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In this paper, piecewise-analytical and numerical solutions are obtained by a new 
adapted approach named the Adaptive Hybrid Reduced Differential Transform Method 
(AHRDTM). The fundamentals of the method are introduced, followed by its 
application to Nonlinear Schrodinger Equations (NLSEs). Analytical and numerical 
solutions are acquired using piecewise convergent series with computationally feasible 
components across a sequence of sub-intervals of varying length. This succeeds due to 
the adaptive algorithm introduced and the substitution of the non-linear term in the 
NLSEs with their corresponding Adomian polynomials. The accuracy of the AHRDTM is 
observed through numerical comparisons between the proposed method and the 
Modified Reduced Differential Transform Method (MRDTM) with their respective 
exact solutions. The absolute errors presented in the table reveal that the proposed 
approach has better accuracy in solving the considered equations. The results and 
pictorial illustrations have been provided to demonstrate the reliability of the 
method’s accuracy in obtaining approximate solutions.  
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1. Introduction 
 

The partial differential equation (PDE) is a crucial type of differential equation (DE) employed to 
elucidate and simulate scientific phenomena in various fields such as optics, acoustics, fluid 
mechanics, hydrodynamics and astronomy [1,2]. The significance of this concept and its practical 
applications extends to both pure and modern mathematical research areas [3-5]. Given the intricate 
nature of problem-solving for PDEs, numerous methods have been devised to solve such challenges 
[6-8]. Analytical techniques like the Optimal Homotopy Asymptotic Method (OHAM) [9], 𝜑6-Model 
Expansion Method [10] and Modified Extended Direct Algebraic Method (MEDAM) [11] are employed 
to tackle these complex models due to their inherent structural intricacies. Some effective 
approaches in PDE solutions include the Quadratic Jacobi’s Elliptic Function Expansion Method [12], 
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Improved Shooting Method [13], Exponential Time Differencing Runge–Kutta Scheme [14] and 
Painlevé Analysis [15]. 

Several hyperbolic wave-type equations, including the Korteweg-De Vries Equations (KdVEs), 
Klein-Gordon Equations (KGEs), Schrodinger Equations (SEs), Harry Dym Equations and Burgers 
Equations have been utilized as mathematical models for various types of waves. This paper focuses 
on the Nonlinear SEs (NLSEs), a well-known equation with applications in hydrodynamics, plasma 
waves, nonlinear optical waves, oceanography, deep surface water waves, ocean roughness, biology, 
quantum mechanics and light emission in cables of fibre optics [16]. The NLSEs have been studied 
both numerically and analytically using diverse methods, including the Darboux–Bäcklund 
Transformation [17], the Cubic Exponential B-Spline Collocation Method (CuEBCM) [18], Modified F-
Expansion Method [19] and various other methods [20-22]. Approximate analytical solutions, also 
known as semi-analytical methods, are valuable in solving NLSEs. One such method is the Q-
Homotopy Analysis Transform Method (q-HATM), which has been applied to obtain analytical and 
approximate solutions of NLSE with higher dimension by Akinyemi et al., [23]. Alshammari et al., [24] 
utilized the Adomian Decomposition Transform Method (ADTM) and the Variational Iteration 
Transform Method (VITM) to solve fractional system Jaulent–Miodek equations connected with 
energy dependent Schrodinger potential. Another significant analytic method employed in this paper 
is the Differential Transform Method (DTM). In DTM, the provided differential equation, along with 
the initial conditions, is transformed into a recursive equation, ultimately yielding the solution as a 
Taylor series. DTM is the original method used in this study. 

Scientists have brought attention to the DTM and its advanced variants. In 2009, Keskin et al., 
[25,26] introduced the Reduced DTM (RDTM) as a semi-analytical method to solve problems related 
to PDEs. This method gained significant traction among researchers for its effectiveness in solving a 
variety of problems [27-30]. However, challenges arose when dealing with complex PDEs. 

