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The environmental impact of cybersecurity, especially on the agenda of energy 
consumption and carbon emissions, is becoming one of the concerns in the 
cybersecurity industry. Automatic Android classification plays a vital role in combating 
the rapidly growing number of Android malware variants. This paper describes a highly 
accurate ensemble classification approach for detecting malicious Android apps. The 
design of this two-phase ensemble considers diversity as a key aspect. In the first phase, 
a large number of discriminative features for classification are extracted from Android 
application package (APK) files, and a Genetic Algorithm(GA) based feature subset 
selection procedure is applied on different types of base classifiers. In the second phase, 
an initial pool of classifiers is constructed by varying parameters of base classifiers, and 
a heuristic search process is conducted aiming at pruning the learning models in the 
initial pool. The results show that evaluation with 1554 malware apps and 2400 free 
popular apps reported a detection accuracy of 97.6% and an ROC curve (AUC) value of 
99.5% that is better than the existing static analysis-based method. The integration of 
these technologies into malware detection processes not only bolsters security but also 
supports environmental sustainability in information technology (IT) practices. These 
actions would drive green IT towards sustainable development goals (SDG). 
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1. Introduction 
 

Cybersecurity is having an increasing impact on the environment, with rising energy use and 
carbon emissions being a major concern throughout the nation . Digital grid applications, which rely 
on cloud platforms and other mobile internet technologies, are one of the green ways to address this 
problem [1]. They greatly increase IT efficiency and reduce carbon emissions. However, these 
technologies face challenging security issues. The integration of several research studies on machine 
learning-aided methods, deep neural networks, and optimised integrated learning to achieve higher 
efficiency and accuracy in malware classification is applied. The growth of Android malware 
necessitates the development of efficient detection strategies. The contribution of machine learning 
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and deep learning techniques to Android malware classification is increasing, which organisational IT 
departments can use to improve green IT practices [2]. Milosevic, Dehghantanha, and Choo introduce 
Machine Learning Aided Systems for Android Malware Classification that demonstrate accurate static 
Android malware analysis and effective computation, ultimately reducing energy use in 
organisational IT operations [3] . The efficiency of Deep Neural Networks for Android app 
classification is proven, indicating a reduction of the necessary computational resources [4]. Taha 
and Barukab propose an optimised ensemble learning technique using genetic algorithms that 
enhances Android malware detection accuracy but reduces computational resources due to high 
malware detection accuracy [5]. Better green IT practices can be made possible by these 
computational methods, which will make the digital grid IT environment more sustainable [6]. 

The rapid growth in Android platform usage over the past several years has led to an increase in 
targeting these devices by malware authors. Android-targeted malware now accounts for the vast 
majority (97%) of the mobile threat landscape. Android malware is adapting and evolving, embracing 
more sophisticated tactics to target users. Consequently, recent studies have proposed many 
methods for detecting Android malware using machine learning techniques. Malicious and benign 
Android apps are represented by vectors of features, which are obtained by static analysis or dynamic 
execution of apps. Static features can be extracted directly from intermediate code representations 
obtained through decompiling the Android application package (APK) file. Dynamic features are 
collected by monitoring the runtime behaviours of the apps [7]. These features are used to train 
classifiers that are able to learn a generalised description of Android malware. By applying this 
knowledge in the detection phase, an unknown instance of Android malware can be classified as 
malicious or benign. However, the performance of existing Android classification approaches is still 
not satisfactory [8]. 

Diversity can usually be introduced into the classifier in several ways: (1) manipulate the data 
samples for each ensemble member, (2) use different feature subsets for each classifier in the 
training of base classifiers, and (3) choose different types of classifiers with variant parameters as 
building the initial pool of base classifiers. Thus, the task of building an effective ensemble to improve 
the detection of Android malware can be broken down into two challenging research questions: (1) 
How to find a set of feature subsets for each base classifier so as to ensure high individual accuracy 
and high diversity among those base classifiers? and (2) How to build a good performance (i.e., 
accuracy) ensemble system from a large collection of diverse base classifiers obtained from the first 
stage? 

This paper introduced an innovative two-phase ensemble approach and showed its superiority in 
the malware detection tasks to mitigate the detection of Android malware. In an empirical evaluation 
on a total of 1554 Android malware samples, this approach is shown to be highly effective, enabling 
a detection accuracy of 97.6% and an area under the ROC curve (AUC) value of 99.5%. It offers hope 
for developing fast and scalable tools in classifying a large number of Android malware variants. 
Furthermore, this paper aims to contribute by providing a comprehensive experimental study to 
compare various data mining techniques (different individual classifiers and well-known ensembles) 
with the paper-proposed ensemble for malware detection. A set of 2,400 benign samples and 1,554 
malicious were extracted from Android apps. Following on this, a two-phase ensemble approach for 
Android malware classification is incorporated. In phase I, It proposed a novel genetic algorithm (GA)-
based feature subset selection method for each base classifier. On top of that, a pool of classifiers by 
varying parameters of base classifiers to obtain an optimal pruned ensemble for efficient malware 
classification was constructed by a heuristic ensemble selection algorithm in phase II. Finally, the 
two-phase ensemble approach enhances overall classification performance in terms of accuracy, 
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receiver operating characteristic (ROC) curves, and area under the ROC curve (AUC) demonstrated in 
this paper. 

