

Journal of Advanced Research Design 131, Issue 1 (2025) 26-46

26

Journal of Advanced Research Design

Journal homepage:
https://akademiabaru.com/submit/index.php/ard

ISSN: 2289-7984

Efficient Application of Modified TOR Iterative Method with GPU
Acceleration in Robotics and Image Processing

Farhah Athirah Musli1, Siti Hasnah Tanalol2, Asni Tahir2, Andang Sunarto3, Azali Saudi1,*

1 Faculty of Computing and Informatics, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
2 Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
3 Tadris Matematika, Universitas Islam Negeri Fatmawati Sukarno, Bengkulu, Indonesia

ARTICLE INFO ABSTRACT

Article history:
Received 24 January 2025
Received in revised form 3 March 2025
Accepted 2 May 2025
Available online 16 May 2025

This paper presents the application of the Modified TOR (MTOR) method,
implemented using CUDA, for solving Poisson's equation through the iterative
Finite Difference (FD) method. The study aims to provide a detailed description
of the MTOR method for solving Partial Differential Equations (PDEs) on both
standard and rotated meshes, employing CUDA for parallel processing. The
MTOR method uses a red-black ordering strategy during iteration; consequently,
the calculation of red cells utilizes the updated values of their four neighbouring
black cells, and vice versa. To evaluate the performance of these iterative
methods, robot path planning and image blending problems were tested. Our
results highlight the advantages of employing parallel methods on Graphics
Processing Units (GPUs) in terms of iterations and computational time, compared
to their sequential counterparts. In the path planning simulation, the parallel
implementations exhibited over 20 times faster execution compared to their
corresponding sequential versions. Similarly, in the image blending problem, the
parallel implementations achieved more than a 6-fold improvement in speed
compared to the sequential methods.

Keywords:
Modified TOR; GPU acceleration; harmonic
functions; path planning; image processing

1. Introduction

In this paper, we develop a parallel numerical technique on a Graphics Processing Unit (GPU)
device and provide a comprehensive description of discretization and parallelization for solving
partial differential equations. Parallel computing is crucial for handling large-scale problems in fields
like weather forecasting, planetary sciences, engineering, and more, where reducing computing time
and achieving speedup are critical. Recent studies focus on solving numerical models using various
approaches on GPUs, driven by advancements in GPU cards taken from the previous studies [1-3].
Large-scale problems involving sets of PDEs and parameters require high resolutions and significant
computational resources. Finite Difference (FD) schemes are widely used in numerical models for
engineering and applied science. This work focuses on developing parallel algorithms based on the

* Corresponding author.
E-mail address: azali@ums.edu.my

https://doi.org/10.37934/ard.131.1.2646

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

27

Modified Two-Parameter Over-Relaxation (MTOR) schemes to solve numerical models. We apply
these parallel solvers to solve robot path planning problems using Laplace’s equation and image
composition problems using Poisson’s equation. CUDA C++ and FD schemes are employed to solve
the two-dimensional Poisson’s equation in parallel, leveraging their effectiveness and simplicity. We
implement sequential and parallel versions of these iterative methods, including their modified
variants, on standard and rotated meshes. The efficiency and accuracy of the proposed methods are
evaluated through their application to robot path planning and image blending problems.

While significant advancements have been made in leveraging GPU-based parallel computing to
solve large-scale problems involving partial differential equations (PDEs), challenges remain in
optimizing computational efficiency and accuracy for specific applications such as robot path
planning and image processing. Existing studies primarily focus on general GPU acceleration
techniques, but there is limited exploration of parallelized iterative methods, especially the MTOR
schemes, tailored for solving PDEs like Laplace’s and Poisson’s equations on various mesh
configurations. Furthermore, the integration of these methods for practical applications, such as real-
time robot navigation and seamless image composition, remains underexplored.

This study addresses these gaps by developing a GPU-based parallel numerical technique
employing MTOR schemes to solve PDEs efficiently. The contributions include:

i. Algorithm Development: Design and implementation of parallel algorithms for MTOR schemes

on both standard and rotated meshes to solve Laplace’s and Poisson’s equations.
ii. Application to Real-World Problems: Demonstration of the effectiveness of the proposed

methods in solving robot path planning problems using Laplace’s equation and image blending
tasks using Poisson’s equation.

iii. Performance Evaluation: Comprehensive evaluation of the proposed parallel methods in terms
of computational efficiency, speedup, and accuracy, using CUDA C++ for high-performance
implementations.

iv. Comparative Analysis: Presentation of sequential and parallel versions of the iterative methods,
highlighting the benefits of parallelization and the role of mesh configurations.

By addressing computational challenges and demonstrating practical applications, this study

advances the use of parallel computing techniques for solving PDE-based problems in engineering
and applied sciences.

This paper is organized as follows. In Section 2, both the modeling problem and the two-
dimensional decomposition method on the standard and rotated meshes are introduced. The
sequential and parallel implementations of the proposed iterative methods are presented, as well as
the applications of the Laplace’s and Poisson’s equations to model the respective path planning and
image blending problems are also explained. Section 3 presents the results of numerical experiments
on path planning and image blending problems. Finally, the conclusions are provided in Section 4.

2. Methodology

Numerical methods based on PDE have been widely used in robotics and image processing
applications. These methods involve solving linear systems of equations generated from the PDE
solution on a given mesh. In the previous works [4-9], the established sequential Successive Over-
Relaxation (SOR), Accelerated Over-Relaxation (AOR), and Two-Parameter Over-Relaxation (TOR)
methods, as well as the modified versions MSOR, MAOR and MTOR are implemented to solve various
linear problems. All these iterative methods are implemented on a standard mesh by applying the

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

28

standard Full-Sweep (FS) iteration, thus the standard versions are also known as FSSOR, FSAOR and
FSTOR, whereas the modified versions are called FSMSOR, FSMAOR, and FSMTOR which extracted
from prior studies [9]. The modified versions support parallel processing, and their corresponding
implementations are known as Parallel FSMSOR (P-FSMSOR), Parallel FSMSOR (P-FSMAOR) and
Parallel FSMTOR (P-FSMTOR) methods, respectively. On a rotated mesh, the Half-Sweep (HS)
iteration procedure is applied to reduce computational complexity. Previously, the iterative
algorithms implemented on a rotated mesh were utilized to solve a wide range of problems [10-14].
It was shown that the implementation of HS iteration procedure on a rotated mesh drastically speed
up the computational time with the same order of accuracies. In the next sections, we present the
development of sequential rotated variants, namely HSSOR, HSAOR and HSTOR found in prior studies
[10,13,15], whilst the rotated modified variants are called HSMSOR, HSMAOR, and HSMTOR methods
drawn from preceding studies [9,14,16].

2.1 Modeling Problem and Discretization

The two-dimensional Poisson’s equation is solved in the rectangular mesh 𝛺 = [0 ≤ 𝑥 ≤ 𝑀] ×

[0 ≤ 𝑦 ≤ 𝑁] and is written as in Eq. (1).

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
= 𝑓(𝑥, 𝑦), (1)

with boundary conditions in Eq. (2).

𝑈(𝑥, 𝑦) = 𝑔(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝜕𝛺. (2)

The area is divided uniformly into several cells with mesh size ℎ, where and 𝑥𝑖 = 𝑖ℎ and 𝑦𝑗 = 𝑗ℎ

with 𝑖 = 1, 2, 3, … ,𝑀 and 𝑗 = 1, 2, 3, … ,𝑁.

