

Journal of Advanced Research Design 139, Issue 1 (2026) 208-226

208

Journal of Advanced Research Design

Journal homepage:
https://akademiabaru.com/submit/index.php/ard

ISSN: 2289-7984

Enhanced Cybersecurity Efficiency and Android Malware Classification
towards Carbon Emission Reduction: Two Phase Ensemble Approach

Xuxu1, Kah Hou Teng1,2,*, Botao Wang3, Zhuolin3, Swee Pin Yeap2,4, Andy Shaw5

1 Faculty of Engineering, Technology and Built Environment, UCSI university, Kuala Lumpur, 56000, Malaysia
2 UCSI-Cheras Low Carbon Innovation Hub Research Consortium, Kuala Lumpur, Malaysia
3 Information Communication Company of Faculty of Engineering Technology & Information Communication Company of Hubei Electric Power

Company STATE GRID Corporation of China Wuhan, China
4 Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, 56000, Kuala

Lumpur, Malaysia
5 Built Environment and Sustainable Technologies Research Institute, Liverpool John Moores University, United Kingdom

ARTICLE INFO ABSTRACT

Article history:
Received 25 March 2025
Received in revised form 5 June 2025
Accepted 10 September 2025
Available online 25 September 2025

The environmental impact of cybersecurity, especially on the agenda of energy
consumption and carbon emissions, is becoming one of the concerns in the
cybersecurity industry. Automatic Android classification plays a vital role in combating
the rapidly growing number of Android malware variants. This paper describes a highly
accurate ensemble classification approach for detecting malicious Android apps. The
design of this two-phase ensemble considers diversity as a key aspect. In the first phase,
a large number of discriminative features for classification are extracted from Android
application package (APK) files, and a Genetic Algorithm(GA) based feature subset
selection procedure is applied on different types of base classifiers. In the second phase,
an initial pool of classifiers is constructed by varying parameters of base classifiers, and
a heuristic search process is conducted aiming at pruning the learning models in the
initial pool. The results show that evaluation with 1554 malware apps and 2400 free
popular apps reported a detection accuracy of 97.6% and an ROC curve (AUC) value of
99.5% that is better than the existing static analysis-based method. The integration of
these technologies into malware detection processes not only bolsters security but also
supports environmental sustainability in information technology (IT) practices. These
actions would drive green IT towards sustainable development goals (SDG).

Keywords:
Android Malware Classification,
Ensemble, Genetic Algorithm, Machine
Learning, SDG

1. Introduction

Cybersecurity is having an increasing impact on the environment, with rising energy use and
carbon emissions being a major concern throughout the nation . Digital grid applications, which rely
on cloud platforms and other mobile internet technologies, are one of the green ways to address this
problem [1]. They greatly increase IT efficiency and reduce carbon emissions. However, these
technologies face challenging security issues. The integration of several research studies on machine
learning-aided methods, deep neural networks, and optimised integrated learning to achieve higher
efficiency and accuracy in malware classification is applied. The growth of Android malware
necessitates the development of efficient detection strategies. The contribution of machine learning

*Corresponding author.
E-mail address: TengKH@ucsiuniversity.edu.my

https://akademiabaru.com/submit/index.php/ard

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

209

and deep learning techniques to Android malware classification is increasing, which organisational IT
departments can use to improve green IT practices [2]. Milosevic, Dehghantanha, and Choo introduce
Machine Learning Aided Systems for Android Malware Classification that demonstrate accurate static
Android malware analysis and effective computation, ultimately reducing energy use in
organisational IT operations [3] . The efficiency of Deep Neural Networks for Android app
classification is proven, indicating a reduction of the necessary computational resources [4]. Taha
and Barukab propose an optimised ensemble learning technique using genetic algorithms that
enhances Android malware detection accuracy but reduces computational resources due to high
malware detection accuracy [5]. Better green IT practices can be made possible by these
computational methods, which will make the digital grid IT environment more sustainable [6].

The rapid growth in Android platform usage over the past several years has led to an increase in
targeting these devices by malware authors. Android-targeted malware now accounts for the vast
majority (97%) of the mobile threat landscape. Android malware is adapting and evolving, embracing
more sophisticated tactics to target users. Consequently, recent studies have proposed many
methods for detecting Android malware using machine learning techniques. Malicious and benign
Android apps are represented by vectors of features, which are obtained by static analysis or dynamic
execution of apps. Static features can be extracted directly from intermediate code representations
obtained through decompiling the Android application package (APK) file. Dynamic features are
collected by monitoring the runtime behaviours of the apps [7]. These features are used to train
classifiers that are able to learn a generalised description of Android malware. By applying this
knowledge in the detection phase, an unknown instance of Android malware can be classified as
malicious or benign. However, the performance of existing Android classification approaches is still
not satisfactory [8].

Diversity can usually be introduced into the classifier in several ways: (1) manipulate the data
samples for each ensemble member, (2) use different feature subsets for each classifier in the
training of base classifiers, and (3) choose different types of classifiers with variant parameters as
building the initial pool of base classifiers. Thus, the task of building an effective ensemble to improve
the detection of Android malware can be broken down into two challenging research questions: (1)
How to find a set of feature subsets for each base classifier so as to ensure high individual accuracy
and high diversity among those base classifiers? and (2) How to build a good performance (i.e.,
accuracy) ensemble system from a large collection of diverse base classifiers obtained from the first
stage?

This paper introduced an innovative two-phase ensemble approach and showed its superiority in
the malware detection tasks to mitigate the detection of Android malware. In an empirical evaluation
on a total of 1554 Android malware samples, this approach is shown to be highly effective, enabling
a detection accuracy of 97.6% and an area under the ROC curve (AUC) value of 99.5%. It offers hope
for developing fast and scalable tools in classifying a large number of Android malware variants.
Furthermore, this paper aims to contribute by providing a comprehensive experimental study to
compare various data mining techniques (different individual classifiers and well-known ensembles)
with the paper-proposed ensemble for malware detection. A set of 2,400 benign samples and 1,554
malicious were extracted from Android apps. Following on this, a two-phase ensemble approach for
Android malware classification is incorporated. In phase I, It proposed a novel genetic algorithm (GA)-
based feature subset selection method for each base classifier. On top of that, a pool of classifiers by
varying parameters of base classifiers to obtain an optimal pruned ensemble for efficient malware
classification was constructed by a heuristic ensemble selection algorithm in phase II. Finally, the
two-phase ensemble approach enhances overall classification performance in terms of accuracy,

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

210

receiver operating characteristic (ROC) curves, and area under the ROC curve (AUC) demonstrated in
this paper.

