
and black cells extracted from previous studies [7-9]. Modifying the SOR scheme Eq. (12), the iterative 
scheme for red and black cells of FSMSOR can be written as Eqs. (19) and (20), respectively.        

               

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑟

4
[𝑈𝑖−1,𝑗

(𝑘) + 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑟)𝑈𝑖,𝑗

(𝑘),   (19) 

 

 𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗

(𝑘+1) + 𝑈𝑖+1,𝑗
(𝑘+1) + 𝑈𝑖,𝑗−1

(𝑘+1) + 𝑈𝑖,𝑗+1
(𝑘+1) − ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘).     (20) 

 
From Eqs. (13) and (14), the respective iterative schemes of FSMAOR and FSMTOR methods for 

black cells can be expressed as Eqs. (21) and (22). 
 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗

(𝑘) + 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘) +𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘)+  
𝛼

4
[𝑈𝑖−1,𝑗

(𝑘+1) − 𝑈𝑖−1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘+1) − 𝑈𝑖,𝑗−1
(𝑘) + 𝑈𝑖+1,𝑗

(𝑘+1) − 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗+1

(𝑘+1) − 𝑈𝑖,𝑗+1
(𝑘) ]  (21) 
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and 
 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗

(𝑘) +𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘)+ 

𝛼

4
[𝑈𝑖−1,𝑗

(𝑘+1) − 𝑈𝑖−1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘+1) − 𝑈𝑖,𝑗−1
(𝑘) ] +

𝛽

4
[𝑈𝑖+1,𝑗

(𝑘+1) − 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗+1

(𝑘+1) − 𝑈𝑖,𝑗+1
(𝑘) ].  (22) 

 
Where, 𝜔𝑏 is the relaxation parameter, 𝛼 and 𝛽 are the accelerated parameters. To calculate the red 
cells of FSMAOR and FSMTOR methods, Eq. (19) is used, which is the same equation employed by the 
FSMSOR method. This equation only involves the previous values of black cells obtained at the k-th 
iteration, as depicted in Figure 2(a). The calculation of black cells, on the other hand, employs the 
updated values of red cells, as shown in Figure 2(b). 
 
2.2.4 Half-sweep iteration with modified variants 
 

On a rotated mesh, where the HS iteration procedure is employed, the modified variants HSMSOR, 
HSMAOR and HSMTOR apply a Red-Black ordering strategy with a 3-color scheme, as shown in Figure 
1. Only red and black cells are calculated in the iteration process. The calculation of the remaining 
white cells is performed after the iteration has converged using the rotated GS formula, Eq. (15). As 
depicted in Figures 2(c) and 2(d), on the rotated mesh, red and black cells rely on the updated values 
of the opposite color of their four neighboring cells. The HSMSOR, HSMAOR and HSMTOR methods 
are developed based on the rotated schemes as in Eqs. (16), (17) and (18), respectively. These three 
methods employ the same Eq. (23) to calculate red cells, and the iterative scheme for red cells is given 
as below. 

 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑟

4
[𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑟)𝑈𝑖,𝑗

(𝑘).   (23) 

 
Correspondingly, the respective iterative schemes of these variants to calculate black cells are 

given as in Eqs. (24) – (26). 

 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) + 𝑈𝑖+1,𝑗−1
(𝑘+1) +𝑈𝑖−1,𝑗+1

(𝑘+1) + 𝑈𝑖+,𝑗+1
(𝑘+1) − 2ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘),   (24) 

 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘) + 𝑈𝑖+1,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗]+(1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘) + 

𝛼

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) − 𝑈𝑖−1,𝑗−1
(𝑘) + 𝑈𝑖+1,𝑗−1

(𝑘+1) − 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘+1) − 𝑈𝑖−1,𝑗+1
(𝑘) + 𝑈𝑖+1,𝑗+1

(𝑘+1) −

𝑈𝑖+1,𝑗+1
(𝑘) ],  

  (25) 

 

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘) + 𝑈𝑖+1,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗]+(1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘) + 

𝛼

4
[𝑈𝑖−1,𝑗−1

(𝑘+1)
− 𝑈𝑖−1,𝑗−1

(𝑘)
+ 𝑈𝑖+1,𝑗−1

(𝑘+1)
− 𝑈𝑖+1,𝑗−1

(𝑘)
] +

𝛽

4
[𝑈𝑖−1,𝑗+1

(𝑘+1)
− 𝑈𝑖−1,𝑗+1

(𝑘)
+

𝑈𝑖+1,𝑗+1
(𝑘+1) −𝑈𝑖+1,𝑗+1

(𝑘) ].  