Assuming a homogenous mesh, each second derivative in Eq. (1) is approximated with centered
FD expressed as in Eq. (3) and (4).

𝜕2𝑈

𝜕𝑥2
≈

𝑈(𝑥−ℎ,𝑦)−2𝑈(𝑥,𝑦)+𝑈(𝑥+ℎ,𝑦)

ℎ2
 (3)

𝜕2𝑈

𝜕𝑦2
≈

𝑈(𝑥,𝑦−ℎ)−2𝑈(𝑥,𝑦)+𝑈(𝑥,𝑦+ℎ)

ℎ2
 (4)

Replacing both Eqs. (3) and (4) into Eq. (1) we obtain Eq. (5)

𝑈(𝑥 − ℎ, 𝑦) + 𝑈(𝑥 + ℎ, 𝑦) + 𝑈(𝑥, 𝑦 − ℎ) + 𝑈(𝑥, 𝑦 + ℎ) − 4𝑈(𝑥, 𝑦) = ℎ2𝑓(𝑥, 𝑦) (5)

Eq. (5) can be summarized as Eq. (6).

𝑈𝑖−1,𝑗 + 𝑈𝑖+1,𝑗 + 𝑈𝑖,𝑗−1 + 𝑈𝑖,𝑗+1 − 4𝑈𝑖,𝑗 = ℎ2𝑓𝑖,𝑗 (6)

On a rotated mesh [10], the centered FD approximation is given as Eq. (7) and (8)

𝜕2𝑈

𝜕𝑥2
≈

𝑈(𝑥−ℎ,𝑦−ℎ)−2𝑈(𝑥,𝑦)+𝑈(𝑥+ℎ,𝑦+ℎ)

ℎ2
 (7)

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

29

𝜕2𝑈

𝜕𝑦2
≈

𝑈(𝑥−ℎ,𝑦+ℎ)−2𝑈(𝑥,𝑦)+𝑈(𝑥+ℎ,𝑦−ℎ)

ℎ2
 (8)

Similarly, by substituting Eqs. (7) and (8) into Eq. (1), we obtain Eq. (9).

𝑈(𝑥 − ℎ, 𝑦 − ℎ) + 𝑈(𝑥 + ℎ, 𝑦 − ℎ) + 𝑈(𝑥 − ℎ, 𝑦 + ℎ) + 𝑈(𝑥 + ℎ, 𝑦 + ℎ) − 4𝑈(𝑥, 𝑦)
= 2ℎ2𝑓(𝑥, 𝑦)

 (9)

where it can be rewritten as in Eq. (10).

𝑈𝑖−1,𝑗−1 + 𝑈𝑖+1,𝑗−1 + 𝑈𝑖−1,𝑗+1 + 𝑈𝑖+1,𝑗+1 − 4𝑈𝑖,𝑗 = 2ℎ2𝑓𝑖,𝑗. (10)

Eqs. (6) and (10) represent the discretized Poisson’s equation for the standard and rotated meshes,

respectively. The distance between each cell for the respective standard and rotated meshes are ℎ

and √2ℎ.

2.2 Sequential Iterative Methods

We should first discuss the sequential iterative methods that are executed on a single CPU before
moving on to their corresponding GPU parallel versions.

2.2.1 Full-sweep iteration

The classic Gauss-Seidel (GS) iterative scheme of Eq. (6) can be written as Eq. (11).

𝑈𝑖,𝑗
(𝑘+1) =

1

4
[𝑈𝑖−1,𝑗

(𝑘+1) +𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘+1) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] (11)

From Eq. (11), we can obtain the SOR iterative scheme that applies a relaxation factor and is

written as Eq. (12).

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗

(𝑘+1) + 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘+1) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] + (1 − 𝜔)𝑈𝑖,𝑗

(𝑘) (12)

In [5], the AOR iterative scheme was developed and given as in Eq. (13).

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗

(𝑘) + 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗]+

𝛼

4
[𝑈𝑖−1,𝑗

(𝑘+1) − 𝑈𝑖−1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘+1)

− 𝑈𝑖,𝑗−1
(𝑘)] + (1 − 𝜔)𝑈𝑖,𝑗

(𝑘)
 (13)

Where, an accelerated parameter 𝛼 is added. Note that if 𝛼 = 𝜔, the original SOR is obtained. An
extension to the AOR is the TOR method [6] that utilizes two accelerated parameters 𝛼 and 𝛽 to
provide more tuning options during the iteration procedure. The TOR iterative scheme is given as in
Eq. (14).

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗

(𝑘) +𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] +

𝛼

4
[𝑈𝑖−1,𝑗

(𝑘+1) − 𝑈𝑖−1,𝑗
(𝑘)] +

𝛽

4
[𝑈𝑖,𝑗−1

(𝑘+1) −

𝑈𝑖,𝑗−1
(𝑘)] + (1 − 𝜔)𝑈𝑖,𝑗

(𝑘)
 (14)

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

30

Obviously, if 𝛼 = 𝛽, then the TOR will reduce to the AOR method as mentioned in previous study
[5]. Eqs. (12), (13), and (14) represent the iterative schemes for FSSOR, FSAOR and FSTOR, respectively.

2.2.2 Half-sweep iteration

Furthermore, the GS iterative scheme on a rotated mesh can be derived from Eq. (10) and given
as shown in Eq. (15).

𝑈𝑖,𝑗
(𝑘+1) =

1

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘+1) + 𝑈𝑖+,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗] (15)

Based on Eq. (15), the respective iterative schemes for HSSOR, HSAOR and HSTOR methods are

given in Eqs. (16), (17) and (18), respectively.

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) + 𝑈𝑖+1,𝑗−1
(𝑘+1) + 𝑈𝑖−1,𝑗+1

(𝑘) + 𝑈𝑖+,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗] + (1 − 𝜔)𝑈𝑖,𝑗

(𝑘) (16)

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘) + 𝑈𝑖+1,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗]+

𝛼

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) − 𝑈𝑖−1,𝑗−1
(𝑘)

+ 𝑈𝑖+1,𝑗−1
(𝑘+1) − 𝑈𝑖+1,𝑗−1

(𝑘)] + (1 − 𝜔)𝑈𝑖,𝑗
(𝑘)

 (17)

𝑈𝑖,𝑗
(𝑘+1) =

𝜔

4
[𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘) + 𝑈𝑖+1,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗]+

𝛼

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) − 𝑈𝑖−1,𝑗−1
(𝑘)] +

𝛽

4
[𝑈𝑖+1,𝑗−1

(𝑘+1) − 𝑈𝑖+1,𝑗−1
(𝑘)] + (1 − 𝜔)𝑈𝑖,𝑗

(𝑘)
 (18)

The HS iteration procedure involves only black cells. During the iteration, all white cells are ignored

and are only calculated after the convergence criterion is met using the Gauss-Seidel formula, Eq. (11).

2.2.3 Full-sweep iteration with modified variants

As an extension to the FSSOR, FSAOR and FSTOR methods, their modified variants FSMSOR,
FSMAOR and FSMTOR methods were developed by employing Red-Black ordering strategy, as shown
in Figure 1 (left), and applying two different relaxation parameters, ωr and ωb, for the respective red
and black cells extracted from previous studies [7-9]. Modifying the SOR scheme Eq. (12), the iterative
scheme for red and black cells of FSMSOR can be written as Eqs. (19) and (20), respectively.