2. Literature Review

There have been intensive works in applying machine learning techniques to the malware

classification problem. Shhadat et al. propose a more enhanced feature set is proposed using random
forests to reduce the number of features, and an improvement in accuracy is achieved by applying
several machine learning algorithms on the benchmark dataset [9]. Binary Classification with Decision
Trees, Multiple Classification with Random Forests, and Binary Classification with Bernoulli's Plain
Bayes, which achieved an accuracy of more than 91%. Li et al. proposed a meta-feature mining
algorithm based on MetaNET, which can discover potential relationships between samples belonging
to the same category and use meta-features to identify complex Android malware with excellent
robustness and stability [10]. Kolter and Maloof extracted byte sequences from executables,
converted them into n-grams, and trained several classifiers [11].

On the other hand, several machine learning-based approaches have been proposed to detect
Android malware. Aslan et al. proposed a hybrid architecture that integrates two extensive pre-
trained network models in an optimised manner, which was tested on three datasets, Malimg,
Microsoft BIG 2015 and Malevis, through data collection, designing a deep neural network
architecture, training the proposed deep neural network architecture, and evaluating the trained
deep neural network [12]. Shabtai et al. trained machine learning models using features of
permission usage in Android apps [13] to evaluate their models by measuring the true positive ratio,
accuracy and the area under the ROC curve (AUC) for different classifiers. Vinayakumar, R, et al.
proposed ScaleMalNet, a scalable deep learning network architecture for malware detection, which
is able to leverage big data techniques to process large numbers of malware samples, classify
executables as either malware or legitimate using static and dynamic analysis, and categorise
malware executables into corresponding malware families [14]. The architecture is capable of
processing large numbers of malware samples using big data techniques, classifying executables into
malware or legitimate files using static and dynamic analysis, and categorising malware executables
into corresponding malware families. Xu et al. propose a dynamic-static mixed-mode malicious
webpage detection system, which adopts a secondary cascade detection method. In the rule-based
classifier attribute extraction, the idea of associated text tracking and merging is applied to
significantly improve the accuracy of the static detection algorithm; the designed lightweight virtual
machine is used to replace the traditional system-level virtualised detection environment, which
makes the dynamic detection system have a higher task throughput rate [15]. Peiravian et al.
extracted a heterogeneous feature set and processed each feature independently using multiple
kernel learning algorithms [16]. Similarly, Gascon et al. extracted function call graphs from Android
apps and mapped call graphs to a graph kernel. A support vector machine (SVM) was then trained to
distinguish between malware and benign apps. Most of these works have trained a single or a set of
machine learning algorithms. One machine learning model, which performed best against a
predetermined set of criteria, was then chosen to conduct classification [17].

On top of single-model methods, several researchers have examined ensemble methods, which
combine a collection of training models in malware detection. The main idea of an ensemble
approach is to combine a set of weak classifiers to obtain a better composite classifier. Guo et al.
proposed a malware classification approach based on an ensemble classifier. To choose the best
classification features, the information-gain feature selection method was conducted on the byte n-
gram-based features. Then, a probabilistic neural network (PNN) was applied to construct an

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

211

individual classifier for detection. Finally, the D-S theory of evidence was used to combine the
contribution of each individual classifier to make a final decision [18]. Ye et al. proposed an
interpretable string-based malware detection system, SBMDS, to classify file samples and predict the
exact types of malware. SBMDS adapted an SVM ensemble with a bagging technique to improve the
system's effectiveness and efficiency. They achieved an accuracy of 93% that outperformed other
classifiers, such as a single SVM, a Naive Bayes ensemble with bagging, and a J4.8 version of a decision
tree ensemble with bagging [19]. In addition, Sami et al. employed a static approach, where API calls
were extracted from binary files and trained an ensemble of Random Forests [19]. Menahem et
al. performed a comparative study on ensemble methods for malware detection by combining five
different base classifiers. The following combining algorithms were examined: majority voting,
distribution summation, Naive-Bayes combination, Bayesian combination, performance weighting,
stacking, and Troika [20]. The authors aimed to find the best ensemble method for detecting malware
in terms of accuracy, AUC, and execution time. Up to date, numerous ensemble-based approaches
have been executed in Android malware detection by involving weighted predictions of classifiers
and generating base learners from main classifiers. Three types of combination schemes (i.e.,
majority voting, stacking, and variant stacking) were applied to construct the ensemble system [21].

3. Methodology
3.1 Feature Extraction and Dataset

The dataset used for this study consists of 1554 Android Malware samples and 2400 benign

Android apps in Android application package (APK) format. These Android malware samples are
collected from three different sources: Contagio Mobile, the Android Malware Genome Project and
sharing from antivirus vendors. These sources were selected to ensure diversity and
representativeness of malware variants across different time periods and attack types. To validate
authenticity, the malware samples were cross-verified using VirusTotal, and only those with
consistent family classifications by at least two out of three major antivirus engines (AVG, ESET
NOD32, and Bitdefender) were retained. Malware family names were assigned based on majority
agreement among these engines. This dataset covers 107 distinct Android malware families,
spanning a decade from 2011 to 2021.

For the benign class, 2400 samples were selected from the top 100 free applications across 12
categories in the Google Play Store (April 2021). To further ensure their benign nature, all applications
were re-analysed using VirusTotal, and only those with no malware flags were included. Feature
extraction was automated using custom Python scripts built on the Androguard library. The
extraction process followed a three-stage pipeline: (1) APKs were decompressed to access manifest
files and resource folders; (2) permission declarations and component configurations were parsed
from the manifest; (3) assembly code (smali files) was scanned to identify sensitive APIs, shell
commands, embedded URLs, and suspicious strings indicative of malicious behaviour. Additionally,
structural features such as file sizes, number of methods, presence of native binaries, and embedded
archives were extracted.