  (26) 

 



Journal of Advanced Research Design 

Volume 131, Issue 1 (2025) 26-46 

32 
 

  
Fig. 1. All red and black cells are calculated alternately in the standard mesh (left). With rotated mesh 
(right), only red and black are calculated during the iteration procedure, the remaining white cells are 
calculated after the convergence is achieved 

 

    
(a) (b) (c) (d) 

Fig. 2. The computational molecules for (a) red and (b) black cells on the standard mesh, and the respective 
molecules for (c) red and (b) black cells on the rotated mesh. The computational molecules for red and black 
cells are symmetrical, where the black node applies the updated values of its four neighboring red cells and vice 
versa 

 
Algorithm 1 provides the details of the HSMTOR method, where if the parameters are set as 𝛼 = 𝛽 

or 𝛼 = 𝛽 = 𝜔, the respective implementation of HSMAOR or HSMSOR are obtained. The conditions in 
Line 6 and 11 are applied to identify the red and black cells, respectively. The loop in Line 19 to 23 is 
performed to calculate the remaining white cells that are ignored during the main iteration, where 
the condition in Line 20 is used to identify the white cells. 

 
Algorithm 1: The function to calculate cells using the Half-Sweep Modified variants 

function CALCULATECELLSWITHHSMTOR (X, Y, N, ωr, ωb, α, β, ∈)  
ts ← recordStartTime()  
k← 0  
repeat  

for i, j ← 1 to N − 2 do  
if i and j are odd then ▷ Red cells 

Yi,j ←
𝜔𝑟

4
[XA+XB+XC+XD-T]+(1+ωr)Xi,j  
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end if  
end for  
for i, j ← 1 to N − 2 do  

if i and j are even then ▷ Black cells 

Yi,j ← 
𝜔𝑏

4
 [XA+XB+XC+XD-T]+(1+ωr)Xi,j+  

𝛼

4
 [YA-XA+YB-XB]+  

𝛽

4
 [YC-XC+YD-XD] 

end if  
end for  
E ← calculateError(X, Y )  
k← k+1  

until E ¡ ∈  
for i, j ← 1 to N − 2 do  

if i + j is odd then ▷ White cells 

Yi,j ←   
1

4
[YA+YB+YC+YD-T]  

end if  
end for  
te ← recordElapseTime(ts)  
return Y, E, k, te  

end function  

 
2.3 Parallel Iterative Methods 

 
The GPU, initially designed for graphics rendering, has become a valuable tool for general-purpose 

computing due to its unique hardware design. It consists of multiple simpler CPUs with faster memory 
access and concurrent computational power. GPU computing is well-suited for highly parallel 
applications with simple workflows, low memory requirements, and infrequent communication. 
CUDA, a parallel computing architecture, utilizes the GPU’s parallel computing structure to solve 
complex computing problems. For further information on CUDA programming, refer to [17]. Parallel 
solutions to Eq. (1) can only be implemented using Red-Black ordering. Therefore, only the Modified 
variants, as described in Sections 2.1.3 and 2.1.4, are developed for parallel implementations.  

Let array variables 𝑈 = 𝑈(𝑘) and 𝑉 = 𝑈(𝑘+1) store the host memory values at iterations (𝑘) and 
(𝑘 + 1), respectively. Similarly, array variables 𝑈𝑑 and 𝑉𝑑 are the respective previous (𝑘) and updated 
(𝑘 + 1) device memory values. Thus, unlike the sequential CPU iteration procedure, initial values of 
the solutions need to be copied from host memory 𝑈 and 𝑉 to device memory 𝑈𝑑 and 𝑉𝑑, before the 
iteration begins using the CUDA API function cuMemcpyHtoD. After the convergence is achieved, the 
results in the device memory 𝑉𝑑are copied back to the host memory 𝑉using CUDA API function 
cuMemcpyDtoH, for further processing. This procedure is described in Algorithm 2. In Line 3 and 4, 
the contents of host memory 𝑈 and 𝑉 are copied to device memory 𝑈𝑑 and 𝑢𝑣, respectively. In the 
main iteration, the CUDA kernel functions calculateRedCells and calculateBlackCells are called to 
calculate the respective red and black cells alternately. This iteration continues until the condition 𝐸 ≤
𝜀 is achieved. If the tested iterative method 𝑃 is of Half-Sweep type, the calculation of the remaining 
white cells in Line 13 is performed. The final updated results are obtained by copying the contents of 
device memory 𝑉𝑑 to host memory 𝑉 as shown in Line 15. 