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑟

4
[𝑈𝑖−1,𝑗

(𝑘) + 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑟)𝑈𝑖,𝑗

(𝑘), (19)

 𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗

(𝑘+1) + 𝑈𝑖+1,𝑗
(𝑘+1) + 𝑈𝑖,𝑗−1

(𝑘+1) + 𝑈𝑖,𝑗+1
(𝑘+1) − ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘). (20)

From Eqs. (13) and (14), the respective iterative schemes of FSMAOR and FSMTOR methods for

black cells can be expressed as Eqs. (21) and (22).

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗

(𝑘) + 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘) +𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘)+
𝛼

4
[𝑈𝑖−1,𝑗

(𝑘+1) − 𝑈𝑖−1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘+1) − 𝑈𝑖,𝑗−1
(𝑘) + 𝑈𝑖+1,𝑗

(𝑘+1) − 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗+1

(𝑘+1) − 𝑈𝑖,𝑗+1
(𝑘)] (21)

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

31

and

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗

(𝑘) +𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘) + 𝑈𝑖,𝑗+1
(𝑘) − ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘)+

𝛼

4
[𝑈𝑖−1,𝑗

(𝑘+1) − 𝑈𝑖−1,𝑗
(𝑘) + 𝑈𝑖,𝑗−1

(𝑘+1) − 𝑈𝑖,𝑗−1
(𝑘)] +

𝛽

4
[𝑈𝑖+1,𝑗

(𝑘+1) − 𝑈𝑖+1,𝑗
(𝑘) + 𝑈𝑖,𝑗+1

(𝑘+1) − 𝑈𝑖,𝑗+1
(𝑘)]. (22)

Where, 𝜔𝑏 is the relaxation parameter, 𝛼 and 𝛽 are the accelerated parameters. To calculate the red
cells of FSMAOR and FSMTOR methods, Eq. (19) is used, which is the same equation employed by the
FSMSOR method. This equation only involves the previous values of black cells obtained at the k-th
iteration, as depicted in Figure 2(a). The calculation of black cells, on the other hand, employs the
updated values of red cells, as shown in Figure 2(b).

2.2.4 Half-sweep iteration with modified variants

On a rotated mesh, where the HS iteration procedure is employed, the modified variants HSMSOR,
HSMAOR and HSMTOR apply a Red-Black ordering strategy with a 3-color scheme, as shown in Figure
1. Only red and black cells are calculated in the iteration process. The calculation of the remaining
white cells is performed after the iteration has converged using the rotated GS formula, Eq. (15). As
depicted in Figures 2(c) and 2(d), on the rotated mesh, red and black cells rely on the updated values
of the opposite color of their four neighboring cells. The HSMSOR, HSMAOR and HSMTOR methods
are developed based on the rotated schemes as in Eqs. (16), (17) and (18), respectively. These three
methods employ the same Eq. (23) to calculate red cells, and the iterative scheme for red cells is given
as below.

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑟

4
[𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑟)𝑈𝑖,𝑗

(𝑘). (23)

Correspondingly, the respective iterative schemes of these variants to calculate black cells are

given as in Eqs. (24) – (26).

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) + 𝑈𝑖+1,𝑗−1
(𝑘+1) +𝑈𝑖−1,𝑗+1

(𝑘+1) + 𝑈𝑖+,𝑗+1
(𝑘+1) − 2ℎ2𝑓𝑖,𝑗] + (1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘), (24)

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘) + 𝑈𝑖+1,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗]+(1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘) +

𝛼

4
[𝑈𝑖−1,𝑗−1

(𝑘+1) − 𝑈𝑖−1,𝑗−1
(𝑘) + 𝑈𝑖+1,𝑗−1

(𝑘+1) − 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘+1) − 𝑈𝑖−1,𝑗+1
(𝑘) + 𝑈𝑖+1,𝑗+1

(𝑘+1) −

𝑈𝑖+1,𝑗+1
(𝑘)],

 (25)

𝑈𝑖,𝑗
(𝑘+1) =

𝜔𝑏

4
[𝑈𝑖−1,𝑗−1

(𝑘) + 𝑈𝑖+1,𝑗−1
(𝑘) + 𝑈𝑖−1,𝑗+1

(𝑘) + 𝑈𝑖+1,𝑗+1
(𝑘) − 2ℎ2𝑓𝑖,𝑗]+(1 − 𝜔𝑏)𝑈𝑖,𝑗

(𝑘) +

𝛼

4
[𝑈𝑖−1,𝑗−1

(𝑘+1)
− 𝑈𝑖−1,𝑗−1

(𝑘)
+ 𝑈𝑖+1,𝑗−1

(𝑘+1)
− 𝑈𝑖+1,𝑗−1

(𝑘)
] +

𝛽

4
[𝑈𝑖−1,𝑗+1

(𝑘+1)
− 𝑈𝑖−1,𝑗+1

(𝑘)
+

𝑈𝑖+1,𝑗+1
(𝑘+1) −𝑈𝑖+1,𝑗+1

(𝑘)].

 (26)

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

32

Fig. 1. All red and black cells are calculated alternately in the standard mesh (left). With rotated mesh
(right), only red and black are calculated during the iteration procedure, the remaining white cells are
calculated after the convergence is achieved

(a) (b) (c) (d)

Fig. 2. The computational molecules for (a) red and (b) black cells on the standard mesh, and the respective
molecules for (c) red and (b) black cells on the rotated mesh. The computational molecules for red and black
cells are symmetrical, where the black node applies the updated values of its four neighboring red cells and vice
versa

Algorithm 1 provides the details of the HSMTOR method, where if the parameters are set as 𝛼 = 𝛽

or 𝛼 = 𝛽 = 𝜔, the respective implementation of HSMAOR or HSMSOR are obtained. The conditions in
Line 6 and 11 are applied to identify the red and black cells, respectively. The loop in Line 19 to 23 is
performed to calculate the remaining white cells that are ignored during the main iteration, where
the condition in Line 20 is used to identify the white cells.

Algorithm 1: The function to calculate cells using the Half-Sweep Modified variants

function CALCULATECELLSWITHHSMTOR (X, Y, N, ωr, ωb, α, β, ∈)
ts ← recordStartTime()
k← 0
repeat

for i, j ← 1 to N − 2 do
if i and j are odd then ▷ Red cells

Yi,j ←
𝜔𝑟

4
[XA+XB+XC+XD-T]+(1+ωr)Xi,j

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

33

end if
end for
for i, j ← 1 to N − 2 do

if i and j are even then ▷ Black cells

Yi,j ←
𝜔𝑏

4
 [XA+XB+XC+XD-T]+(1+ωr)Xi,j+

𝛼

4
 [YA-XA+YB-XB]+

𝛽

4
 [YC-XC+YD-XD]

end if
end for
E ← calculateError(X, Y)
k← k+1

until E ¡ ∈
for i, j ← 1 to N − 2 do

if i + j is odd then ▷ White cells

Yi,j ←
1

4
[YA+YB+YC+YD-T]

end if
end for
te ← recordElapseTime(ts)
return Y, E, k, te

end function

2.3 Parallel Iterative Methods

The GPU, initially designed for graphics rendering, has become a valuable tool for general-purpose

computing due to its unique hardware design. It consists of multiple simpler CPUs with faster memory
access and concurrent computational power. GPU computing is well-suited for highly parallel
applications with simple workflows, low memory requirements, and infrequent communication.
CUDA, a parallel computing architecture, utilizes the GPU’s parallel computing structure to solve
complex computing problems. For further information on CUDA programming, refer to [17]. Parallel
solutions to Eq. (1) can only be implemented using Red-Black ordering. Therefore, only the Modified
variants, as described in Sections 2.1.3 and 2.1.4, are developed for parallel implementations.