Feature selection emphasised indicators empirically linked to malicious behaviour and commonly
used by human malware analysts. These criteria were derived from recent malware analysis reports,
security whitepapers, and manual inspection of known malware families. Ultimately, 252
discriminative features were selected for modelling, balancing comprehensiveness with redundancy
avoidance.

http://decision.ye/

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

212

Table 1
A List of Typical Extracted Features

Category Feature Category Feature

Risky API

Runtime.exec()

Requested
permission

RECEIVE_BOOT_COMPLETED
GetDeviceId READ_SMS
GetLastKnownLocation() ACCESS_COARSE_LOCATION
GetDeclaredMethod() READ_LOGS
SmsMessage.createFromPdu READ_HISTORY_BOOKMARKS

Native code Su, sh, chmod, chown, ps Statistical feature Size of apk, presence of zip
Native lib
Loading

System.loadLibrary () Suspicious string Rageagainstthecage, GingerBreak

VM detection

Android.os.Build.MODEL
Obfuscation

Ration of total valid method names
Settings.Secure.getString MessageDigest.getInstance

Use reflection Reflect.Method.invoke MessageDigest.digest

An ARFF file is built for the use of Weka software with the extracted data, as shown in Table 1

[22]. All attributes have binary values: 'y' and 'n', indicating the existence or absence of the feature,
respectively. There are 189 kinds of permissions, including 148 Android system permissions and 41
custom-defined permissions, which are all included in the feature set and have been found in
the malware dataset. The rest of the feature set consists of potential risky APIs, shell commands, and
attributes of the APK file, among others. Table 1 lists some of these extracted features as examples.
To better mitigate mobile malware threats, It made the Android malware samples used in this work
and all extracted feature sets available to the research community on GitHub.

3.2 Ensemble and Diversity

An ensemble is used to improve the performance of Android malware detection in terms of

accuracy or other measurable merits (e.g., ROC, AUC). Both theoretical and empirical research has
shown that ensemble methods can generate more accurate classification results than individual
classifiers. To promote the diversity of each individual model, several methods were employed to
achieve this goal by combining them into an ensemble. Diversity can be naturally obtained by using
different types of base classifiers. The intuition is that each base classifier has an explicit or implicit
bias, leading them to prefer certain generalisations over others.

The use of varied feature subsets by each ensemble member helps enhance diversity.
Additionally, Diversity is introduced into the ensemble by identifying a subset of features for each
base classifier, thus encouraging divergence between them. The core idea is that different feature
subsets offer distinct perspectives on the data, resulting in diverse individual learners. This approach
also helps reduce the dimensionality of base classifiers and lowers the overall computational
complexity of the ensemble. Unlike traditional feature selection algorithms that focus solely on
optimizing accuracy, in ensemble methods, both accuracy and diversity are crucial considerations. To
address the first research question raised in section 1, It proposes a novel feature subset selection
method based on genetic algorithm (GA) for each base classifier.

Another method for creating diverse individual learners is by varying the parameter settings of
the base classifiers. Hence, the third approach to generating diversity involves building a pool of
training models using the base classifiers from the previous step, each trained with different
parameter configurations. For example, J48 was trained by adjusting parameters such as confidence
factor and minimum number of instances per leaf. Once this pool of trained models is created,
instead of combining all of them, It selects a subset of models to form the ensemble. This selection
process is crucial for two main reasons: efficiency and predictive performance. A smaller ensemble

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

213

reduces computational complexity compared to a larger one, and empirical studies by
Dietterich suggest that a pruned ensemble may be more accurate than the original [23]. To address
the second research question raised in section 1, an ensemble pruning approach based on the
method proposed by Caruana et al. [24].

In this paper, It used the divergence metric, which is an intuitive measure of diversity between a
pair of classifiers, to evaluate the diversity among base classifiers. Consider two classifiers, Ci and Cj,
and a 2x2 table that summarises their outputs as shown in Table 2. The entries in the table are the
probabilities for the pair of correct or incorrect outputs of classifiers. For instance, the N10 indicates
the number of instances in which classifier Ci has correctly classified the instances, but Cj has
misclassified these instances.

Table 2
Relationship between a pair of classifiers

		
correct(1)		 wrong(0)	

correct(1)		 		 	 	 	

	wrong(0)		 		 	 	 	

Total, 	

The disagreement between two classifiers is measured by Eq. (1)：

Dis!,# =	
$!"%$"!

$""%$"!%$!"%$!!
 (1)

This measure is equal to the probability that the two classifiers will disagree on their decisions.

For an ensemble consisting of L base classifiers, it will generate &	(&)*)
,

 pairwise diversity values. The
disagreement diversity among the whole set of classifiers is then defined as an average over all the
pairs of disagreement below Eq. (2):

𝐷𝑖𝑠 = 	 #

$	($'()∑ ∑ +,-!,#$
#%!&'

$
!%'

 (2)

The diversity increases with increasing values of the disagreement measure in the range from 0
to 1. In GA-based Feature Selection, it is used as a component of the fitness function guiding the
process of feature subset selection for individual classifiers.

3.3 System Architecture

As shown in Figure 1, it is describe the workflow of the proposed ensemble classification approach,

which is composed of two major phases: (1) the creation of a set of optimal feature subsets for
individual classifiers, and (2) the construction of an optimal ensemble to yield the final prediction.

In the first phase, a large number of discriminative features for classification are extracted from APK
files, followed by the application of a GA-based feature subset selection on different types of base

classifiers. In the second phase, an initial pool of classifiers is constructed by varying the parameters
of base classifiers. Subsequently, a heuristic search process is conducted, aiming at pruning the

learning models in the initial pool.

kD kD

iD 11N 10N

iD 01N 00N
00011011 NNNNN +++=

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

214

Fig. 1. The System Overview Architecture

3.4 GA-based Feature Selection

The primary purpose of feature selection is to design a more compact classifier with as little

performance degradation as possible. The problem of feature selection becomes even more
cumbersome in the context of ensemble because a set of subsets S = 	 {S*, S,, … , S-} , (S! ⥹ W,
where W is a set with n features), is to be chosen instead of a single subset.

Fig. 2. GA based feature subsets selection

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

215

Figure 2 illustrates the process of ensemble feature subset selection. Feature subset selection can
be considered a multi-criteria optimisation problem in a vast search space. The criteria to be
optimised include the classification accuracy of each classifier and the diversity among individual
classifiers. Genetic algorithms [17] offer a particularly effective approach to these kinds of multi-
criteria optimisation challenges in high-dimensional search spaces. Therefore, this paper proposes a
GA-based method for feature subset selection. Genetic algorithms are adaptive search methods
inspired by the evolutionary process of biological populations [25]. In GA, a population consists of a
set of candidate solutions, with potential solutions encoded as the chromosomes of individuals. A
fitness function evaluates the quality of a solution during the evolutionary process. The fitter
members from the previous generation and their offspring, created through crossover and mutation
processes, compose each succeeding generation. After many generations, the chromosome solution
achieving the best fitness value is considered the optimal solution.