 
 
 
 
 

▷ Calculate the remaining white cells using direct method 
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Algorithm 2: GPU Iteration procedure 

procedure ITERATEWITHGPU(P, U, Ud , V, Vd , N, ∈)                                                                                     
▷ P is the solver 

ts ← recordStartTime()  
cuMemcpyHtoD(Ud, U, i) ▷ Copy from host U to device memory Ud 
cuMemcpyHtoD(Vd , V, N)  
k ← 0  
while E > ∈ do ▷ E is the maximum error 

calculateRedCells(Ud , Vd, N, ωr )  
calculateBlackCells(Ud ,Vd , N, ωb, α, β)  
E ← calculateError(Ud , Vd, N)  
k← k+1  

end while  
if isHalfSweep(P) then  

calculateWhiteCells(Ud , Vd, N) ▷ Calculate the remaining white cells 
end if  
cuMemcpyDtoH(V, Vd, N) ▷ Copy from device Vd to host memory V 
te ← recordElapseTime(ts)  
return V, k, te , E  

end procedure  

 
The red and black cell calculation kernels, presented in Algorithms 3 and 4, respectively, are 

implemented as __global__ functions. In CUDA, built-in variables like blockIdx.x, blockIdx.y, 
blockDim.x, blockDim.y, threadIdx.x, and threadIdx.y are used to obtain block and thread indices. 
These indices are used to assign device memory locations to stream processors. The neighboring cell 
indices are denoted by  𝐴, 𝐵, 𝐶 and 𝐷, while 𝑇 represents a constant, and 𝑋 and 𝑌 store the previous 
and updated solution values. Relaxation parameters   𝜔𝑟 and 𝜔𝑏 are used for red and black cells, 
respectively. Algorithm 3 calculates red cells using Eq. (19) or (23), and Algorithm 4 implements 
Parallel Modified TOR for black cell calculation, with accelerated parameters.  

 
Algorithm 3: Kernel function to calculate Red cells 

__global__ 
function CALCULATEREDCELLS (X, Y, N, ωr) 

i ← blockIdx.x×blockDim.x + threadIdx.x 
j ← blockIdx.y×blockDim.y + threadIdx.y 

if 1 ≤ i, j ≤ N − 2 and cellColor(i, j) is red then   ▷ Border cells are skipped in the calculation 

Yi,j ←
𝜔𝑟

4
[XA+XB+XC+XD-T]+(1+ωr)Xi,j 

end if 
end function 

 
The conditions in Line 5 ensure that the indices are within the allowed range, and the function 

cellColor is used to identify cell colors. Note that border cells are excluded from the iteration 
procedure. Line 6 performs double-precision floating-point calculations.  
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Algorithm 4: Kernel function to calculate Black cells 

__global__ 
function CALCULATEBLACKCELLS (X, Y, N, ωb, α, β) 

i ← blockIdx.x×blockDim.x + threadIdx.x 
j ← blockIdx.y×blockDim.y + threadIdx.y 

if 1 ≤ i, j ≤ N − 2 and cellColor(i, j) is black then  ▷ Border cells are skipped in the calculation 

Yi,j ← 
𝜔𝑏

4
 [XA+XB+XC+XD-T]+(1+ωr)Xi,j+  

𝛼

4
 [YA-XA+YB-XB]+  

𝛽

4
 [YC-XC+YD-XD] 

end if 
end function 

 
In half-sweep iterations, only half of the available GPU memory is used for alternating red and 

black cell calculations. Future research will explore more efficient utilization of CUDA threads by 
avoiding conditional statements. 
 
2.4 Harmonic Path Planning 
 

Achieving autonomous behavior in robotics remains a significant goal, necessitating progress in 
key areas such as localization, mapping, and planning. Among these, path planning has garnered 
substantial attention in recent years, particularly in the context of mobile robots [18,19]. This critical 
aspect of robotics, discussed in this section and formulated using Eq. (1), involves determining a 
collision-free trajectory for a robot to efficiently reach its intended target. The ability to generate 
such paths quickly is especially vital in time-sensitive scenarios, such as life-saving operations during 
natural disasters, where delays can have severe consequences. 

The artificial potential field approach [20,21] is a widely used algorithm in the field of path 
planning due to its simplicity and efficiency in generating a direct route from the starting point to the 
goal. Its speed makes it particularly suitable for real-time applications; however, the approach 
encounters challenges in scenarios where deadlocks occur. These deadlock situations, where the 
robot becomes trapped in a local minimum, can be effectively resolved using harmonic functions, as 
detailed in [22]. 