 
2. Literature Review 

 
There have been intensive works in applying machine learning techniques to the malware 

classification problem. Shhadat et al. propose a more enhanced feature set is proposed using random 
forests to reduce the number of features, and an improvement in accuracy is achieved by applying 
several machine learning algorithms on the benchmark dataset [9]. Binary Classification with Decision 
Trees, Multiple Classification with Random Forests, and Binary Classification with Bernoulli's Plain 
Bayes, which achieved an accuracy of more than 91%. Li et al. proposed a meta-feature mining 
algorithm based on MetaNET, which can discover potential relationships between samples belonging 
to the same category and use meta-features to identify complex Android malware with excellent 
robustness and stability [10]. Kolter and Maloof extracted byte sequences from executables, 
converted them into n-grams, and trained several classifiers [11]. 

On the other hand, several machine learning-based approaches have been proposed to detect 
Android malware. Aslan et al. proposed a hybrid architecture that integrates two extensive pre-
trained network models in an optimised manner, which was tested on three datasets, Malimg, 
Microsoft BIG 2015 and Malevis, through data collection, designing a deep neural network 
architecture, training the proposed deep neural network architecture, and evaluating the trained 
deep neural network [12]. Shabtai et al. trained machine learning models using features of 
permission usage in Android apps [13] to evaluate their models by measuring the true positive ratio, 
accuracy and the area under the ROC curve (AUC) for different classifiers. Vinayakumar, R, et al. 
proposed ScaleMalNet, a scalable deep learning network architecture for malware detection, which 
is able to leverage big data techniques to process large numbers of malware samples, classify 
executables as either malware or legitimate using static and dynamic analysis, and categorise 
malware executables into corresponding malware families [14]. The architecture is capable of 
processing large numbers of malware samples using big data techniques, classifying executables into 
malware or legitimate files using static and dynamic analysis, and categorising malware executables 
into corresponding malware families. Xu et al.  propose a dynamic-static mixed-mode malicious 
webpage detection system, which adopts a secondary cascade detection method. In the rule-based 
classifier attribute extraction, the idea of associated text tracking and merging is applied to 
significantly improve the accuracy of the static detection algorithm; the designed lightweight virtual 
machine is used to replace the traditional system-level virtualised detection environment, which 
makes the dynamic detection system have a higher task throughput rate [15]. Peiravian et al. 
extracted a heterogeneous feature set and processed each feature independently using multiple 
kernel learning algorithms [16]. Similarly, Gascon et al. extracted function call graphs from Android 
apps and mapped call graphs to a graph kernel. A support vector machine (SVM) was then trained to 
distinguish between malware and benign apps. Most of these works have trained a single or a set of 
machine learning algorithms. One machine learning model, which performed best against a 
predetermined set of criteria, was then chosen to conduct classification [17]. 

On top of single-model methods, several researchers have examined ensemble methods, which 
combine a collection of training models in malware detection. The main idea of an ensemble 
approach is to combine a set of weak classifiers to obtain a better composite classifier. Guo et al. 
proposed a malware classification approach based on an ensemble classifier. To choose the best 
classification features, the information-gain feature selection method was conducted on the byte n-
gram-based features. Then, a probabilistic neural network (PNN) was applied to construct an 
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individual classifier for detection. Finally, the D-S theory of evidence was used to combine the 
contribution of each individual classifier to make a final decision [18]. Ye et al. proposed an 
interpretable string-based malware detection system, SBMDS, to classify file samples and predict the 
exact types of malware. SBMDS adapted an SVM ensemble with a bagging technique to improve the 
system's effectiveness and efficiency. They achieved an accuracy of 93% that outperformed other 
classifiers, such as a single SVM, a Naive Bayes ensemble with bagging, and a J4.8 version of a decision 
tree ensemble with bagging [19]. In addition, Sami et al. employed a static approach, where API calls 
were extracted from binary files and trained an ensemble of Random Forests [19]. Menahem et 
al. performed a comparative study on ensemble methods for malware detection by combining five 
different base classifiers. The following combining algorithms were examined: majority voting, 
distribution summation, Naive-Bayes combination, Bayesian combination, performance weighting, 
stacking, and Troika [20]. The authors aimed to find the best ensemble method for detecting malware 
in terms of accuracy, AUC, and execution time. Up to date, numerous ensemble-based approaches 
have been executed in Android malware detection by involving weighted predictions of classifiers 
and generating base learners from main classifiers. Three types of combination schemes (i.e., 
majority voting, stacking, and variant stacking) were applied to construct the ensemble system [21]. 

 
3. Methodology 
3.1 Feature Extraction and Dataset 

 
The dataset used for this study consists of 1554 Android Malware samples and 2400 benign 

Android apps in Android application package (APK) format. These Android malware samples are 
collected from three different sources: Contagio Mobile, the Android Malware Genome Project and 
sharing from antivirus vendors. These sources were selected to ensure diversity and 
representativeness of malware variants across different time periods and attack types. To validate 
authenticity, the malware samples were cross-verified using VirusTotal, and only those with 
consistent family classifications by at least two out of three major antivirus engines (AVG, ESET 
NOD32, and Bitdefender) were retained. Malware family names were assigned based on majority 
agreement among these engines. This dataset covers 107 distinct Android malware families, 
spanning a decade from 2011 to 2021. 