Fig. 3. Algorithm FSS_GA_BC

The genetic algorithm used for feature subset selection for individual classifiers is similar to a
standard GA. Figure 3 shown an outline of the proposed algorithm, FSS_GA_BC (GA based Feature
Subset Selection for base classifiers) . Initialize population by randomly choosing the number of
features included in each feature subset. Following that, the base classifier Ci, which is represented
as i th row in a chromosome, the size of each feature subset Ni is independently chosen from a
uniform distribution between 1 and the number of features extracted in the malware dataset. Ni are
randomly selected and set them to the value 1, which means that the corresponding features are
included in the classifier training set. The fitness of each chromosome is calculated in lines 4-5. In this
step, after each base classifier evaluating selected feature set, they return the classification
accuracies and diversity to the fitness function. After the whole population has been evaluated, in
lines 7-9, Firstly selecting the preferred chromosome with a high fitness score, and then conduct the
crossover and mutation operations on selected chromosomes with a predefined P. (probability of
crossover) and P/ (probability of mutation), respectively. The evolutionary process will repeat until
terminating generation is reached and the final chromosome would be the optimal set of feature
subsets for each individual classifier.

3.4.1 Fitness Function

The classification accuracy and diversity are the two criteria used to design for current model’s

fitness function. The fitness of a chromosome is defined as Eq. (3):

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

216

Fitness!:	W0	X	
∑ 0..230.4.(5/,!)0
"

6
+ (W7	X	dis7P8, i8		 (3)

The fitness function is weighted by two predefined parameters W0 and W7 for the classification

accuracy and diversity among the base classifiers, respectively. Furthermore, accuracy! specify the
classification accuracy of the i th base classifier upon the feature subset, which is calculated over the
validation dataset. Diversity is calculated using Equation 2, measuring the differences in predictions
among the base classifiers. Therefore, a chromosome that exhibits both high classification accuracy
and significant disagreement (diversity) among the entire set of classifiers aiming to yield a high
fitness value for high accuracy classification.

3.4.2 Crossover

A crossover operator swaps bits between two chromosomes based on a certain probability, P.

While one-point crossover is inspired by biological processes, it encounters a significant limitation
with two-dimensional structured chromosome: the inherent two-dimensional information might be
disregarded or lost, as this crossover operator does not account for the matrix-like structure of the
chromosomes. The chromosome is a matrix with the dimension of C ×W . where each row
represents a subset of features for an individual base classifier, and the fitness function is calculated
for each row. A uniform crossover operator tailored to chromosome's unique encoding generates
offspring from the parent chromosomes using a randomly generated crossover mask, treating every
feature as a potential crossover point. Consequently, each row of the offspring contains a blend of
genes (features) from the corresponding row of each parent, ensuring a mix of attributes without a
fixed number of crossing points, but will be averaged at 9	×;

,
. The key advantage of the uniform

crossover is its ability to exchange bits instead of entire segments, facilitating the recombination of
features within individual classifiers irrespective of their positions in the matrix.

3.4.3 Mutation

After the crossover process, the chromosomes undergo mutation. The purpose of mutation is to

prevent the algorithm from becoming trapped in a local optimum, thereby ensuring diversity within
the population. Given the various forms of mutation applicable to different chromosome
representations, the approach to mutation also takes into account the two-dimensional structure of
the chromosome. For each row of matrix with the dimension of C ×W, a random Index generated p,
where 1 < p	 < W, that represent the location selected to be the mutation point that row. The value
of the bit at this locus (changing a 0 to 1 and vice versa) with a predetermined probability of mutation.

3.5 Ensemble Selection

In the Phase II, main two steps are overproduction and selection. An initial pool of classifiers ς =

	CC*	,C,,…,C6D is constructed by varying control parameters of each base classifier C! which are
obtained from algorithm 1 in Phase I. These classifiers in the initial pool were trained on the training
data set T and then a library of classifier models was created. Those classifiers derived from the same
base classifiers C! as a group = C! ∶ 	 CC!,*	,C!,,,…,C!,-D where every classifiers share the same feature
subsets	FSC! are denoted. The initial pool of the training models consists of either homogeneous or
heterogeneous models. Models that derive from the same base classifier by varying classifier control

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

217

parameters are homogeneous and models that derive from different base classifier are
heterogeneous.

Following that, different combinations of the classifier models tested in the pool so as to identify
an optimal subset of classifiers ς∗ which achieves the best performance measurement on the
validation data set. Various techniques, such as majority voting and weighted voting, can be applied
to aggregate the results from each classifier. Majority voting approach was incorporated in this study
due to its simplicity and effectiveness, where each classifier predicts a class, and the class receiving
the majority of votes is chosen by the ensemble. The task of selecting the optimal ensemble has been
identified as an NP-complete problem [20], making an exhaustive search for the best subset of
classifiers impractical for ensembles comprising a large number of models. As an alternative, Using a
heuristic algorithm, the best integration can be efficiently identified from the pool of available
classifiers. Following the strategy of Caruana et al. [24], who utilized a simple forward selection
method to build a high-quality ensemble from an extensive library—thereby optimizing performance
metrics such as accuracy, RMS error, and F-score—implement a modified version of Caruana’s
method for the ensemble selection process.

Before describing the integrated selection algorithm, the notation that will be used in the rest of
the paper is provided. Let T = {(x!, y!), i = 1,2. . . , N} denote a set of training samples where each
sample consists of a feature vector x! and class label y!, y!=0 or y!=1. Let E = {(x!, y!), i =
1,2. . . , N}denote a set of evaluation samples where each sample consists of a feature vector x! and
class labely!, y!=0 or y!=1. Also, Let H = {h, t = 1,2, . . . , T}be the set of classifiers of an ensemble,
where each classifier h!maps an instance x to a class label,x ,.h,(x)=y.

Fig. 4. Algorithm 2 Ensemble Selection

Figure 4 presents heuristic search process in pseudocode. It starts with an empty set of classifiers
().(S = ∅) At each iteration, a new element from the set H is incorporated into the partial solution
under construction, until a complete feasible solution is obtained. Every element h!(h! ∈ H) will be
evaluated by an evaluation function f>?9.（h!） Which measures the contribution of adding each
element to the current partial solution. The selection of the next element to be incorporated is
determined by the evaluation of all candidate elements according to the evaluation function. The
classifier that maximizes the performance of the ensemble on the evaluation dataset will be selected
for the sub-ensemble set.

The evaluation function influences the selection of each element in the sub-ensemble and,
subsequently, the performance of the final ensemble. Given a sub-ensemble S and a training model
h, the evaluation function estimates the benefit of incorporating h into S using an evaluation
measure, which is calculated on the evaluation dataset E. The choice of both the measure and the
dataset used for evaluation is crucial, as it affects the quality of the evaluation function and,
consequently, the quality of the selected ensemble.