Let array variables 𝑈 = 𝑈(𝑘) and 𝑉 = 𝑈(𝑘+1) store the host memory values at iterations (𝑘) and
(𝑘 + 1), respectively. Similarly, array variables 𝑈𝑑 and 𝑉𝑑 are the respective previous (𝑘) and updated
(𝑘 + 1) device memory values. Thus, unlike the sequential CPU iteration procedure, initial values of
the solutions need to be copied from host memory 𝑈 and 𝑉 to device memory 𝑈𝑑 and 𝑉𝑑, before the
iteration begins using the CUDA API function cuMemcpyHtoD. After the convergence is achieved, the
results in the device memory 𝑉𝑑are copied back to the host memory 𝑉using CUDA API function
cuMemcpyDtoH, for further processing. This procedure is described in Algorithm 2. In Line 3 and 4,
the contents of host memory 𝑈 and 𝑉 are copied to device memory 𝑈𝑑 and 𝑢𝑣, respectively. In the
main iteration, the CUDA kernel functions calculateRedCells and calculateBlackCells are called to
calculate the respective red and black cells alternately. This iteration continues until the condition 𝐸 ≤
𝜀 is achieved. If the tested iterative method 𝑃 is of Half-Sweep type, the calculation of the remaining
white cells in Line 13 is performed. The final updated results are obtained by copying the contents of
device memory 𝑉𝑑 to host memory 𝑉 as shown in Line 15.

▷ Calculate the remaining white cells using direct method

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

34

Algorithm 2: GPU Iteration procedure

procedure ITERATEWITHGPU(P, U, Ud , V, Vd , N, ∈)
▷ P is the solver

ts ← recordStartTime()
cuMemcpyHtoD(Ud, U, i) ▷ Copy from host U to device memory Ud
cuMemcpyHtoD(Vd , V, N)
k ← 0
while E > ∈ do ▷ E is the maximum error

calculateRedCells(Ud , Vd, N, ωr)
calculateBlackCells(Ud ,Vd , N, ωb, α, β)
E ← calculateError(Ud , Vd, N)
k← k+1

end while
if isHalfSweep(P) then

calculateWhiteCells(Ud , Vd, N) ▷ Calculate the remaining white cells
end if
cuMemcpyDtoH(V, Vd, N) ▷ Copy from device Vd to host memory V
te ← recordElapseTime(ts)
return V, k, te , E

end procedure

The red and black cell calculation kernels, presented in Algorithms 3 and 4, respectively, are

implemented as __global__ functions. In CUDA, built-in variables like blockIdx.x, blockIdx.y,
blockDim.x, blockDim.y, threadIdx.x, and threadIdx.y are used to obtain block and thread indices.
These indices are used to assign device memory locations to stream processors. The neighboring cell
indices are denoted by 𝐴, 𝐵, 𝐶 and 𝐷, while 𝑇 represents a constant, and 𝑋 and 𝑌 store the previous
and updated solution values. Relaxation parameters 𝜔𝑟 and 𝜔𝑏 are used for red and black cells,
respectively. Algorithm 3 calculates red cells using Eq. (19) or (23), and Algorithm 4 implements
Parallel Modified TOR for black cell calculation, with accelerated parameters.

Algorithm 3: Kernel function to calculate Red cells

__global__
function CALCULATEREDCELLS (X, Y, N, ωr)

i ← blockIdx.x×blockDim.x + threadIdx.x
j ← blockIdx.y×blockDim.y + threadIdx.y

if 1 ≤ i, j ≤ N − 2 and cellColor(i, j) is red then ▷ Border cells are skipped in the calculation

Yi,j ←
𝜔𝑟

4
[XA+XB+XC+XD-T]+(1+ωr)Xi,j

end if
end function

The conditions in Line 5 ensure that the indices are within the allowed range, and the function

cellColor is used to identify cell colors. Note that border cells are excluded from the iteration
procedure. Line 6 performs double-precision floating-point calculations.

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

35

Algorithm 4: Kernel function to calculate Black cells

__global__
function CALCULATEBLACKCELLS (X, Y, N, ωb, α, β)

i ← blockIdx.x×blockDim.x + threadIdx.x
j ← blockIdx.y×blockDim.y + threadIdx.y

if 1 ≤ i, j ≤ N − 2 and cellColor(i, j) is black then ▷ Border cells are skipped in the calculation

Yi,j ←
𝜔𝑏

4
 [XA+XB+XC+XD-T]+(1+ωr)Xi,j+

𝛼

4
 [YA-XA+YB-XB]+

𝛽

4
 [YC-XC+YD-XD]

end if
end function

In half-sweep iterations, only half of the available GPU memory is used for alternating red and

black cell calculations. Future research will explore more efficient utilization of CUDA threads by
avoiding conditional statements.

2.4 Harmonic Path Planning

Achieving autonomous behavior in robotics remains a significant goal, necessitating progress in
key areas such as localization, mapping, and planning. Among these, path planning has garnered
substantial attention in recent years, particularly in the context of mobile robots [18,19]. This critical
aspect of robotics, discussed in this section and formulated using Eq. (1), involves determining a
collision-free trajectory for a robot to efficiently reach its intended target. The ability to generate
such paths quickly is especially vital in time-sensitive scenarios, such as life-saving operations during
natural disasters, where delays can have severe consequences.

The artificial potential field approach [20,21] is a widely used algorithm in the field of path
planning due to its simplicity and efficiency in generating a direct route from the starting point to the
goal. Its speed makes it particularly suitable for real-time applications; however, the approach
encounters challenges in scenarios where deadlocks occur. These deadlock situations, where the
robot becomes trapped in a local minimum, can be effectively resolved using harmonic functions, as
detailed in [22].

Harmonic functions, which are solutions to Laplace’s equation, offer unique advantages for path
planning, as elaborated in [23]. Their mathematical properties, such as adherence to the min-max
principle, ensure that deadlocks are avoided under specific conditions, thereby improving the
robustness of the planning process. Moreover, these functions provide a framework for generating
smooth and obstacle-free trajectories. By incorporating harmonic functions into path planning, it is
possible to achieve safe navigation around obstacles, ensuring that the robot can reach its target with
enhanced reliability and efficiency. This combination of speed, smoothness, and safety makes the
strategy highly advantageous for diverse applications.

A harmonic function on a two-dimensional domain is a function that satisfies Laplace’s equation:

𝛻2 =
𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
= 0 (27)

In path planning, obstacles, walls, and goals define the boundary. This work computes harmonic

functions over a grid representing the robot’s environment. Obstacles have a high constant potential,
while goal regions have a low potential, using Dirichlet boundary conditions. Sequential and parallel
methods proposed in Sections 2.1 and 2.2 are examined to solve the path planning problem and their

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

36

performances are analyzed. The resulting potentials guide the robot away from obstacles by
satisfying 𝛻2𝑈 = 0 in free space. The path tracing algorithm, utilizing gradient descent search, traces
a path from the start point to the goal point, proceeding to the next lower potential among the eight
neighbouring points. Algorithm 5 outlines the workflow of this path planning strategy, employing
Laplace’s equation, Eq. (27) to compute harmonic potentials for generating paths.