For the benign class, 2400 samples were selected from the top 100 free applications across 12 
categories in the Google Play Store (April 2021). To further ensure their benign nature, all applications 
were re-analysed using VirusTotal, and only those with no malware flags were included. Feature 
extraction was automated using custom Python scripts built on the Androguard library. The 
extraction process followed a three-stage pipeline: (1) APKs were decompressed to access manifest 
files and resource folders; (2) permission declarations and component configurations were parsed 
from the manifest; (3) assembly code (smali files) was scanned to identify sensitive APIs, shell 
commands, embedded URLs, and suspicious strings indicative of malicious behaviour. Additionally, 
structural features such as file sizes, number of methods, presence of native binaries, and embedded 
archives were extracted. 

Feature selection emphasised indicators empirically linked to malicious behaviour and commonly 
used by human malware analysts. These criteria were derived from recent malware analysis reports, 
security whitepapers, and manual inspection of known malware families. Ultimately, 252 
discriminative features were selected for modelling, balancing comprehensiveness with redundancy 
avoidance. 
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Table 1 
A List of Typical Extracted Features 

Category Feature Category Feature 
 
 

Risky API 
 

Runtime.exec()  
 

Requested     
permission 

RECEIVE_BOOT_COMPLETED 
GetDeviceId READ_SMS 
GetLastKnownLocation() ACCESS_COARSE_LOCATION 
GetDeclaredMethod() READ_LOGS 
SmsMessage.createFromPdu READ_HISTORY_BOOKMARKS 

Native code Su, sh, chmod, chown, ps Statistical feature Size of apk,  presence of zip 
Native lib 
Loading 

System.loadLibrary () Suspicious string Rageagainstthecage, GingerBreak 

 
VM detection 

Android.os.Build.MODEL  
Obfuscation 

Ration of total valid method names 
Settings.Secure.getString MessageDigest.getInstance 

Use reflection Reflect.Method.invoke MessageDigest.digest 
 
An ARFF file is built for the use of Weka software with the extracted data, as shown in Table 1 

[22]. All attributes have binary values: 'y' and 'n', indicating the existence or absence of the feature, 
respectively. There are 189 kinds of permissions, including 148 Android system permissions and 41 
custom-defined permissions, which are all included in the feature set and have been found in 
the malware dataset. The rest of the feature set consists of potential risky APIs, shell commands, and 
attributes of the APK file, among others. Table 1 lists some of these extracted features as examples. 
To better mitigate mobile malware threats, It made the Android malware samples used in this work 
and all extracted feature sets available to the research community on GitHub. 

 
3.2 Ensemble and Diversity 

 
An ensemble is used to improve the performance of Android malware detection in terms of 

accuracy or other measurable merits (e.g., ROC, AUC). Both theoretical and empirical research has 
shown that ensemble methods can generate more accurate classification results than individual 
classifiers. To promote the diversity of each individual model, several methods were employed to 
achieve this goal by combining them into an ensemble. Diversity can be naturally obtained by using 
different types of base classifiers. The intuition is that each base classifier has an explicit or implicit 
bias, leading them to prefer certain generalisations over others. 

The use of varied feature subsets by each ensemble member helps enhance diversity. 
Additionally, Diversity is introduced into the ensemble by identifying a subset of features for each 
base classifier, thus encouraging divergence between them. The core idea is that different feature 
subsets offer distinct perspectives on the data, resulting in diverse individual learners. This approach 
also helps reduce the dimensionality of base classifiers and lowers the overall computational 
complexity of the ensemble. Unlike traditional feature selection algorithms that focus solely on 
optimizing accuracy, in ensemble methods, both accuracy and diversity are crucial considerations. To 
address the first research question raised in section 1, It proposes a novel feature subset selection 
method based on genetic algorithm (GA) for each base classifier. 

Another method for creating diverse individual learners is by varying the parameter settings of 
the base classifiers. Hence, the third approach to generating diversity involves building a pool of 
training models using the base classifiers from the previous step, each trained with different 
parameter configurations. For example, J48 was trained by adjusting parameters such as confidence 
factor and minimum number of instances per leaf. Once this pool of trained models is created, 
instead of combining all of them, It selects a subset of models to form the ensemble. This selection 
process is crucial for two main reasons: efficiency and predictive performance. A smaller ensemble 



Journal of Advanced Research Design 
Volume 140 Issue 1 (2026) 208-226 

213 
 

reduces computational complexity compared to a larger one, and empirical studies by 
Dietterich suggest that a pruned ensemble may be more accurate than the original [23]. To address 
the second research question raised in section 1, an ensemble pruning approach based on the 
method proposed by Caruana et al. [24]. 

In this paper, It used the divergence metric, which is an intuitive measure of diversity between a 
pair of classifiers, to evaluate the diversity among base classifiers. Consider two classifiers, Ci and Cj, 
and a 2x2 table that summarises their outputs as shown in Table 2. The entries in the table are the 
probabilities for the pair of correct or incorrect outputs of classifiers. For instance, the N10 indicates 
the number of instances in which classifier Ci has correctly classified the instances, but Cj has 
misclassified these instances. 

 
Table 2 
Relationship between a pair of classifiers 

		
correct(1)		 wrong(0)	

correct(1)		 		 	 	 	

	wrong(0)		 		 	 	 	

Total, 	
 

The disagreement between two classifiers is measured by Eq. (1)： 
 

Dis!,# =	
$!"%$"!