Harmonic functions, which are solutions to Laplace’s equation, offer unique advantages for path 
planning, as elaborated in [23]. Their mathematical properties, such as adherence to the min-max 
principle, ensure that deadlocks are avoided under specific conditions, thereby improving the 
robustness of the planning process. Moreover, these functions provide a framework for generating 
smooth and obstacle-free trajectories. By incorporating harmonic functions into path planning, it is 
possible to achieve safe navigation around obstacles, ensuring that the robot can reach its target with 
enhanced reliability and efficiency. This combination of speed, smoothness, and safety makes the 
strategy highly advantageous for diverse applications. 

 
A harmonic function on a two-dimensional domain is a function that satisfies Laplace’s equation: 
 

𝛻2 =
𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
= 0                                    (27) 

 
In path planning, obstacles, walls, and goals define the boundary. This work computes harmonic 

functions over a grid representing the robot’s environment. Obstacles have a high constant potential, 
while goal regions have a low potential, using Dirichlet boundary conditions. Sequential and parallel 
methods proposed in Sections 2.1 and 2.2 are examined to solve the path planning problem and their 
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performances are analyzed. The resulting potentials guide the robot away from obstacles by 
satisfying  𝛻2𝑈 = 0 in free space. The path tracing algorithm, utilizing gradient descent search, traces 
a path from the start point to the goal point, proceeding to the next lower potential among the eight 
neighbouring points. Algorithm 5 outlines the workflow of this path planning strategy, employing 
Laplace’s equation, Eq. (27) to compute harmonic potentials for generating paths. 
 
Algorithm 5: Path Planning strategy 

procedure PERFORMPATHPLANNING (P, L, G) ▷ P is the chosen method 
(U, W ) ← convertMapToMatrix(L, G) ▷ L stores the map, G is a set of goal points 
V ← calculatePotentials(P, U, W ) ▷ W indicates the occupied cells 
Q ← gradientDescentSearch(V, S, W ) ▷ S is a set of start points 
return Q ▷ Q is the set of generated paths 

end procedure  

 
In the PerformPathPlanning procedure, the convertMapToMatrix function converts the map (L) 

and set of goal points (G) into a matrix variable (W), where each pixel is represented by an integer 
indicating free space (0), occupied cells (1), or goal regions (2). The initial potentials are stored in the 
matrix variable (U), assigning high potential (1.0) to occupied cells, low potential (0.0) to goal points, 
and intermediate values (0.0-1.0) to free cells. The function calculatePotentials wraps the iterative 
method (P) to compute harmonic potentials, returning the updated potentials (V) in the matrix 
variable. Sequential computations were performed in previous studies [15,16,22,23]. Finally, the 
gradientDescentSearch function utilizes the obtained harmonic potentials (V) to generate paths (Q) 
from start points (S) to specified goal points indicated in (W). 
 
2.5 Poisson Image Blending 

 
An image processing application that combines several images into a single composite image is 

known as image blending. Image blending is used in image editing, panoramic stitching, and image 
morphing, among other things. Color and lighting variations in pictures are noticeable to human eyes. 
The goal of image blending is to produce seamless transitions between image segments that come 
from various sources. Image blending is a well-researched problem. To create smooth composite 
images, various algorithms have been proposed. Recent works on blending methods in gradient 
domain can be found in [14,24-26]. 

Let 𝐺 represent the image domain, and 𝛺 be a subset of with boundary 𝛺. Let 𝑓* be a known 
scalar function defined over 𝐺 minus the interior of 𝛺, and 𝑓 and be an unknown scalar function 
defined over the interior of 𝛺. Finally, let 𝑣 be a gradient vector defined over 𝛺. The composition 𝑓 
of 𝑓* over 𝛺 satisfies the minimization problem and is shown in Eq. (28). 