Algorithm 5: Path Planning strategy

procedure PERFORMPATHPLANNING (P, L, G) ▷ P is the chosen method
(U, W) ← convertMapToMatrix(L, G) ▷ L stores the map, G is a set of goal points
V ← calculatePotentials(P, U, W) ▷ W indicates the occupied cells
Q ← gradientDescentSearch(V, S, W) ▷ S is a set of start points
return Q ▷ Q is the set of generated paths

end procedure

In the PerformPathPlanning procedure, the convertMapToMatrix function converts the map (L)

and set of goal points (G) into a matrix variable (W), where each pixel is represented by an integer
indicating free space (0), occupied cells (1), or goal regions (2). The initial potentials are stored in the
matrix variable (U), assigning high potential (1.0) to occupied cells, low potential (0.0) to goal points,
and intermediate values (0.0-1.0) to free cells. The function calculatePotentials wraps the iterative
method (P) to compute harmonic potentials, returning the updated potentials (V) in the matrix
variable. Sequential computations were performed in previous studies [15,16,22,23]. Finally, the
gradientDescentSearch function utilizes the obtained harmonic potentials (V) to generate paths (Q)
from start points (S) to specified goal points indicated in (W).

2.5 Poisson Image Blending

An image processing application that combines several images into a single composite image is

known as image blending. Image blending is used in image editing, panoramic stitching, and image
morphing, among other things. Color and lighting variations in pictures are noticeable to human eyes.
The goal of image blending is to produce seamless transitions between image segments that come
from various sources. Image blending is a well-researched problem. To create smooth composite
images, various algorithms have been proposed. Recent works on blending methods in gradient
domain can be found in [14,24-26].

Let 𝐺 represent the image domain, and 𝛺 be a subset of with boundary 𝛺. Let 𝑓* be a known
scalar function defined over 𝐺 minus the interior of 𝛺, and 𝑓 and be an unknown scalar function
defined over the interior of 𝛺. Finally, let 𝑣 be a gradient vector defined over 𝛺. The composition 𝑓
of 𝑓* over 𝛺 satisfies the minimization problem and is shown in Eq. (28).

𝑚𝑖𝑛
𝑓 ∬ |𝛻𝑓 − 𝑣|2

𝛺
with𝑓|𝜕𝛺 = 𝑓*|

𝜕𝛺′
 (28)

whose solution is the unique solution of Poisson’s Eq. (29) with Dirichlet boundary conditions,

𝛥𝑓 = 𝑑𝑖𝑣𝑣over𝛺𝑓|𝜕𝛺 = 𝑓*|
𝜕𝛺′

 (29)

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

37

Where, 𝑑𝑖𝑣𝑣 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 is the divergence of 𝑣 = (𝑢, 𝑣). Since domain, Eq. (29) is reduced to a

discrete form with Dirichlet boundary conditions as in Eq. (30),

𝑚𝑖𝑛
𝑓|𝛺

∑ (𝑓𝑝 − 𝑓𝑞 − 𝑣𝑝𝑞)
2

(𝑝,𝑞)∩𝛺 (30)

such that 𝑓𝑝 = 𝑓
*
𝑝

 for all 𝑝 ∈ 𝜕𝛺,where 𝑓𝑝 is the intensity of one of the four neighbours of the current

pixel 𝑝, 𝑣𝑝𝑞is the first-order derivative of the source image, and 𝑓
*
𝑝

 is the intensity of the pixel on

the boundary. In the preceding study [27], Eq. (30) is minimized by making the Laplacian operator 𝛥𝑓
equals to the Laplacian operator of the source image 𝛻𝑣 as in Eq. (31).

𝛥𝑓𝑝 = 𝛻𝑣𝑝for all𝑝 ∈ 𝛺 (31)

Hence, the intensity of each pixel in 𝛺 for the generated image can be obtained using the

following Eq. (32).

|𝑁𝑝|𝑓𝑝 − ∑ 𝑓𝑞𝑞∈𝑁𝑝 = ∑ 𝑣𝑝𝑞𝑞∈𝑁𝑝 (32)

Where, 𝑁𝑝 is the set of the four neighbours of the current pixel 𝑝. Solving Eq. (32) generates a sparse

linear system that has a size × 𝑁 , where 𝑁 is the number of pixels. The solution to Eq. (32) can be
obtained using the established iterative methods described in Sections 2.1 and 2.2 To perform image
blending process in RGB color space, three equations of the form Eq. (32) are solved independently in
the three (red, green, and blue) color channels. Further details on Poisson image editing are given in
past studies [27,28].

2.5.1 Image similarity measurements

Several image quality measurement techniques are available to compare the similarity between
the final images produced by the tested methods. Based on the statistical method ANOVA [29], three
metrics were applied namely Mean Square Error (MSE), Structural Similarity Index (SSIM) and
Structural Content (SC) as mentioned in prior works [30,31].

The MSE measurement value is given as in Eq. (33).

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ (𝐴𝑖𝑗 − 𝐵𝑖𝑗)

2𝑛
𝑗=1

𝑚
𝑖=𝑗 (33)

Where, 𝐴 and 𝐵 represent the pixel values of reference and target images, and (𝑚 × 𝑛) is the size of
the image. MSE is used to measure the difference between pixel values in 𝐴 and 𝐵, in which a smaller
value means higher similarity. The ideal MSE value of 0 is obtained when the two images 𝐴 and 𝐵 are
identical.

Another similarity test that can be used to compare the two images is SSIM as follows in Eq. (34).

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜙𝑥𝜙𝑦+𝐶1)(2𝜏𝑥𝑦+𝐶2)

(𝜙𝑥
2+𝜙𝑦

2+𝐶1)(𝜏𝑥
2+𝜏𝑦

2+𝐶2)
 (34)

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

38

Where, 𝜙𝑥 ,ϕ𝑦 and 𝜏𝑥 ,τ𝑦 denote the mean intensity and standard deviation set of image block and

image block 𝑥, respectively, while 𝜏xy denote their cross-correlation. 𝐶1 and 𝐶2 are small constants

value to avoid instability problems when the denominator is too close to zero. If the obtained SSIM
is equal to 1, it means the two images are identical.

Similarly, if SC value is equal to 1, it indicates that the two images are identical. The SC
measurement value is written as in Eq. (35).

𝑆𝐶 =
∑ ∑ (𝐴𝑖𝑗)

2𝑛
𝑗=1

𝑚
𝑖=𝑗

∑ ∑ (𝐵𝑖𝑗)
2𝑛

𝑗=1
𝑚
𝑖=𝑗

 (35)

These three metrics are applied to assess the similarity of the images produced by the proposed

methods.

3. Results

This section presents the simulation results of applying the considered iterative methods to
obtain the solutions of Laplace’s and Poisson’s equations for solving path planning and image
blending problems, respectively. All iterative methods were executed on the same machine running
Xubuntu 20.04 on Intel i5 3570K CPU running at 3.40GHz with 12GB of RAM. The parallel
implementations were simulated on Nvidia GeForce RTX 3060 GPU.

3.1 Experiment on Path Planning

The experiment involved various sizes of static environments, with different goal points, starting
positions, and wall setups (e.g., N1 = 330×270, N2 = 660×540, N3 = 990×810, N4 = 1320×1080). Walls
and obstacles had a high potential of 1, while the goal area had a very low potential of 0. Free spaces
had a constant potential between 0 and 1. The path planning simulator was implemented in Java and
is provided in [32]. The iterative methods in Sections 2.1 and 2.2 were applied to numerically
compute harmonic potential values, stopping when convergence was achieved. To prevent flat areas
hindering goal reachability, a maximum precision solution for Eq. (27) was necessary. Table 1 displays
the iteration count and computational time (in seconds) for computing harmonic potentials. AOR
variants were slightly faster than SOR, and TOR variants outperformed both.