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

218

In the method, the dataset was randomly divided into a training set T (comprising approximately
85% of the available instances) an evaluation set E. The evaluation function calculates a value for
each candidate subset of models according to an evaluation measure. This value is computed based
on the predictions made by its models on the evaluation dataset E. For example, f>?9.（C, h!） could
return the accuracy of a candidate ensemble C on the data set E by combining the decisions of the
classifiers with the method of voting. Given that candidate ensemble C consists of k classification
models{C,!C,,,. . . C,-}, each classifier model has feature subsetFSC! which are chosen by feature
subsets selection algorithm in Phase I. Thus, for any instance (x!, y!), in E , only those features in the
corresponding feature subset of classifier C,!is selected when calculating prediction performance on
evaluation data set E.

In the ensemble selection phase, classification accuracy is the most important criterion for
guiding the selection procedure. In this paper, Using the root mean square deviation (RMSD), which
is a good measure of accuracy, as performance measurement. The measure of RMSE of one
classification model h!with respect to the current sub-ensemble C and set of evaluation data set E is
defined as follows Eq. (4):

{RMSE（C，h） = T *
$|9

∑ ∑ h!(x# − y#), +
*
$
∑ h⬚(x# − y#),B
!C*

$
#C*

B
!C* } (4)

4. Experimental Evaluation
4.1 Performance Metrics

Instead of relying solely on classification accuracy as the evaluation criterion, It employs a set of
evaluation metrics, including receiver operating characteristics (ROC) graphs, F-measure, and area
under the curve (AUC), to assess the performance of the proposed ensemble for Android malware
classification. The ROC (Receiver Operating Characteristic) curve is a graph produced by plotting the
true positive rate against the false positive rate for a binary classifier as its discrimination threshold
varies. The use of the receiver operating characteristic (ROC) curve allows for a visualisation of the
performance of a classifier, depicting the trade-off between the detection rate and the false alarm
rate. While the ROC curve is a two-dimensional expression of classifier performance, the area under
this curve (AUC) provides a single scalar value for comparing classifiers. The greater the AUC, the
better the classifier is at obtaining true positives with fewer false positives.

Another important metric that is isused in this research work is the F-value, which considers false
positives and false negatives along with true positives. It incorporates two other measures: precision,
which gives us the measure of the classifier's correctness in predicting an actual positive, and recall,
which provides us the measure of the percentage of positives identified correctly. Equations (5)-(7)
calculate precision and recall.

prescision = B32D5EF!G!HD

B32D5EF!G!HD	%	>5EFG!HD
 (5)

recall = B32D5EF!G!HD
B32D5EF!G!HD	%	>0IFD$D80G!HD

 (6)

As a composite statistic, f-value is then calculated from precision and recall to summarize the

effects of the two types of errors:

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

219

F − value = 2 J3D.!F!E6	3D.0II
J3D.!F!E6	3D.0II

 (7)

4.2 Experimental Setting

In this work, It utilized five different inducers as the base classifiers: multilayer perceptron [26],
Locally Weight Naïve Bayes (LWL) [27], Naive-Bayes [28], Decision Table [29], and J48 algorithm [30].
It's noteworthy that each inducer belongs to a different family of classifiers. For instance, the
multilayer perceptron is a feed-forward artificial neural network classifier, LWL falls under lazy
classifiers, Decision Table under rules, Naive-Bayes under Bayesian classifiers, and J48 under decision
tree classifiers. The Weka machine learning library served as the source for these base classifiers. To
generate 129 models comprising the initial ensemble, It ran each base classifier with various
parameters on the training set. The parameters adjusted (while others were left at their default
values in Weka) included:

Fig.5. ROC curves for all 5 individual classifiers with or without feature subset selection

The main practices are as follows in Table 3:

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

220

Table 3
ROC curves for all 5 individual classifiers Key practices

The population size selection requires balancing search‐space coverage against the

computational cost of fitness evaluations. In the experiments, we determined the appropriate
population size through empirical tuning. Initially, three population sizes are selected: 50, 100, and
200. For each population size, the genetic algorithm (GA) is executed under a fixed evaluation budget,
with the number of generations adjusted such that total fitness evaluations are performed. Upon the
completion of each run, both the best fitness value achieved and the total runtime are recorded.
Finally, compare the outcomes and select the population size that provides the best trade-off
between solution quality and computational cost.

Following the experimental results, and set the population size at 100. focused on tuning the
remaining two parameters. Given the complexity of the 252-dimensional feature space and the risk
of encountering numerous local optima, deliberately choose a mutation rate of 0.05 to encourage
greater population diversity. This adjustment was intended to improve the algorithm's exploratory
ability and lower the chances of premature convergence on sub-optimal solutions. For the crossover
probability, I selected a widely adopted value of 0.8, which has been shown to work well across
different optimisation tasks. the experiments demonstrated that with these settings, the algorithm
not only maintains the essential genetic traits of high-quality individuals but also navigates the
solution space more effectively, leading to better convergence toward optimal or near-optimal
outcomes.

After creating a set of feature subsets for the base classifiers in Phase I, an ensemble selection
algorithm was applied to the pool of base classifiers. This process yielded the proposed Android
malware classification model. To benchmark the model against the base learning algorithms and
various other ensemble methods, It evaluated all classifiers on performance metrics using 10-fold
cross-validation, enhancing the reliability of the test results.

Table 4
The performance increased by GA-based feature subset selection

Base classifier decisionstump LWL Naivebayes Decision table J48
num of features 252 97 252 112 252 120 252 85 252 134

Accuracy 0.768 0.775 0.755 0.775 0.838 0.89 0.841 0.881 0.865 0.916
F-value 0.707 0.687 0.691 0.687 0.847 0.881 0.913 0.935 0.861 0.916

Precision 0.956 0.95 0.939 0.950 0.979 0.962 0.864 0.882 0.884 0.916
Recall 0.561 0.537 0.546 0.537 0.746 0.813 0.969 0.993 0.839 0.916
AUC 0.725 0.757 0.941 0.971 0.951 0.974 0.880 0.919 0.872 0.933

Table 5

Inducers Key practices

Multilayer
perceptrons

 configured one hidden layer with 8 node values {1, 2, 4, 8, 16, 32, 64, 128}, 4 momentum term
values {0.0, 0.2, 0.5, 0.8}, and 2 learning rate values {0.6, 0.9}.