 
𝑚𝑖𝑛
𝑓 ∬ |𝛻𝑓 − 𝑣|2

𝛺
with𝑓|𝜕𝛺 = 𝑓*|

𝜕𝛺′
     (28) 

 
whose solution is the unique solution of Poisson’s Eq. (29) with Dirichlet boundary conditions, 
 

𝛥𝑓 = 𝑑𝑖𝑣𝑣over𝛺𝑓|𝜕𝛺 = 𝑓*|
𝜕𝛺′

      (29) 
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Where, 𝑑𝑖𝑣𝑣 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
  is the divergence of 𝑣 = (𝑢, 𝑣). Since domain, Eq. (29) is reduced to a 

discrete form with Dirichlet boundary conditions as in Eq. (30), 
 
𝑚𝑖𝑛
𝑓|𝛺

∑ (𝑓𝑝 − 𝑓𝑞 − 𝑣𝑝𝑞)
2

(𝑝,𝑞)∩𝛺       (30) 

 

such that 𝑓𝑝 = 𝑓
*
𝑝

 for all 𝑝 ∈ 𝜕𝛺,where 𝑓𝑝 is the intensity of one of the four neighbours of the current 

pixel 𝑝, 𝑣𝑝𝑞is the first-order derivative of the source image, and  𝑓
*
𝑝

  is the intensity of the pixel on 

the boundary. In the preceding study [27], Eq. (30) is minimized by making the Laplacian operator 𝛥𝑓 
equals to the Laplacian operator of the source image 𝛻𝑣 as in Eq. (31). 
 

𝛥𝑓𝑝 = 𝛻𝑣𝑝for all𝑝 ∈ 𝛺     (31) 

 
Hence, the intensity of each pixel in 𝛺 for the generated image can be obtained using the 

following Eq. (32). 
 

|𝑁𝑝|𝑓𝑝 − ∑ 𝑓𝑞𝑞∈𝑁𝑝 = ∑ 𝑣𝑝𝑞𝑞∈𝑁𝑝       (32) 

 
Where, 𝑁𝑝 is the set of the four neighbours of the current pixel 𝑝. Solving Eq. (32) generates a sparse 

linear system that has a size × 𝑁 , where 𝑁 is the number of pixels. The solution to Eq. (32) can be 
obtained using the established iterative methods described in Sections 2.1 and 2.2 To perform image 
blending process in RGB color space, three equations of the form Eq. (32) are solved independently in 
the three (red, green, and blue) color channels. Further details on Poisson image editing are given in 
past studies [27,28]. 
 

2.5.1 Image similarity measurements 
 

Several image quality measurement techniques are available to compare the similarity between 
the final images produced by the tested methods. Based on the statistical method ANOVA [29], three 
metrics were applied namely Mean Square Error (MSE), Structural Similarity Index (SSIM) and 
Structural Content (SC) as mentioned in prior works [30,31]. 

 
The MSE measurement value is given as in Eq. (33). 
 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ (𝐴𝑖𝑗 − 𝐵𝑖𝑗)

2𝑛
𝑗=1

𝑚
𝑖=𝑗        (33) 

 
Where, 𝐴 and 𝐵 represent the pixel values of reference and target images, and (𝑚 × 𝑛) is the size of 
the image. MSE is used to measure the difference between pixel values in 𝐴 and 𝐵, in which a smaller 
value means higher similarity. The ideal MSE value of 0 is obtained when the two images 𝐴 and 𝐵 are 
identical.  
 

Another similarity test that can be used to compare the two images is SSIM as follows in Eq. (34). 
 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜙𝑥𝜙𝑦+𝐶1)(2𝜏𝑥𝑦+𝐶2)

(𝜙𝑥
2+𝜙𝑦

2+𝐶1)(𝜏𝑥
2+𝜏𝑦

2+𝐶2)
     (34) 
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Where, 𝜙𝑥 ,ϕ𝑦  and 𝜏𝑥 ,τ𝑦 denote the mean intensity and standard deviation set of image block and 

image block 𝑥, respectively, while 𝜏xy denote their cross-correlation. 𝐶1 and 𝐶2  are small constants 

value to avoid instability problems when the denominator is too close to zero. If the obtained SSIM 
is equal to 1, it means the two images are identical.  

Similarly, if SC value is equal to 1, it indicates that the two images are identical. The SC 
measurement value is written as in Eq. (35). 
 

𝑆𝐶 =
∑ ∑ (𝐴𝑖𝑗)

2𝑛
𝑗=1

𝑚
𝑖=𝑗

∑ ∑ (𝐵𝑖𝑗)
2𝑛

𝑗=1
𝑚
𝑖=𝑗

      (35) 

 
These three metrics are applied to assess the similarity of the images produced by the proposed 

methods. 
 
3. Results  
 

This section presents the simulation results of applying the considered iterative methods to 
obtain the solutions of Laplace’s and Poisson’s equations for solving path planning and image 
blending problems, respectively. All iterative methods were executed on the same machine running 
Xubuntu 20.04 on Intel i5 3570K CPU running at 3.40GHz with 12GB of RAM. The parallel 
implementations were simulated on Nvidia GeForce RTX 3060 GPU. 
 