Table 1
Simulation results in computing the harmonic potentials in terms of number of iterations and execution time
(in seconds). Map size: N1 = 330×270, N2 = 660×540, N3 = 990×810, N4 = 1320×1080; Relaxation parameters:
ωb = 1.80, ωr = 1.82; Accelerated parameters: α = 1.84, β = 1.86
Method Iterations Time

 N1 N2 N3 N4 N1 N2 N3 N4

FSSOR 6212 23988 53256 92438 2.799 53.473 404.615 1352.573
FSAOR 5004 19369 43033 74768 2.487 45.011 333.312 1073.432
FSTOR 4700 18209 40490 70368 2.314 42.830 307.926 1002.658
HSSOR 3178 12321 27404 47765 1.133 22.346 175.710 549.628
HSAOR 2547 9934 22150 38595 1.042 18.710 159.187 476.524
HSTOR 2384 9331 20813 36315 0.992 16.442 141.212 441.592
FSMSOR 5886 22702 50461 87624 2.493 46.529 395.447 1067.953
FSMAOR 4663 18077 40224 69937 2.299 40.921 312.588 962.097
FSMTOR 4356 16919 37660 65461 2.116 37.048 290.222 939.386
HSMSOR 3005 11660 25968 45227 1.056 24.325 160.588 524.213

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

39

HSMAOR 2372 9261 20693 36064 0.957 18.084 132.668 439.635
HSMTOR 2207 8666 19359 33745 0.902 17.207 125.094 417.201
P-FSMSOR 5875 22659 50309 87343 0.490 3.363 14.226 39.107
P-FSMAOR 4653 18017 40050 69619 0.487 3.204 13.738 38.523
P-FSMTOR 4348 16861 37523 65232 0.436 3.067 13.515 37.158
P-HSMSOR 3004 11644 25928 45081 0.320 1.688 6.844 19.904
P-HSMAOR 2364 9241 20620 35912 0.288 1.671 6.765 18.944
P-HSMTOR 2202 8639 19309 33620 0.291 1.606 6.652 18.666

Figure 3 illustrates the generated paths for an environment of size 330×270, in which several
different start (green) and goal (red) positions were tested. Since identical outputs were obtained,
the paths generated for other sizes of environment are not shown. Full-Sweep Modified and Half-
Sweep Modified variants were faster than their standard counterparts. Half-Sweep methods were
superior, reducing iterations by half and significantly speeding up computation (2x faster). For CPU
implementations, Half-Sweep Modified variants (HSMSOR, HSMAOR and HSMTOR) had the lowest
execution time, with HSMTOR being the best. Parallel rotating versions (P-HSMSOR, P-HSMAOR and
P-HSMTOR) outperformed regular versions (P-FSMSOR, P-FSMAOR and P-FSMTOR), with P-HSMTOR
being the most efficient. Computation increased exponentially with larger environment sizes for all
iterative methods. The sequential Full-Sweep Modified variants outperformed their Standard
counterparts by 5-7% in terms of iteration reduction and 6-9% in time reduction. Half-Sweep
Modified variants reduced iterations by 5-7% and execution time by 5-10% compared to Half-Sweep
Standard variants. Half-Sweep approaches significantly outperformed Full-Sweep techniques,
reducing iterations by 48-49% and execution time by 55-57%.

Full-Sweep Modified and Half-Sweep Modified variants were faster than their standard
counterparts. Half-Sweep methods were superior, reducing iterations by half and significantly
speeding up computation (2x faster). For CPU implementations, Half-Sweep Modified variants
(HSMSOR, HSMAOR and HSMTOR) had the lowest execution time, with HSMTOR being the best.
Parallel rotating versions (P-HSMSOR, P-HSMAOR and P-HSMTOR) outperformed regular versions (P-
FSMSOR, P-FSMAOR and P-FSMTOR), with P-HSMTOR being the most efficient. Computation
increased exponentially with larger environment sizes for all iterative methods. The sequential Full-
Sweep Modified variants outperformed their Standard counterparts by 5-7% in terms of iteration
reduction and 6-9% in time reduction. Half-Sweep Modified variants reduced iterations by 5-7% and
execution time by 5-10% compared to Half-Sweep Standard variants. Half-Sweep approaches
significantly outperformed Full-Sweep techniques, reducing iterations by 48-49% and execution time
by 55-57%.

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

40

Fig. 3. The generated paths for an environment of size 330×270 with several different starting (red) and
goal positions (green)

Iteration counts showed no significant differences between parallel and sequential versions,

attributed to variations in math library implementations. However, parallel versions were 20-28
times faster than sequential versions. Notably, there were no significant differences in iteration
reduction between sequential and parallel versions. In this path planning simulation for computing
harmonic potentials, rotating parallel versions achieved nearly 2x fewer iterations and execution time
compared to regular parallel versions. Once the potential values were obtained using the examined
iterative methods, the gradient descent search algorithm would utilize them to guide its exploration.

3.2 Experiment on Image Blending

In this experiment, two sets of images are used to assess the performance of the methods under
consideration. Table 2 shows the number of pixels inside the image masks that were applied for the
two image sets. The number of iterations, execution time, and image quality of the examined
methods are all recorded and evaluated. Optimal relaxation factor and accelerated parameter values
are required in all variants. Initial results from a trial-and-error method indicate that all parameter
values should be between 1.5 and 1.9. Table 3 shows that values between 1.62 and 1.76 were chosen
based on these findings.

Table 2
Number of pixels inside the image masks
Item Sky and ballons Lake and crocodile

Number of pixels 49,506 39,617

The similarity index is used to compare the picture quality, as defined in Section 2.4.1. The two

images set that include source, target, mask, and initial images are shown in Figure 4. From Table 3,
it can be observed that the Full-Sweep Standard (FSSOR, FSAOR and FSTOR) and Full-Sweep Modified
(FSMSOR, FSMAOR and FSMTOR) approaches take at least 600 iterations to converge for sky and
balloon images.

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

41

Table 3
Computational cost for tested images. The relaxation factors are ωb = 1.62, ωr = 1.68 and accelerated
parameters are α = 1.72, β = 1.76. The two sets of images are: (A) Sky and ballons, and (B) Lake and crocodile
 Iterations Time

Method A B A B

FSSOR 862 1443 9.725 12.964
FSAOR 680 1144 8.051 10.957
FSTOR 641 1080 7.467 9.712
HSSOR 464 777 3.684 5.134
HSAOR 363 611 2.965 4.170
HSTOR 341 576 2.778 3.824
FSMSOR 793 1328 9.436 12.619
FSMAOR 606 1020 7.109 9.656
FSMTOR 565 953 6.634 8.926
HSMSOR 426 713 3.472 4.762
HSMAOR 322 543 2.662 3.710
HSMTOR 299 506 2.437 3.422
P-FSMSOR 793 1328 0.791 1.080
P-FSMAOR 606 1020 0.677 0.871
P-FSMTOR 565 953 0.589 0.790
P-HSMSOR 426 713 0.490 0.668
P-HSMAOR 322 543 0.441 0.549
P-HSMTOR 299 506 0.369 0.472

Source Target Mask Initial

Fig. 4. The source, target, mask and initial images of sky and balloons scene (top) and lake and crocodile
(bottom)

The Half-Sweep Standard (HSSOR, HSAOR and HSTOR) and the Half-Sweep Modified (HSMSOR,

HSMAOR and HSMTOR) approaches cut the number of iterations necessary in half, in which the
gradual improvement of the blending process using Half-Sweep iterations is depicted in Figure 5. The
rotated Half-Sweep Modified variants (HSMSOR, HSMAOR and HSMTOR) outperform the regular Full-

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

42

Sweep Modified variants (FSMSOR, FSMAOR and FSMTOR) in terms of iteration and computational
time. Among them, HSMTOR has the fewest iterations and fastest execution time. These results
strongly support the superiority of HSMTOR. The Modified variants are well-suited for parallel
processing due to their utilization of Red-Black ordering approaches.