$""%$"!%$!"%$!!
          (1) 

 
This measure is equal to the probability that the two classifiers will disagree on their decisions. 

For an ensemble consisting of L base classifiers, it will generate &	(&)*)
,

 pairwise diversity values. The 
disagreement diversity among the whole set of classifiers is then defined as an average over all the 
pairs of disagreement below Eq. (2):  

 
𝐷𝑖𝑠 = 	 #

$	($'()∑ ∑ +,-!,#$
#%!&'

$
!%'

           (2) 

The diversity increases with increasing values of the disagreement measure in the range from 0 
to 1. In GA-based Feature Selection, it is used as a component of the fitness function guiding the 
process of feature subset selection for individual classifiers. 

 
3.3  System Architecture 

 
As shown in Figure 1, it is describe the workflow of the proposed ensemble classification approach, 

which is composed of two major phases: (1) the creation of a set of optimal feature subsets for 
individual classifiers, and (2) the construction of an optimal ensemble to yield the final prediction. 

In the first phase, a large number of discriminative features for classification are extracted from APK 
files, followed by the application of a GA-based feature subset selection on different types of base 

classifiers. In the second phase, an initial pool of classifiers is constructed by varying the parameters 
of base classifiers. Subsequently, a heuristic search process is conducted, aiming at pruning the 

learning models in the initial pool. 
 

kD kD

iD 11N 10N

iD 01N 00N
00011011 NNNNN +++=
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Fig. 1.  The System Overview Architecture 

 
  

3.4  GA-based Feature Selection 
 
The primary purpose of feature selection is to design a more compact classifier with as little 

performance degradation as possible. The problem of feature selection becomes even more 
cumbersome in the context of ensemble because a set of subsets S = 	 {S*, S,, … , S-} , (S! ⥹ W, 
where W is a set with n features), is to be chosen instead of a single subset.  

 

Fig. 2.  GA based feature subsets selection 
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Figure 2 illustrates the process of ensemble feature subset selection. Feature subset selection can 
be considered a multi-criteria optimisation problem in a vast search space. The criteria to be 
optimised include the classification accuracy of each classifier and the diversity among individual 
classifiers. Genetic algorithms [17] offer a particularly effective approach to these kinds of multi-
criteria optimisation challenges in high-dimensional search spaces. Therefore, this paper proposes a 
GA-based method for feature subset selection. Genetic algorithms are adaptive search methods 
inspired by the evolutionary process of biological populations [25]. In GA, a population consists of a 
set of candidate solutions, with potential solutions encoded as the chromosomes of individuals. A 
fitness function evaluates the quality of a solution during the evolutionary process. The fitter 
members from the previous generation and their offspring, created through crossover and mutation 
processes, compose each succeeding generation. After many generations, the chromosome solution 
achieving the best fitness value is considered the optimal solution. 

 

 

Fig. 3. Algorithm FSS_GA_BC 

The genetic algorithm used for feature subset selection for individual classifiers is similar to a 
standard GA. Figure 3 shown an outline of the proposed algorithm, FSS_GA_BC (GA based Feature 
Subset Selection for base classifiers) . Initialize population by randomly choosing the number of 
features included in each feature subset. Following that, the base classifier Ci, which is represented 
as i th row in a chromosome, the size of each feature subset Ni is independently chosen from a 
uniform distribution between 1 and the number of features extracted in the malware dataset. Ni  are 
randomly selected and set them to the value 1, which means that the corresponding features are 
included in the classifier training set. The fitness of each chromosome is calculated in lines 4-5. In this 
step, after each base classifier evaluating selected feature set, they return the classification 
accuracies and diversity to the fitness function. After the whole population has been evaluated, in 
lines 7-9, Firstly selecting the preferred chromosome with a high fitness score, and then conduct the 
crossover and mutation operations on selected chromosomes with a predefined P. (probability of 
crossover) and P/ (probability of mutation), respectively. The evolutionary process will repeat until 
terminating generation is reached and the final chromosome would be the optimal set of feature 
subsets for each individual classifier.  

 
3.4.1 Fitness Function 

 
The classification accuracy and diversity are the two criteria used to design for current model’s 

fitness function. The fitness of a chromosome is defined as Eq. (3): 
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Fitness!:	W0	X	
∑ 0..230.4.(5/,!)0
"

6
+ (	W7	X	dis7P8, i8		               (3) 

 
The fitness function is weighted by two predefined parameters W0 and W7 for the classification 

accuracy and diversity among the base classifiers, respectively. Furthermore, accuracy! specify the 
classification accuracy of the i th base classifier upon the feature subset, which is calculated over the 
validation dataset. Diversity is calculated using Equation 2, measuring the differences in predictions 
among the base classifiers. Therefore, a chromosome that exhibits both high classification accuracy 
and significant disagreement (diversity) among the entire set of classifiers aiming to yield a high 
fitness value for high accuracy classification.  

 
3.4.2 Crossover 

 
A crossover operator swaps bits between two chromosomes based on a certain probability, P. 