3.1 Experiment on Path Planning 
 

The experiment involved various sizes of static environments, with different goal points, starting 
positions, and wall setups (e.g., N1 = 330×270, N2 = 660×540, N3 = 990×810, N4 = 1320×1080). Walls 
and obstacles had a high potential of 1, while the goal area had a very low potential of 0. Free spaces 
had a constant potential between 0 and 1. The path planning simulator was implemented in Java and 
is provided in [32]. The iterative methods in Sections 2.1 and 2.2 were applied to numerically 
compute harmonic potential values, stopping when convergence was achieved. To prevent flat areas 
hindering goal reachability, a maximum precision solution for Eq. (27) was necessary. Table 1 displays 
the iteration count and computational time (in seconds) for computing harmonic potentials. AOR 
variants were slightly faster than SOR, and TOR variants outperformed both. 

 
Table 1 
Simulation results in computing the harmonic potentials in terms of number of iterations and execution time 
(in seconds). Map size:  N1 = 330×270, N2 = 660×540, N3 = 990×810, N4 = 1320×1080; Relaxation parameters: 
ωb = 1.80, ωr = 1.82; Accelerated parameters: α = 1.84, β = 1.86   
Method Iterations Time 

 N1 N2 N3 N4 N1 N2 N3 N4 

FSSOR 6212 23988 53256 92438 2.799 53.473 404.615 1352.573 
FSAOR 5004 19369 43033 74768 2.487 45.011 333.312 1073.432 
FSTOR 4700 18209 40490 70368 2.314 42.830 307.926 1002.658 
HSSOR 3178 12321 27404 47765 1.133 22.346 175.710 549.628 
HSAOR 2547 9934 22150 38595 1.042 18.710 159.187 476.524 
HSTOR 2384 9331 20813 36315 0.992 16.442 141.212 441.592 
FSMSOR 5886 22702 50461 87624 2.493 46.529 395.447 1067.953 
FSMAOR 4663 18077 40224 69937 2.299 40.921 312.588 962.097 
FSMTOR 4356 16919 37660 65461 2.116 37.048 290.222 939.386 
HSMSOR 3005 11660 25968 45227 1.056 24.325 160.588 524.213 
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HSMAOR 2372 9261 20693 36064 0.957 18.084 132.668 439.635 
HSMTOR 2207 8666 19359 33745 0.902 17.207 125.094 417.201 
P-FSMSOR 5875 22659 50309 87343 0.490 3.363 14.226 39.107 
P-FSMAOR 4653 18017 40050 69619 0.487 3.204 13.738 38.523 
P-FSMTOR 4348 16861 37523 65232 0.436 3.067 13.515 37.158 
P-HSMSOR 3004 11644 25928 45081 0.320 1.688 6.844 19.904 
P-HSMAOR 2364 9241 20620 35912 0.288 1.671 6.765 18.944 
P-HSMTOR 2202 8639 19309 33620 0.291 1.606 6.652 18.666 

 

Figure 3 illustrates the generated paths for an environment of size 330×270, in which several 
different start (green) and goal (red) positions were tested. Since identical outputs were obtained, 
the paths generated for other sizes of environment are not shown. Full-Sweep Modified and Half-
Sweep Modified variants were faster than their standard counterparts. Half-Sweep methods were 
superior, reducing iterations by half and significantly speeding up computation (2x faster). For CPU 
implementations, Half-Sweep Modified variants (HSMSOR, HSMAOR and HSMTOR) had the lowest 
execution time, with HSMTOR being the best. Parallel rotating versions (P-HSMSOR, P-HSMAOR and 
P-HSMTOR) outperformed regular versions (P-FSMSOR, P-FSMAOR and P-FSMTOR), with P-HSMTOR 
being the most efficient. Computation increased exponentially with larger environment sizes for all 
iterative methods. The sequential Full-Sweep Modified variants outperformed their Standard 
counterparts by 5-7% in terms of iteration reduction and 6-9% in time reduction. Half-Sweep 
Modified variants reduced iterations by 5-7% and execution time by 5-10% compared to Half-Sweep 
Standard variants. Half-Sweep approaches significantly outperformed Full-Sweep techniques, 
reducing iterations by 48-49% and execution time by 55-57%. 