LWL
 selected 5 values for the number of neighbors parameter {-1, 0, 1, 2, 3} and 5 values for the

weighting method {0, 1, 2, 3, 4}.

Naive Bayes built one model with default parameters and another with kernel estimation.

Decision Table
 used 3 values for the direction of search parameters {0, 1, 2} and 5 values for the number of

non-improving nodes to consider before terminating the search {1, 2, 3, 4, 5}.

J48 applied 6 values for the confidence factor {0.2, 0.25, 0.3, 0.4, 0.45, 0.5} and 4 values for the
minimum number of instances per leaf {2, 3, 4, 5}.

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

221

Comparing the performance of the well known ensembles with the proposed method
Metrics adaboostM1 bagging decorate RandomForest Phase II ensemble

Accuracy 0.906 0.90 0.923 0.929 0.976
F-value 0.907 0.90 0.923 0.929 0.974

Precision 0.899 0.897 0.923 0.924 0.972
Recall 0.916 0.903 0.923 0.935 0.977
AUC 0.928 0.968 0.977 0.984 0.995

4.3 Experimental Results

In the first experiment, It evaluated the GA-based feature subset selection procedure. The
experimental results are summarized in Table 4, presenting the accuracy, F-value, precision, recall,
and AUC for each base classifier with and without the GA-based feature subset selection procedure,
compared pairwise. The italicized numbers represent the highest values in their respective column
groups.It observed that the GA-based feature subset selection significantly improved the
classification results compared with the corresponding base classifiers trained solely with all 252
features. Furthermore, an analysis of the ROC curves in Fig. 5 reveals that the results obtained with
the GA-based feature subset selection markedly outperform those of the base classifiers trained with
all 252 features. This confirms that the GA-based feature subset selection procedure not only reduces
the number of selected features but also enhances classification performance.

The second experiment assesses the classification performance of the proposed two-phase
ensemble and compares it against baseline ensemble algorithms such as AdaBoostM1 [31] , Bagging
[32], DECORATE [33], and Random Forest [34]. Among the baseline algorithms, Bagging, DECORATE,
and AdaBoostM1 are well-known ensemble methods that aim to increase accuracy by combining
various base inducers into a single classifier. In this paper, the ensemble methods AdaBoostM1,
Bagging, and DECORATE utilise the REPTree algorithm as the base classifier. For Random Forests, the
number of attributes considered at each node was set to the default value in WEKA software. In
contrast to the proposed method, which was trained on selected feature subsets for each base
classifier, the baseline ensemble algorithms were trained using all 252 features extracted from the
dataset. Table 5 lists the results in terms of accuracy, precision, recall, F-measure, and AUC
improvement over the baseline algorithms, with the italicized numbers indicating the highest values
in each row. Fig. 6 presents the ROC curves in a comparative manner. The results indicate a superior
ROC curve for the proposed two-phase ensemble method compared to the baseline ensembles.
Undoubtedly, the performance improvement is attributable to the GA-based feature subset selection
method in Phase I, which produces significant diversity among base classifiers. Furthermore,
additional improvement is achieved by applying the proposed ensemble selection procedure in Phase
II.

For the purpose of the study, a RIGOL-DP832 was used to capture the DELL The PowerEdge R740
server’s represents the actual energy consumption of 1200W(E!). As one of the primary parameters
of comparison, the energy utilization was captured over 2000 detection sample data points, then
iteratively implemented 10,000 times（ C!）. Use a unique method of evaluating the usage of
energy. The formula for this method is as follows Eq. (8):
𝑊 = ∑𝐸6 ∑𝑇6 ∑𝐶6 (8)
• W : Energy Consumption
 • E!: Represents the actual energy consumed
 • T! : The Calculation cycle for a single execution
 • C! : The number of cycles.

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

222

Fig. 6. Classification performance as ROC curve for the method

To compare the performance of the use of energy, two main fields of focus will remain the exact

energy utilized and the time used to execute once. The objective is to minimize the extent of these
two, thus the overall power usage is minimized. This is especially important in the case of energy-
efficient work including data centers and HPC situations. As compared to other techniques used, the
present approach demonstrated considerable energy efficiency improvement. The improvement was
subsequently reflected in energy used and the required time to exhaust the entire computation cycle.
However, it is vital to understand that the implementation of the method could depend on the
specific assignment and hardware design. Therefore, it is urgent to conduct an extensive evaluation
of the actual position to have a detailed overview of the concept. The absolute energy usage and
runtime for each algorithm during one complete training and inference cycle are measured. Table 6
summarizes, for each algorithm—Phase II Ensemble, Random Forest, Bagging, DECORATE, and
AdaBoostM1—the mean energy consumed (kWh), its standard deviation over 10 repeated runs, and
the mean runtime (s).

Table 6
Comparing the Energy Consumption with the proposed method

 Phase II ensemble Bagging Decorate Random Forest Adaboost M1
Calculation cycle TI（S）(µ ± δ) 6.4±0.8 9.34±0.8 8.7±0.8 8.1±0.8 8.5±0.8

Energy Consumption (KWh)(µ ± δ) 21.33±0.8 31.13±0.8 29.2±0.8 27.1±0.8 28.33±0.8

Repeated each experiment 10 times with different random seeds. A paired two-tailed t-test was
used to compare the Phase II Ensemble method against each baseline. The significance level was set
at 0.05. the method achieved a 21% average improvement in energy efficiency compared to Random
Forest. This improvement was statistically significant (p < 0.01). The improvements compared to

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

223

Bagging, DECORATE, and AdaBoostM1 were also statistically significant. Table 7 provides the
confidence intervals for these average energy savings.

Table 7
 Paired t-test results and 95% confidence intervals for energy consumption differences

Comparison Mean 	Energy 95% CI p-value
Phase II VS Random Forest -21.0% [−24.5, −17.5] <0.001
Phase II vs Bagging +31.4% [+28.0, +34.8] <0.001
Phase II vs DECORATE +26.4% [+23.1, +29.7] <0.001
Phase II vs AdaBoostM1 +24.7% [+21.8, +27.6] <0.001

Fig. 7. Energy Consumption for the method and well known ensembles

The results of the energy consumption analysis indicated that the Phase II ensemble method not
only enhanced detection accuracy but also required less energy consumption. Compared to the
random forest method, the energy consumption of the Phase II ensemble method increased by 21%.
It was 31.4% higher than that of the bagging method, 26.4% higher than the decorate method, and
24.7% higher than the adaboostM1 method.