While one-point crossover is inspired by biological processes, it encounters a significant limitation 
with two-dimensional structured chromosome: the inherent two-dimensional information might be 
disregarded or lost, as this crossover operator does not account for the matrix-like structure of the 
chromosomes. The chromosome is a matrix with the dimension of C ×W . where each row 
represents a subset of features for an individual base classifier, and the fitness function is calculated 
for each row. A uniform crossover operator tailored to chromosome's unique encoding generates 
offspring from the parent chromosomes using a randomly generated crossover mask, treating every 
feature as a potential crossover point. Consequently, each row of the offspring contains a blend of 
genes (features) from the corresponding row of each parent, ensuring a mix of attributes without a 
fixed number of crossing points, but will be averaged at 9	×;

,
. The key advantage of the uniform 

crossover is its ability to exchange bits instead of entire segments, facilitating the recombination of 
features within individual classifiers irrespective of their positions in the matrix. 

 
3.4.3 Mutation 

 
After the crossover process, the chromosomes undergo mutation. The purpose of mutation is to 

prevent the algorithm from becoming trapped in a local optimum, thereby ensuring diversity within 
the population. Given the various forms of mutation applicable to different chromosome 
representations, the approach to mutation also takes into account the two-dimensional structure of 
the chromosome. For each row of matrix with the dimension of C ×W, a random Index generated p, 
where 1 < p	 < W, that represent the location selected to be the mutation point that row. The value 
of the bit at this locus (changing a 0 to 1 and vice versa) with a predetermined probability of mutation.  

 
3.5 Ensemble Selection 

 
In the Phase II, main two steps are overproduction and selection. An initial pool of classifiers ς =

	CC*	,C,,…,C6D is constructed by varying control parameters of each base classifier C! which are 
obtained from algorithm 1 in Phase I. These classifiers in the initial pool were trained on the training 
data set T and then a library of classifier models was created. Those classifiers derived from the same 
base classifiers C! as a group = C! ∶ 	 CC!,*	,C!,,,…,C!,-D  where every classifiers share the same feature 
subsets	FSC! are denoted. The initial pool of the training models consists of either homogeneous or 
heterogeneous models. Models that derive from the same base classifier by varying classifier control 
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parameters are homogeneous and models that derive from different base classifier are 
heterogeneous. 

Following that, different combinations of the classifier models tested in the pool so as to identify 
an optimal subset of classifiers ς∗  which achieves the best performance measurement on the 
validation data set. Various techniques, such as majority voting and weighted voting, can be applied 
to aggregate the results from each classifier. Majority voting approach was incorporated in this study 
due to its simplicity and effectiveness, where each classifier predicts a class, and the class receiving 
the majority of votes is chosen by the ensemble. The task of selecting the optimal ensemble has been 
identified as an NP-complete problem [20], making an exhaustive search for the best subset of 
classifiers impractical for ensembles comprising a large number of models. As an alternative, Using a 
heuristic algorithm, the best integration can be efficiently identified from the pool of available 
classifiers. Following the strategy of Caruana et al. [24], who utilized a simple forward selection 
method to build a high-quality ensemble from an extensive library—thereby optimizing performance 
metrics such as accuracy, RMS error, and F-score—implement a modified version of Caruana’s 
method for the ensemble selection process. 

Before describing the integrated selection algorithm, the notation that will be used in the rest of 
the paper is provided. Let T = {(x!, y!), i = 1,2. . . , N} denote a set of training samples where each 
sample consists of a feature vector  x! and class label y!, y!=0 or y!=1. Let E = {(x!, y!), i =
1,2. . . , N}denote a set of evaluation samples where each sample consists of a feature vector x! and 
class labely!, y!=0 or y!=1. Also, Let  H = {h, t = 1,2, . . . , T}be the set of classifiers of an ensemble, 
where each classifier  h!maps an instance x to a class label,x ,.h,(x)=y. 

 

Fig. 4.   Algorithm 2 Ensemble Selection 

Figure 4 presents heuristic search process in pseudocode. It starts with an empty set of classifiers 
().(S = ∅)  At each iteration, a new element from the set H is incorporated into the partial solution 
under construction, until a complete feasible solution is obtained. Every element h!(h! ∈ H)  will be 
evaluated by an evaluation function f>?9.（h!） Which measures the contribution of adding each 
element to the current partial solution. The selection of the next element to be incorporated is 
determined by the evaluation of all candidate elements according to the evaluation function. The 
classifier that maximizes the performance of the ensemble on the evaluation dataset will be selected 
for the sub-ensemble set. 

The evaluation function influences the selection of each element in the sub-ensemble and, 
subsequently, the performance of the final ensemble. Given a sub-ensemble S and a training model 
h, the evaluation function estimates the benefit of incorporating h into S using an evaluation 
measure, which is calculated on the evaluation dataset E. The choice of both the measure and the 
dataset used for evaluation is crucial, as it affects the quality of the evaluation function and, 
consequently, the quality of the selected ensemble. 
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In the method, the dataset was randomly divided into a training set  T (comprising approximately 
85% of the available instances) an evaluation set E. The evaluation function calculates a value for 
each candidate subset of models according to an evaluation measure. This value is computed based 
on the predictions made by its models on the evaluation dataset E. For example, f>?9.（C, h!） could 
return the accuracy of a candidate ensemble C on the data set E by combining the decisions of the 
classifiers with the method of voting. Given that candidate ensemble C consists of k classification 
models{C,!C,,,. . . C,-}, each classifier model has feature subsetFSC!  which are chosen by feature 
subsets selection algorithm in Phase I. Thus, for any instance (x!, y!), in E , only those features in the 
corresponding feature subset of classifier  C,!is selected when calculating prediction performance on 
evaluation data set E. 