Full-Sweep Modified and Half-Sweep Modified variants were faster than their standard 
counterparts. Half-Sweep methods were superior, reducing iterations by half and significantly 
speeding up computation (2x faster). For CPU implementations, Half-Sweep Modified variants 
(HSMSOR, HSMAOR and HSMTOR) had the lowest execution time, with HSMTOR being the best. 
Parallel rotating versions (P-HSMSOR, P-HSMAOR and P-HSMTOR) outperformed regular versions (P-
FSMSOR, P-FSMAOR and P-FSMTOR), with P-HSMTOR being the most efficient. Computation 
increased exponentially with larger environment sizes for all iterative methods. The sequential Full-
Sweep Modified variants outperformed their Standard counterparts by 5-7% in terms of iteration 
reduction and 6-9% in time reduction. Half-Sweep Modified variants reduced iterations by 5-7% and 
execution time by 5-10% compared to Half-Sweep Standard variants. Half-Sweep approaches 
significantly outperformed Full-Sweep techniques, reducing iterations by 48-49% and execution time 
by 55-57%. 
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Fig. 3. The generated paths for an environment of size 330×270 with several different starting (red) and 
goal positions (green) 

 
Iteration counts showed no significant differences between parallel and sequential versions, 

attributed to variations in math library implementations. However, parallel versions were 20-28 
times faster than sequential versions. Notably, there were no significant differences in iteration 
reduction between sequential and parallel versions. In this path planning simulation for computing 
harmonic potentials, rotating parallel versions achieved nearly 2x fewer iterations and execution time 
compared to regular parallel versions. Once the potential values were obtained using the examined 
iterative methods, the gradient descent search algorithm would utilize them to guide its exploration.  
 
3.2 Experiment on Image Blending 

 

In this experiment, two sets of images are used to assess the performance of the methods under 
consideration. Table 2 shows the number of pixels inside the image masks that were applied for the 
two image sets. The number of iterations, execution time, and image quality of the examined 
methods are all recorded and evaluated. Optimal relaxation factor and accelerated parameter values 
are required in all variants. Initial results from a trial-and-error method indicate that all parameter 
values should be between 1.5 and 1.9. Table 3 shows that values between 1.62 and 1.76 were chosen 
based on these findings. 

  
Table 2 
Number of pixels inside the image masks 
Item Sky and ballons Lake and crocodile 

Number of pixels 49,506 39,617 

 
The similarity index is used to compare the picture quality, as defined in Section 2.4.1. The two 

images set that include source, target, mask, and initial images are shown in Figure 4. From Table 3, 
it can be observed that the Full-Sweep Standard (FSSOR, FSAOR and FSTOR) and Full-Sweep Modified 
(FSMSOR, FSMAOR and FSMTOR) approaches take at least 600 iterations to converge for sky and 
balloon images. 
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Table 3 
Computational cost for tested images. The relaxation factors are ωb = 1.62, ωr = 1.68 and accelerated 
parameters are α = 1.72, β = 1.76. The two sets of images are: (A) Sky and ballons, and (B) Lake and crocodile 
 Iterations Time 

Method A B A B 

FSSOR 862 1443 9.725 12.964 
FSAOR 680 1144 8.051 10.957 
FSTOR 641 1080 7.467 9.712 
HSSOR 464 777 3.684 5.134 
HSAOR 363 611 2.965 4.170 
HSTOR 341 576 2.778 3.824 
FSMSOR 793 1328 9.436 12.619 
FSMAOR 606 1020 7.109 9.656 
FSMTOR 565 953 6.634 8.926 
HSMSOR 426 713 3.472 4.762 
HSMAOR 322 543 2.662 3.710 
HSMTOR 299 506 2.437 3.422 
P-FSMSOR 793 1328 0.791 1.080 
P-FSMAOR 606 1020 0.677 0.871 
P-FSMTOR 565 953 0.589 0.790 
P-HSMSOR 426 713 0.490 0.668 
P-HSMAOR 322 543 0.441 0.549 
P-HSMTOR 299 506 0.369 0.472 

 

Source Target Mask Initial  

  
  

 

Fig. 4. The source, target, mask and initial images of sky and balloons scene (top) and lake and crocodile 
(bottom) 

 
The Half-Sweep Standard (HSSOR, HSAOR and HSTOR) and the Half-Sweep Modified (HSMSOR, 

HSMAOR and HSMTOR) approaches cut the number of iterations necessary in half, in which the 
gradual improvement of the blending process using Half-Sweep iterations is depicted in Figure 5. The 
rotated Half-Sweep Modified variants (HSMSOR, HSMAOR and HSMTOR) outperform the regular Full-
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Sweep Modified variants (FSMSOR, FSMAOR and FSMTOR) in terms of iteration and computational 
time. Among them, HSMTOR has the fewest iterations and fastest execution time. These results 
strongly support the superiority of HSMTOR. The Modified variants are well-suited for parallel 
processing due to their utilization of Red-Black ordering approaches.  