The outcome of the exploration of energy consumption depicts that the ensemble technique of
Phase II enhances the level of accuracy in the detection prior to the consumption of more energy.
There was an increase of 21% when compared to the method of random forest. This is approximately
31.4% higher, 26.4% higher than decorate, and 24.7% higher when compared to AdaBoostM1. A
more comprehensive way of depicting the total energy consumed by varying rather average
algorithms can be utilised when conducting similar tasks. This is an essential discovery when choosing
the algorithms to take with a higher level of energy consumption. It also suggests the potential to
achieve a balance between detection accuracy and energy consumption.

Based on the measurements, the Phase II ensemble consumed 21.33 kWh per full training–
inference cycle, compared to 27.10 kWh for the Random Forest baseline, resulting in a per-run energy
saving of 5.77 kWh. We can save an estimated 57,000 kWh of energy after 10,000 executions. Based

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

224

on a CO₂ emission factor of 0.50 kg CO₂e per kWh, this sum corresponds to a reduction of
approximately 28,850 kg of CO₂-equivalent emissions.

When projected to a large-scale deployment scenario, such as one million inferences per month,
the Phase II method could potentially save around 5.77 million kWh and avoid approximately 2.885
million kilograms (or about 2,885 metric tonnes) of CO₂e each month. These emission reductions
could have a substantial impact on the energy demands of data centres and significantly improve the
battery life of edge computing devices. Overall, these results suggest that beyond its accuracy
improvements, the Phase II ensemble delivers meaningful energy and carbon savings under the
evaluated conditions, although further validation across a broader range of hardware and workloads
is advisable.

5. Conclusion

In this paper, the research effort on Android malware classification based on a two-phase
ensemble is described. We initially analysed a large collection of Android malware, extracting 252
features that distinguish between two categories of files (benign and malware). Then, a two-phase
ensemble is proposed to build a classification model for Android malware. In the first phase, a GA-
based feature subset selection is applied to different types of base classifiers. In the second phase, a
heuristic-based ensemble selection approach is conducted with the aim of pruning the library of
models, which consists of 129 homogeneous or heterogeneous classifiers. Finally, by conducting
several experiments, the proposed method is found to be superior to various state-of-the-art
ensemble techniques or single inducers available today.

The majority of mobile malware targets the Android platform, so this work focuses on Android
malware classification. However, minor changes can adapt the presented method to the iOS
platform. Adapting the approach to other platforms, including desktop OS, may thus be an intriguing
direction for future work. Moreover, future work may include the involvement of more inducers for
base classifiers (only 5 were used in this study), while there are plenty more to choose from.

This paper demonstrates experimentally that machine learning and deep learning techniques are
effective in Android malware classification and also focuses on the application of green IT software
engineering: better detection accuracy, lower energy efficiency, and the possibility of deploying
security applications in cloud platforms or data centres in large-scale digital grids, and the integration
of these techniques into the malware detection process strengthens the security and contributes to
the environmental sustainability in IT practices.

Acknowledgement
The authors would like to acknowledge the Ministry of Higher Education (MoHE) Malaysia for
supporting this project (in part) through Fundamental Research Grant Scheme (FRGS) - project code
FRGS/1/2023/TK08/UCSI/02/1 and UCSI-Cheras Low Carbon Innovation Hub Research Consortium
for providing the dataset.

References
[1] Anyachebelu, N. C., et al. 2025. “The Role of IoT and Cybersecurity in Sustainable Mining and Materials Processing:

A Pathway to Climate Change Mitigation.” Metallurgical and Materials Engineering 31 (1): 460–74.
[2] Chee Kel, S., and A. Shahrum Shah. 2024. “Prediction of Monthly Total Sales for a Company Using Deep Learning.”

Journal of Advanced Research Design 101 (1): 1–20. https://doi.org/10.37934/ard.101.1.120.
[3] Milosevic, N., A. Dehghantanha, and K.-K. R. Choo. 2017. “Machine Learning Aided Android Malware

Classification.” Computers & Electrical Engineering 61: 266–74.
https://doi.org/10.1016/j.compeleceng.2017.02.013.

https://doi.org/10.37934/ard.101.1.120
https://doi.org/10.1016/j.compeleceng.2017.02.013

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

225

[4] Nix, R., and J. Zhang. 2017. “Classification of Android Apps and Malware Using Deep Neural Networks.” In 2017
International Joint Conference on Neural Networks (IJCNN). IEEE. https://doi.org/10.1109/IJCNN.2017.7966078.

[5] Taha, A., and O. Barukab. 2022. “Android Malware Classification Using Optimized Ensemble Learning Based on
Genetic Algorithms.” Sustainability 14 (21): 14406. https://doi.org/10.3390/su142114406.

[6] Faizal, M. A. M., and N. A. A. Salim. 2024. “Green Strategies during Lower Occupancy: The Best Practices of
Facilities Management for Energy Optimization in Commercial Office Buildings.” Journal of Advanced Research
Design 117 (1): 57–67. https://doi.org/10.37934/ard.117.1.5767.

[7] Pinheiro Henriques de Araújo, I., et al. 2024. “Antimalware Applied to IoT Malware Detection Based on Softcore
Processor Endowed with Authorial Sandbox.” Journal of Computer Virology and Hacking Techniques 20 (4): 729–
49. https://doi.org/10.1007/s11416-024-00526-0.

[8] Abd Razak, N. H., S. Baharom, and G. K. Yi. 2025. “Comparative Study on Code Complexity Metric to Guide Action
Selection of Automated GUI Testing Based on Q-Learning Algorithm.” Semarak Engineering Journal 8 (1): 23–36.
https://doi.org/10.37934/sej.8.1.2336b.

[9] Shhadat, I., A. Hayajneh, and Z. A. Al-Sharif. 2020. “The Use of Machine Learning Techniques to Advance the
Detection and Classification of Unknown Malware.” Procedia Computer Science 170: 917–22.
https://doi.org/10.1016/j.procs.2020.03.110.

[10] Li, Z., et al. 2024. “metaNet: Interpretable Unknown Mobile Malware Identification with a Novel Meta-Features
Mining Algorithm.” Computer Networks 250: 110563. https://doi.org/10.1016/j.comnet.2024.110563.

[11] Kolter, J. Z., and M. A. Maloof. 2004. “Learning to Detect Malicious Executables in the Wild.” In Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
https://doi.org/10.1145/1014052.1014105.

[12] Aslan, Ö., and A. A. Yilmaz. 2021. “A New Malware Classification Framework Based on Deep Learning Algorithms.”
IEEE Access 9: 87936–51. https://doi.org/10.1109/ACCESS.2021.3089586.