In the ensemble selection phase, classification accuracy is the most important criterion for 
guiding the selection procedure. In this paper, Using the root mean square deviation (RMSD), which 
is a good measure of accuracy, as performance measurement. The measure of RMSE of one 
classification model h!with respect to the current sub-ensemble C and set of evaluation data set E is 
defined as follows Eq. (4): 

 

{RMSE（C，h） = T *
$|9

∑ ∑ h!(x# − y#), +
*
$
∑ h⬚(x# − y#),B
!C*

$
#C*

B
!C* }         (4) 

 
 

4.  Experimental Evaluation 
4.1 Performance Metrics 
 

Instead of relying solely on classification accuracy as the evaluation criterion, It employs a set of 
evaluation metrics, including receiver operating characteristics (ROC) graphs, F-measure, and area 
under the curve (AUC), to assess the performance of the proposed ensemble for Android malware 
classification. The ROC (Receiver Operating Characteristic) curve is a graph produced by plotting the 
true positive rate against the false positive rate for a binary classifier as its discrimination threshold 
varies. The use of the receiver operating characteristic (ROC) curve allows for a visualisation of the 
performance of a classifier, depicting the trade-off between the detection rate and the false alarm 
rate. While the ROC curve is a two-dimensional expression of classifier performance, the area under 
this curve (AUC) provides a single scalar value for comparing classifiers. The greater the AUC, the 
better the classifier is at obtaining true positives with fewer false positives. 

Another important metric that is isused in this research work is the F-value, which considers false 
positives and false negatives along with true positives. It incorporates two other measures: precision, 
which gives us the measure of the classifier's correctness in predicting an actual positive, and recall, 
which provides us the measure of the percentage of positives identified correctly. Equations (5)-(7) 
calculate precision and recall. 

 
prescision = B32D5EF!G!HD

B32D5EF!G!HD	%	>5EFG!HD
         (5) 

 
 

recall = B32D5EF!G!HD
B32D5EF!G!HD	%	>0IFD$D80G!HD

          (6) 

 
As a composite statistic, f-value is then calculated from precision and recall to summarize the 

effects of the two types of errors:  
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F − value = 2 J3D.!F!E6	3D.0II
J3D.!F!E6	3D.0II

          (7) 
 
4.2  Experimental Setting 
 

In this work, It utilized five different inducers as the base classifiers: multilayer perceptron [26], 
Locally Weight Naïve Bayes (LWL)  [27], Naive-Bayes [28], Decision Table [29], and J48 algorithm [30]. 
It's noteworthy that each inducer belongs to a different family of classifiers. For instance, the 
multilayer perceptron is a feed-forward artificial neural network classifier, LWL falls under lazy 
classifiers, Decision Table under rules, Naive-Bayes under Bayesian classifiers, and J48 under decision 
tree classifiers. The Weka machine learning library served as the source for these base classifiers. To 
generate 129 models comprising the initial ensemble, It ran each base classifier with various 
parameters on the training set. The parameters adjusted (while others were left at their default 
values in Weka) included:  

  
Fig.5.   ROC curves for all 5 individual classifiers with or without feature subset selection 

 
The main practices are as follows in Table 3: 
 

 
 
 
 
 
 
 
 



Journal of Advanced Research Design 
Volume 140 Issue 1 (2026) 208-226 

220 
 

Table 3   
ROC curves for all 5 individual classifiers Key practices 

 
The population size selection requires balancing search‐space coverage against the 

computational cost of fitness evaluations. In the experiments, we determined the appropriate 
population size through empirical tuning. Initially, three population sizes are selected: 50, 100, and 
200. For each population size, the genetic algorithm (GA) is executed under a fixed evaluation budget, 
with the number of generations adjusted such that total fitness evaluations are performed. Upon the 
completion of each run, both the best fitness value achieved and the total runtime are recorded. 
Finally, compare the outcomes and select the population size that provides the best trade-off 
between solution quality and computational cost. 

Following the experimental results, and set the population size at 100. focused on tuning the 
remaining two parameters. Given the complexity of the 252-dimensional feature space and the risk 
of encountering numerous local optima, deliberately choose a mutation rate of 0.05 to encourage 
greater population diversity. This adjustment was intended to improve the algorithm's exploratory 
ability and lower the chances of premature convergence on sub-optimal solutions. For the crossover 
probability, I selected a widely adopted value of 0.8, which has been shown to work well across 
different optimisation tasks. the experiments demonstrated that with these settings, the algorithm 
not only maintains the essential genetic traits of high-quality individuals but also navigates the 
solution space more effectively, leading to better convergence toward optimal or near-optimal 
outcomes. 

After creating a set of feature subsets for the base classifiers in Phase I, an ensemble selection 
algorithm was applied to the pool of base classifiers. This process yielded the proposed Android 
malware classification model. To benchmark the model against the base learning algorithms and 
various other ensemble methods, It evaluated all classifiers on performance metrics using 10-fold 
cross-validation, enhancing the reliability of the test results. 