The parallel implementations on regular (P-FSMSOR, P-FSMAOR and P-FSMTOR) and rotated (P-
HSMSOR, P-HSMAOR and P-HSMTOR) grids require the same number of iterations as their respective 
sequential versions. However, these parallel implementations are significantly faster than the 
sequential ones, with the parallel Half-Sweep Modified variants delivering the shortest execution 
time. The parallel versions on regular grids take 500 milliseconds to 1 second for image blending, 
while the rotating parallel versions take less than 500 milliseconds for image A and 400 to 700 
milliseconds for image B. The Full-Sweep Modified variants reduced iterations by 8 to 12% and were 
3 to 12% faster compared to the Full-Sweep Standard variants. The Half-Sweep Modified variants 
outperformed the Half-Sweep Standard variants, reducing iterations and execution time by 8 to 12% 
and 6 to 11% respectively. The sequential rotating Standard and Modified variants were superior to 
their regular counterparts, with a 46 to 47% reduction in iterations and a 61 to 63% improvement in 
execution time. The parallel versions required the same iterations as their sequential counterparts 
but were 6x to 12x faster. Rotating parallel implementations were faster than regular parallel 
versions, reducing iterations and time by 46 to 47% and 38 to 39% correspondingly.  
 

10th iteration 100th iteration 200th iteration 300th iteration 

HSSOR 

    

HSAOR 
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HSTOR 

    

Fig. 5. Illustration of image blending process using the Half-Sweep approaches at different iterations 

  
The resulting blended images of the lake and crocodile were virtually indistinguishable across all 

the tested methods, as evidenced by the similarity metrics presented in Table 4. The MSE values were 
remarkably close to 0, indicating minimal pixel-wise differences between the images generated by 
the different methods.  

Additionally, the SSIM and SC values were consistently close to 1, further confirming the high 
degree of visual and structural similarity between the generated images (Figure 6). These metrics 
collectively validate the identical nature of the output images across the methods, highlighting the 
robustness and reliability of the blending techniques evaluated in this study. 
 

Table 4 
Similarity measurement for the generated images 
Methods MSE SSIM SC 

FSSOR 0.06491 0.99995 1.00107 
FSAOR 0.07592 0.99995 1.00115 
FSTOR 0.07835 0.99995 1.00117 
FSMSOR 0.06744 0.99995 1.00109 
FSMAOR 0.07103 0.99995 1.00112 
FSMTOR 0.07315 0.99995 1.00113 
HSMSOR 0.07777 0.99993 1.00115 
HSMAOR 0.08120 0.99993 1.00117 
HSMTOR 0.08287 0.99993 1.00118 
P-FSMSOR 0.06678 0.99995 1.00108 
P-FSMAOR 0.07942 0.99995 1.00118 
P-FSMTOR 0.08158 0.99995 1.00119 
P-HSMSOR 0.07866 0.99993 1.00116 
P-HSMAOR 0.08763 0.99993 1.00122 
P-HSMTOR 0.08923 0.99993 1.00123 
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Initial FSSOR FSAOR FSTOR 

    

Initial HSSOR HSAOR HSTOR 

    

Fig. 6. The output images 

 
4. Conclusion 
 

The SOR, AOR and TOR iterative methods have been successfully used for path planning 
simulation and image blending. Red-Black ordering with MSOR, MAOR and MTOR schemes enables 
efficient parallel processing on platforms like CUDA. On CPU, HS Standard and HS Modified methods 
on a rotated grid were approximately 100% faster than their FS Standard and FS Modified 
counterparts on a regular grid. The parallel implementations P-FSMSOR, P-HSMAOR and P-HSMTOR 
on a regular grid outperformed CPU implementation, but P-HSMSOR, P-HSMAOR and P-HSMTOR on 
a rotated grid were the most efficient, with P-HSMTOR delivering the best performance. Fast parallel 
processing is crucial for quick responses in dynamic environments during path planning, and the Red-
Black strategy of MTOR can also be applied to real-time video processing. Future work will explore 
more powerful iterative methods, such as quarter-sweep techniques and block iteration.  
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