The parallel implementations on regular (P-FSMSOR, P-FSMAOR and P-FSMTOR) and rotated (P-
HSMSOR, P-HSMAOR and P-HSMTOR) grids require the same number of iterations as their respective
sequential versions. However, these parallel implementations are significantly faster than the
sequential ones, with the parallel Half-Sweep Modified variants delivering the shortest execution
time. The parallel versions on regular grids take 500 milliseconds to 1 second for image blending,
while the rotating parallel versions take less than 500 milliseconds for image A and 400 to 700
milliseconds for image B. The Full-Sweep Modified variants reduced iterations by 8 to 12% and were
3 to 12% faster compared to the Full-Sweep Standard variants. The Half-Sweep Modified variants
outperformed the Half-Sweep Standard variants, reducing iterations and execution time by 8 to 12%
and 6 to 11% respectively. The sequential rotating Standard and Modified variants were superior to
their regular counterparts, with a 46 to 47% reduction in iterations and a 61 to 63% improvement in
execution time. The parallel versions required the same iterations as their sequential counterparts
but were 6x to 12x faster. Rotating parallel implementations were faster than regular parallel
versions, reducing iterations and time by 46 to 47% and 38 to 39% correspondingly.

10th iteration 100th iteration 200th iteration 300th iteration

HSSOR

HSAOR

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

43

HSTOR

Fig. 5. Illustration of image blending process using the Half-Sweep approaches at different iterations

The resulting blended images of the lake and crocodile were virtually indistinguishable across all

the tested methods, as evidenced by the similarity metrics presented in Table 4. The MSE values were
remarkably close to 0, indicating minimal pixel-wise differences between the images generated by
the different methods.

Additionally, the SSIM and SC values were consistently close to 1, further confirming the high
degree of visual and structural similarity between the generated images (Figure 6). These metrics
collectively validate the identical nature of the output images across the methods, highlighting the
robustness and reliability of the blending techniques evaluated in this study.

Table 4
Similarity measurement for the generated images
Methods MSE SSIM SC

FSSOR 0.06491 0.99995 1.00107
FSAOR 0.07592 0.99995 1.00115
FSTOR 0.07835 0.99995 1.00117
FSMSOR 0.06744 0.99995 1.00109
FSMAOR 0.07103 0.99995 1.00112
FSMTOR 0.07315 0.99995 1.00113
HSMSOR 0.07777 0.99993 1.00115
HSMAOR 0.08120 0.99993 1.00117
HSMTOR 0.08287 0.99993 1.00118
P-FSMSOR 0.06678 0.99995 1.00108
P-FSMAOR 0.07942 0.99995 1.00118
P-FSMTOR 0.08158 0.99995 1.00119
P-HSMSOR 0.07866 0.99993 1.00116
P-HSMAOR 0.08763 0.99993 1.00122
P-HSMTOR 0.08923 0.99993 1.00123

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

44

Initial FSSOR FSAOR FSTOR

Initial HSSOR HSAOR HSTOR

Fig. 6. The output images

4. Conclusion

The SOR, AOR and TOR iterative methods have been successfully used for path planning
simulation and image blending. Red-Black ordering with MSOR, MAOR and MTOR schemes enables
efficient parallel processing on platforms like CUDA. On CPU, HS Standard and HS Modified methods
on a rotated grid were approximately 100% faster than their FS Standard and FS Modified
counterparts on a regular grid. The parallel implementations P-FSMSOR, P-HSMAOR and P-HSMTOR
on a regular grid outperformed CPU implementation, but P-HSMSOR, P-HSMAOR and P-HSMTOR on
a rotated grid were the most efficient, with P-HSMTOR delivering the best performance. Fast parallel
processing is crucial for quick responses in dynamic environments during path planning, and the Red-
Black strategy of MTOR can also be applied to real-time video processing. Future work will explore
more powerful iterative methods, such as quarter-sweep techniques and block iteration.

References
[1] Chow, Alex D., Benedict D. Rogers, Steven J. Lind, and Peter K. Stansby. "Incompressible SPH (ISPH) with fast

Poisson solver on a GPU." Computer Physics Communications 226 (2018): 81-103.
https://doi.org/10.1016/j.cpc.2018.01.005

[2] Chen, Jen-Hao, Ren-Chuen Chen, and Jinn-Liang Liu. "A GPU Poisson–Fermi solver for ion channel
simulations." Computer Physics Communications 229 (2018): 99-105. https://doi.org/10.1016/j.cpc.2018.04.002

[3] Kim, Boram, Kwang Seok Yoon, and Hyung-Jun Kim. "Gpu-accelerated laplace equation model development based
on cuda fortran." Water 13, no. 23 (2021): 3435. https://doi.org/10.3390/w13233435

[4] Young, David M. Iterative solution of large linear systems. Elsevier, 2014.
[5] Hadjidimos, Apostolos. "Accelerated overrelaxation method." Mathematics of Computation 32, no. 141 (1978):

149-157. https://doi.org/10.1090/S0025-5718-1978-0483340-6
[6] Kuang, Jiaoxun, and Jun Ji. "A survey of AOR and TOR methods." Journal of computational and applied

mathematics 24, no. 1-2 (1988): 3-12. https://doi.org/10.1016/0377-0427(88)90340-8

https://doi.org/10.1016/j.cpc.2018.01.005
https://doi.org/10.1016/j.cpc.2018.04.002
https://doi.org/10.3390/w13233435
https://doi.org/10.1090/S0025-5718-1978-0483340-6
https://doi.org/10.1016/0377-0427(88)90340-8

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

45

[7] Kincaid, David R., and David M. Young. "The modified successive overrelaxation method with fixed
parameters." Mathematics of Computation 26, no. 119 (1972): 705-717. https://doi.org/10.1090/S0025-5718-
1972-0331746-2

[8] Hadjidimos, A., A. Psimarni, and A. K. Yeyios. "On the convergence of the modified accelerated overrelaxation
(MAOR) method." Applied numerical mathematics 10, no. 2 (1992): 115-127. https://doi.org/10.1016/0168-
9274(92)90034-B

[9] Musli, F. A., J. Sulaiman, and A. Saudi. "Numerical simulations of agent navigation via half-sweep modified two-
parameter over-relaxation (HSMTOR)." In Journal of Physics: Conference Series, vol. 1988, no. 1, p. 012035. IOP
Publishing, 2021. https://doi.org/10.1088/1742-6596/1988/1/012035

[10] Abdullah, Abdul Rahman. "The four point Explicit Decoupled Group (EDG) method: A fast Poisson
solver." International Journal of Computer Mathematics 38, no. 1-2 (1991): 61-70.
https://doi.org/10.1080/00207169108803958