 
Table 4 
The performance increased by GA-based feature subset selection 

Base classifier   decisionstump   LWL   Naivebayes   Decision table   J48  
num of features  252   97   252   112   252   120   252   85   252   134 

Accuracy   0.768   0.775   0.755   0.775   0.838   0.89   0.841   0.881   0.865   0.916  
F-value   0.707   0.687   0.691   0.687   0.847   0.881   0.913   0.935   0.861   0.916  

Precision   0.956   0.95   0.939   0.950   0.979   0.962   0.864   0.882   0.884   0.916  
Recall   0.561   0.537   0.546   0.537   0.746   0.813   0.969   0.993   0.839   0.916  
AUC   0.725   0.757   0.941   0.971   0.951   0.974   0.880   0.919   0.872   0.933  

Table 5 

Inducers Key practices 

Multilayer 
perceptrons 

 configured one hidden layer with 8 node values {1, 2, 4, 8, 16, 32, 64, 128}, 4 momentum term 
values {0.0, 0.2, 0.5, 0.8}, and 2 learning rate values {0.6, 0.9}. 

  

LWL 
 selected 5 values for the number of neighbors parameter {-1, 0, 1, 2, 3} and 5 values for the 

weighting method {0, 1, 2, 3, 4}. 
  

Naive Bayes   built one model with default parameters and another with kernel estimation. 
  

Decision Table 
  used 3 values for the direction of search parameters {0, 1, 2} and 5 values for the number of 

non-improving nodes to consider before terminating the search {1, 2, 3, 4, 5}. 
  

J48 applied 6 values for the confidence factor {0.2, 0.25, 0.3, 0.4, 0.45, 0.5} and 4 values for the 
minimum number of instances per leaf {2, 3, 4, 5}. 
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Comparing the performance of the well known ensembles with the  proposed method 
Metrics adaboostM1 bagging decorate RandomForest Phase II ensemble 

Accuracy   0.906   0.90   0.923   0.929   0.976 
F-value   0.907   0.90   0.923   0.929   0.974 

Precision   0.899   0.897   0.923   0.924   0.972 
Recall   0.916   0.903   0.923   0.935   0.977 
AUC   0.928   0.968   0.977   0.984   0.995 

 
4.3 Experimental Results 
 

In the first experiment, It evaluated the GA-based feature subset selection procedure. The 
experimental results are summarized in Table 4, presenting the accuracy, F-value, precision, recall, 
and AUC for each base classifier with and without the GA-based feature subset selection procedure, 
compared pairwise. The italicized numbers represent the highest values in their respective column 
groups.It observed that the GA-based feature subset selection significantly improved the 
classification results compared with the corresponding base classifiers trained solely with all 252 
features. Furthermore, an analysis of the ROC curves in Fig. 5 reveals that the results obtained with 
the GA-based feature subset selection markedly outperform those of the base classifiers trained with 
all 252 features. This confirms that the GA-based feature subset selection procedure not only reduces 
the number of selected features but also enhances classification performance. 

The second experiment assesses the classification performance of the proposed two-phase 
ensemble and compares it against baseline ensemble algorithms such as AdaBoostM1 [31] , Bagging 
[32], DECORATE [33], and Random Forest [34]. Among the baseline algorithms, Bagging, DECORATE, 
and AdaBoostM1 are well-known ensemble methods that aim to increase accuracy by combining 
various base inducers into a single classifier. In this paper, the ensemble methods AdaBoostM1, 
Bagging, and DECORATE utilise the REPTree algorithm as the base classifier. For Random Forests, the 
number of attributes considered at each node was set to the default value in WEKA software. In 
contrast to the proposed method, which was trained on selected feature subsets for each base 
classifier, the baseline ensemble algorithms were trained using all 252 features extracted from the 
dataset. Table 5 lists the results in terms of accuracy, precision, recall, F-measure, and AUC 
improvement over the baseline algorithms, with the italicized numbers indicating the highest values 
in each row. Fig. 6 presents the ROC curves in a comparative manner. The results indicate a superior 
ROC curve for the proposed two-phase ensemble method compared to the baseline ensembles. 
Undoubtedly, the performance improvement is attributable to the GA-based feature subset selection 
method in Phase I, which produces significant diversity among base classifiers. Furthermore, 
additional improvement is achieved by applying the proposed ensemble selection procedure in Phase 
II. 

For the purpose of the study, a RIGOL-DP832 was used to capture the DELL The PowerEdge R740 
server’s represents the actual energy consumption of 1200W(E!). As one of the primary parameters 
of comparison, the energy utilization was captured over 2000 detection sample data points, then 
iteratively implemented 10,000 times（ C!）. Use a unique method of evaluating the usage of 
energy. The formula for this method is as follows  Eq. (8): 
𝑊 = ∑𝐸6 ∑𝑇6 ∑𝐶6           (8) 
•  W :  Energy Consumption  
 • E!:   Represents the actual energy consumed 
 • T! :  The Calculation cycle for a single execution 
 • C! :  The number of cycles. 
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Fig. 6. Classification performance as ROC curve for the method  

 
To compare the performance of the use of energy, two main fields of focus will remain the exact 

energy utilized and the time used to execute once. The objective is to minimize the extent of these 
two, thus the overall power usage is minimized. This is especially important in the case of energy-
efficient work including data centers and HPC situations. As compared to other techniques used, the 
present approach demonstrated considerable energy efficiency improvement. The improvement was 
subsequently reflected in energy used and the required time to exhaust the entire computation cycle. 
However, it is vital to understand that the implementation of the method could depend on the 
specific assignment and hardware design. Therefore, it is urgent to conduct an extensive evaluation 
of the actual position to have a detailed overview of the concept. The absolute energy usage and 
runtime for each algorithm during one complete training and inference cycle are measured. Table 6 
summarizes, for each algorithm—Phase II Ensemble, Random Forest, Bagging, DECORATE, and 
AdaBoostM1—the mean energy consumed (kWh), its standard deviation over 10 repeated runs, and 
the mean runtime (s). 