[13] Shabtai, A., Y. Fledel, and Y. Elovici. 2010. “Automated Static Code Analysis for Classifying Android Applications
Using Machine Learning.” In 2010 International Conference on Computational Intelligence and Security. IEEE.
https://doi.org/10.1109/CIS.2010.77.

[14] Vinayakumar, R., et al. 2019. “Robust Intelligent Malware Detection Using Deep Learning.” IEEE Access 7: 46717–
38. https://doi.org/10.1109/ACCESS.2019.2906934.

[15] Xu, X., and J.-F. Yu. 2011. “Research of Detection Algorithm Based on Tracking-and-Merging.” Computer
Engineering and Design 32 (4).

[16] Peiravian, N., and X. Zhu. 2013. “Machine Learning for Android Malware Detection Using Permission and API Calls.”
In 2013 IEEE 25th International Conference on Tools with Artificial Intelligence. IEEE.
https://doi.org/10.1109/ICTAI.2013.53.

[17] Gascon, H., et al. 2013. “Structural Detection of Android Malware Using Embedded Call Graphs.” In Proceedings
of the 2013 ACM Workshop on Artificial Intelligence and Security. https://doi.org/10.1145/2517312.2517315.

[18] Guo, W., et al. 2024. “MalOSDF: An Opcode Slice-Based Malware Detection Framework Using Active and Ensemble
Learning.” Electronics 13 (2): 359. https://doi.org/10.3390/electronics13020359.

[19] Ye, Y., et al. 2009. “SBMDS: An Interpretable String-Based Malware Detection System Using SVM Ensemble with
Bagging.” Journal in Computer Virology 5: 283–93. https://doi.org/10.1007/s11416-008-0108-y.

[20] Aswini, A., and P. Vinod. 2014. “Android Malware Analysis Using Ensemble Features.” In International Conference
on Security, Privacy, and Applied Cryptography Engineering. Springer. https://doi.org/10.1007/978-3-319-12060-
7_20.

[21] Xiong, P., et al. 2014. “Android Malware Detection with Contrasting Permission Patterns.” China Communications
11 (8): 1–14. https://doi.org/10.1109/CC.2014.6911083.

[22] Hall, M., et al. 2009. “The WEKA Data Mining Software: An Update.” ACM SIGKDD Explorations Newsletter 11 (1):
10–18. https://doi.org/10.1145/1656274.1656278.

[23] Dietterich, T. G. 2000. “Ensemble Methods in Machine Learning.” In International Workshop on Multiple Classifier
Systems. Springer. https://doi.org/10.1007/3-540-45014-9_1.

[24] Caruana, R., et al. 2004. “Ensemble Selection from Libraries of Models.” In Proceedings of the Twenty-First
International Conference on Machine Learning. https://doi.org/10.1145/1015330.1015432.

[25] Londe, M. A., et al. 2025. “Biased Random-Key Genetic Algorithms: A Review.” European Journal of Operational
Research 321 (1): 1–22. https://doi.org/10.1016/j.ejor.2024.03.030.

[26] Verma, B. 1997. “Fast Training of Multilayer Perceptrons.” IEEE Transactions on Neural Networks 8 (6): 1314–20.
https://doi.org/10.1109/72.641454.

[27] Frank, E., M. Hall, and B. Pfahringer. 2012. “Locally Weighted Naive Bayes.” arXiv preprint arXiv:1212.2487.
[28] Berrar, D. 2025. “Bayes’ Theorem and Naive Bayes Classifier.” https://doi.org/10.1016/B978-0-323-95502-

7.00118-4.

https://doi.org/10.1109/IJCNN.2017.7966078
https://doi.org/10.3390/su142114406
https://doi.org/10.37934/ard.117.1.5767
https://doi.org/10.1007/s11416-024-00526-0
https://doi.org/10.37934/sej.8.1.2336b
https://doi.org/10.1016/j.procs.2020.03.110
https://doi.org/10.1016/j.comnet.2024.110563
https://doi.org/10.1145/1014052.1014105
https://doi.org/10.1109/ACCESS.2021.3089586
https://doi.org/10.1109/CIS.2010.77
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1109/ICTAI.2013.53
https://doi.org/10.1145/2517312.2517315
https://doi.org/10.3390/electronics13020359
https://doi.org/10.1007/s11416-008-0108-y
https://doi.org/10.1007/978-3-319-12060-7_20
https://doi.org/10.1007/978-3-319-12060-7_20
https://doi.org/10.1109/CC.2014.6911083
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1145/1015330.1015432
https://doi.org/10.1016/j.ejor.2024.03.030
https://doi.org/10.1109/72.641454
https://doi.org/10.1016/B978-0-323-95502-7.00118-4
https://doi.org/10.1016/B978-0-323-95502-7.00118-4

Journal of Advanced Research Design
Volume 140 Issue 1 (2026) 208-226

226

[29] Achari, A. P. S. K., and R. Sugumar. 2025. “Performance Analysis and Determination of Accuracy Using Machine
Learning Techniques for Decision Tree and RNN.” In AIP Conference Proceedings. AIP Publishing LLC.
https://doi.org/10.1063/5.0258588.

[30] Bhargava, N., et al. 2013. “Decision Tree Analysis on J48 Algorithm for Data Mining.” Proceedings of International
Journal of Advanced Research in Computer Science and Software Engineering 3 (6).

[31] Kalfountzou, E., et al. 2025. “A Comparative Analysis of Machine Learning Algorithms in Energy Poverty
Prediction.” Energies 18 (5). https://doi.org/10.3390/en18051133.

[32] Nie, Y., et al. 2025. “Bagging Machine Learning Algorithms for Rapid Identification, Classification, Evaluation and
Upscaling in Unconventional Reservoir.” Geoenergy Science and Engineering 246: 213545.
https://doi.org/10.1016/j.geoen.2024.213545.

[33] Liang, Y., et al. 2020. “Decorin: An Automatic Method for Plane-Based Decorating.” IEEE Transactions on
Visualization and Computer Graphics 27 (8): 3438–50. https://doi.org/10.1109/TVCG.2020.2972897.

[34] Mallala, B., et al. 2025. “Forecasting Global Sustainable Energy from Renewable Sources Using Random Forest
Algorithm.” Results in Engineering 25: 103789. https://doi.org/10.1016/j.rineng.2024.103789.

https://doi.org/10.1063/5.0258588
https://doi.org/10.3390/en18051133
https://doi.org/10.1016/j.geoen.2024.213545
https://doi.org/10.1109/TVCG.2020.2972897
https://doi.org/10.1016/j.rineng.2024.103789