[11] Ali, Norhashidah Hj Mohd, and Lee Siaw Chong. "Group accelerated overrelaxation methods on rotated
grid." Applied mathematics and computation 191, no. 2 (2007): 533-542.
https://doi.org/10.1016/j.amc.2007.02.131

[12] Saudi, Azali, and Jumat Sulaiman. "Robot path planning using Laplacian behaviour-based control (LBBC) via half-
sweep SOR." In 2013 The International Conference on Technological Advances in Electrical, Electronics and
Computer Engineering (TAEECE), pp. 424-429. IEEE, 2013. https://doi.org/10.1109/TAEECE.2013.6557312

[13] Muthuvalu, Mohana Sundaram, and Jumat Sulaiman. "Performance analysis of Half-Sweep AOR iterative method
in solving second kind Linear Fredholm Integral Equations." In 2014 International Conference on Computational
Science and Technology (ICCST), pp. 1-5. IEEE, 2014. https://doi.org/10.1109/ICCST.2014.7045197

[14] Saad, Nordin, and Azali Saudi. "Modified Poisson compositing technique on skewed grid." AIMS Mathematics 7,
no. 2 (2022): 2176-2194. https://doi.org/10.3934/math.2022124

[15] Dahalan, A’qilah Ahmad, and Azali Saudi. "Rotated TOR-5P Laplacian iteration path navigation for obstacle
avoidance in stationary indoor simulation." In Advances in Robotics, Automation and Data Analytics: Selected
Papers from iCITES 2020, pp. 285-295. Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-
70917-4_27

[16] Suparmin, Sumiati, and Azali Saudi. "Path planning in structured environment using harmonic potentials via half-
sweep modified AOR method." Advanced Science Letters 24, no. 3 (2018): 1885-1891.
https://doi.org/10.1166/asl.2018.11182

[17] Guide, Design. "CUDA C++ programming guide." NVIDIA, July (2020).
[18] Hamd, Mostafa Mohammed Massoud, Ahmed Abdellatif Hamed Ibrahim, and Mostafa Rostom Ahmed Atia.

"Selecting Dynamic Path Planning Algorithm Based-Upon Ranking Approach for Omni-Wheeled Mobile
Robot." Journal of Advanced Research in Applied Sciences and Engineering Technology 41, no. 2 (2024): 125-138.
https://doi.org/10.37934/araset.41.2.125138

[19] Abu Ubaidah Shamsudin, Puteri Alisha Balqis Mohd Sharif, Zubair Adil Soomro, Ruzairi Abdul Rahim, Ahmad Athif
Mohd Faudzi, Wan Nurshazwani Wan Zakaria, Mohamad Heerwan Peeie, Carl John Salaan. "Autonomous
Navigation Robot using Slam and Path Planning Based on a Single RP-LIDAR". Journal of Advanced Research in
Applied Sciences and Engineering Technology 53, no. 2 (2025): 161-169.
https://doi.org/10.37934/araset.53.2.161169

[20] Khatib, Oussama. "Real-time obstacle avoidance for manipulators and mobile robots." In Proceedings. 1985 IEEE
international conference on robotics and automation, vol. 2, pp. 500-505. IEEE, 1985.
https://doi.org/10.1109/ROBOT.1985.1087247

[21] Rimon, Elon. Exact robot navigation using artificial potential functions. Yale University, 1990.
[22] Connolly, Christopher I., and Roderic A. Grupen. "The applications of harmonic functions to robotics." Journal of

robotic Systems 10, no. 7 (1993): 931-946. https://doi.org/10.1002/rob.4620100704
[23] Garrido, Santiago, Luis Moreno, Dolores Blanco, and Fernando Martín Monar. "Robotic motion using harmonic

functions and finite elements." Journal of intelligent and Robotic Systems 59 (2010): 57-73.
https://doi.org/10.1007/s10846-009-9381-3

[24] Hu, Changmiao, Lian-Zhi Huo, Zheng Zhang, and Ping Tang. "Multi-temporal landsat data automatic cloud removal
using poisson blending." IEEE Access 8 (2020): 46151-46161. https://doi.org/10.1109/ACCESS.2020.2979291

[25] Pan, Yang, Mingwu Jin, Shunrong Zhang, and Yue Deng. "TEC map completion using DCGAN and Poisson
blending." Space Weather 18, no. 5 (2020): e2019SW002390. https://doi.org/10.1029/2019SW002390

[26] Tan, Jeremy, Benjamin Hou, Thomas Day, John Simpson, Daniel Rueckert, and Bernhard Kainz. "Detecting outliers
with poisson image interpolation." In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021:
24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part V 24, pp.
581-591. Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-87240-3_56

https://doi.org/10.1090/S0025-5718-1972-0331746-2
https://doi.org/10.1090/S0025-5718-1972-0331746-2
https://doi.org/10.1016/0168-9274(92)90034-B
https://doi.org/10.1016/0168-9274(92)90034-B
https://doi.org/10.1088/1742-6596/1988/1/012035
https://doi.org/10.1080/00207169108803958
https://doi.org/10.1016/j.amc.2007.02.131
https://doi.org/10.1109/TAEECE.2013.6557312
https://doi.org/10.1109/ICCST.2014.7045197
https://doi.org/10.3934/math.2022124
https://doi.org/10.1007/978-3-030-70917-4_27
https://doi.org/10.1007/978-3-030-70917-4_27
https://doi.org/10.1166/asl.2018.11182
https://doi.org/10.37934/araset.41.2.125138
https://doi.org/10.37934/araset.53.2.161169
https://doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.1002/rob.4620100704
https://doi.org/10.1007/s10846-009-9381-3
https://doi.org/10.1109/ACCESS.2020.2979291
https://doi.org/10.1029/2019SW002390
https://doi.org/10.1007/978-3-030-87240-3_56

Journal of Advanced Research Design

Volume 131, Issue 1 (2025) 26-46

46

[27] Pérez, Patrick, Michel Gangnet, and Andrew Blake. "Poisson image editing." In Seminal Graphics Papers: Pushing
the Boundaries, Volume 2, pp. 577-582. 2023. https://doi.org/10.1145/3596711.3596772

[28] Afifi, Mahmoud, and Khaled F. Hussain. "MPB: A modified poisson blending technique." Computational Visual
Media 1 (2015): 331-341. https://doi.org/10.1007/s41095-015-0027-z

[29] Hashim, S. H. A., F. A. Hamid, J. J. Kiram, and J. Sulaiman. "The relationship investigation between factors affecting
demand for broadband and the level of satisfaction among broadband customers in the South East Coast of Sabah,
Malaysia." In Journal of Physics: Conference Series, vol. 890, no. 1, p. 012149. IOP Publishing, 2017.
https://doi.org/10.1088/1742-6596/890/1/012149

[30] Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. "Image quality assessment: from error visibility
to structural similarity." IEEE transactions on image processing 13, no. 4 (2004): 600-612.
https://doi.org/10.1109/TIP.2003.819861

[31] Memon, Farida, Mukhtiar Ali Unar, and Sheeraz Memon. "Image quality assessment for performance evaluation
of focus measure operators." Mehran University Research Journal of Engineering & Technology 34, no. 4 (2015):
379-386.

[32] "Path planning simulator," https://github.com/azalisaudi/planner. https://github.com/azalisaudi/planner

https://doi.org/10.1145/3596711.3596772
https://doi.org/10.1007/s41095-015-0027-z
https://doi.org/10.1088/1742-6596/890/1/012149
https://doi.org/10.1109/TIP.2003.819861
https://github.com/azalisaudi/planner