 
Table 6 
Comparing the Energy Consumption with the proposed method 

 Phase II ensemble Bagging Decorate Random Forest Adaboost M1 
Calculation cycle TI（S）(µ ± δ) 6.4±0.8 9.34±0.8 8.7±0.8 8.1±0.8 8.5±0.8 

Energy Consumption (KWh)(µ ± δ) 21.33±0.8 31.13±0.8 29.2±0.8 27.1±0.8 28.33±0.8 
 

Repeated each experiment 10 times with different random seeds. A paired two-tailed t-test was 
used to compare the Phase II Ensemble method against each baseline. The significance level was set 
at 0.05. the method achieved a 21% average improvement in energy efficiency compared to Random 
Forest. This improvement was statistically significant (p < 0.01). The improvements compared to 
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Bagging, DECORATE, and AdaBoostM1 were also statistically significant. Table 7 provides the 
confidence intervals for these average energy savings. 

 
Table 7 
 Paired t-test results and 95% confidence intervals for energy consumption differences 

Comparison Mean 	Energy 95% CI p-value 
Phase II VS Random Forest -21.0% [−24.5, −17.5] <0.001 
Phase II vs Bagging +31.4% [+28.0, +34.8] <0.001 
Phase II vs DECORATE +26.4% [+23.1, +29.7] <0.001 
Phase II vs AdaBoostM1 +24.7% [+21.8, +27.6] <0.001 

 

 

Fig. 7. Energy Consumption for the method and well known ensembles 
 

The results of the energy consumption analysis indicated that the Phase II ensemble method not 
only enhanced detection accuracy but also required less energy consumption. Compared to the 
random forest method, the energy consumption of the Phase II ensemble method increased by 21%. 
It was 31.4% higher than that of the bagging method, 26.4% higher than the decorate method, and 
24.7% higher than the adaboostM1 method. 

The outcome of the exploration of energy consumption depicts that the ensemble technique of 
Phase II enhances the level of accuracy in the detection prior to the consumption of more energy. 
There was an increase of 21% when compared to the method of random forest. This is approximately 
31.4% higher, 26.4% higher than decorate, and 24.7% higher when compared to AdaBoostM1. A 
more comprehensive way of depicting the total energy consumed by varying rather average 
algorithms can be utilised when conducting similar tasks. This is an essential discovery when choosing 
the algorithms to take with a higher level of energy consumption. It also suggests the potential to 
achieve a balance between detection accuracy and energy consumption. 

Based on the measurements, the Phase II ensemble consumed 21.33 kWh per full training–
inference cycle, compared to 27.10 kWh for the Random Forest baseline, resulting in a per-run energy 
saving of 5.77 kWh. We can save an estimated 57,000 kWh of energy after 10,000 executions. Based 
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on a CO₂ emission factor of 0.50 kg CO₂e per kWh, this sum corresponds to a reduction of 
approximately 28,850 kg of CO₂-equivalent emissions. 

When projected to a large-scale deployment scenario, such as one million inferences per month, 
the Phase II method could potentially save around 5.77 million kWh and avoid approximately 2.885 
million kilograms (or about 2,885 metric tonnes) of CO₂e each month. These emission reductions 
could have a substantial impact on the energy demands of data centres and significantly improve the 
battery life of edge computing devices. Overall, these results suggest that beyond its accuracy 
improvements, the Phase II ensemble delivers meaningful energy and carbon savings under the 
evaluated conditions, although further validation across a broader range of hardware and workloads 
is advisable. 

 
5. Conclusion  
 

In this paper, the research effort on Android malware classification based on a two-phase 
ensemble is described. We initially analysed a large collection of Android malware, extracting 252 
features that distinguish between two categories of files (benign and malware). Then, a two-phase 
ensemble is proposed to build a classification model for Android malware. In the first phase, a GA-
based feature subset selection is applied to different types of base classifiers. In the second phase, a 
heuristic-based ensemble selection approach is conducted with the aim of pruning the library of 
models, which consists of 129 homogeneous or heterogeneous classifiers. Finally, by conducting 
several experiments, the proposed method is found to be superior to various state-of-the-art 
ensemble techniques or single inducers available today. 

The majority of mobile malware targets the Android platform, so this work focuses on Android 
malware classification. However, minor changes can adapt the presented method to the iOS 
platform. Adapting the approach to other platforms, including desktop OS, may thus be an intriguing 
direction for future work. Moreover, future work may include the involvement of more inducers for 
base classifiers (only 5 were used in this study), while there are plenty more to choose from. 

This paper demonstrates experimentally that machine learning and deep learning techniques are 
effective in Android malware classification and also focuses on the application of green IT software 
engineering: better detection accuracy, lower energy efficiency, and the possibility of deploying 
security applications in cloud platforms or data centres in large-scale digital grids, and the integration 
of these techniques into the malware detection process strengthens the security and contributes to 
the environmental sustainability in IT practices. 
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