Recognizing the complexities encountered in solving fractional Korteweg-De Vries Equations 
(KdVEs), Saha Ray [31] proposed a modification to the fractional RDTM. This modification involves 
replacing the nonlinear term with Adomian polynomials, simplifying the derivation of solutions and 
reducing the number of calculated terms. Consequently, this adaptation of the RDTM is known as the 
Modified RDTM (MRDTM) and proves to be a valuable approach for handling problems with highly 
nonlinear terms. 

The Multistep DTM (MsDTM) represents another advancement in DTM. Initially presented in 
2010 by Odibat et al., [32] this semi-analytic method has been applied to various systems. MsDTM 
generates a solution with a rapidly converging convergent series, particularly over a sequence of 
equal-length subintervals, thereby enhancing the overall convergence of the series solution. Building 
upon this, researchers such as Al-Smadi et al. [33] and Momani et al., [34] applied the multistep 
scheme to the RDTM, resulting in the Multistep RDTM (MsRDTM) for solving fractional PDEs [35]. 

In 2018 and 2019, Che Hussin et al., [36,37] introduced and implemented the Multistep Modified 
RDTM (MMRDTM) by combining the concepts of MsRDTM and MRDTM. This approach has proven 
effective in solving NLSEs and fractional NLSEs (FNLSEs). Additionally, Sabdin et al., [38,39] have 
applied the MMRDTM in solving nonlinear telegraph equations (NLTEs) and time fractional NLTEs 
(TFNLTEs) with source terms. 

However, a notable limitation of employing a multistep scheme is its reduced efficiency when 
dealing with large intervals. Therefore, an adaptive approach becomes crucial to address such 
challenges, allowing for the incorporation of variable-length step sizes. This adaptability is vital for 
ensuring convergence over a significant time frame across a sequence of subintervals with varying 
lengths. Recognizing this need, two distinct adaptive algorithms with different approaches were 
developed by Gökdoğan et al., [40] and El-Zahar [41]. 
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Building upon the mentioned references, both adaptive schemes applied to the DTM have been 
termed the Adaptive MsDTM (AMsDTM). These adaptive approaches have been implemented to 
obtain approximate analytical solutions for nonlinear problems [42]. 

The objective of this paper is to introduce a novel approach named the Adaptive Hybrid Reduced 
Differential Transform Method (AHRDTM) for solving the NLSE. The term "Adaptive Hybrid" signifies 
the integration of the adaptive multistep approach from AMsDTM by El-Zahar [41] and the 
modification of RDTM (MRDTM) through the use of appropriate Adomian polynomials. The adaptive 
algorithm is employed to obtain solutions with variable-length subintervals. The purpose is to 
observe the accuracy of the proposed method in solving considered NLSEs. The accuracy is observed 
by calculating the absolute error of AHRDTM and MRDTM opposing their respected exact solutions. 
The outcomes show that AHRDTM has greater accuracy than the MRDTM. The results indicate the 
reliability of the new approach in solving the considered problems. 

The remaining sections of this work are organized as follows: Section 2 discusses definitions, the 
adaptive algorithm and solution formulations. Section 3 illustrates the application of AHRDTM in 
various NLSEs, presenting solutions through tables and graphical illustrations. Finally, Section 4 
provides concluding observations. 

 
2. Development of Adaptive Hybrid Reduced Differential Transform Method  

 
This innovative method is a synthesis of techniques from the Reduced Differential Transform 

Method (RDTM), Modified Reduced Differential Transform Method (MRDTM), Multistep Reduced 
Differential Transform Method (MsRDTM) and Adaptive Multistep Differential Transform Method 
(AMsDTM). The specific steps or limitations associated with each of these methods are outlined 
below. 

 
2.1 Reduced Differential Transform Method 

 
A two-variable function 𝑢(𝑥, 𝑡) is under consideration and it can be expressed as the product of 

two single-variable functions: 𝑢(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡). Leveraging the foundational properties of the 
one-dimensional differential transform, the function 𝑢(𝑥, 𝑡) can be represented as the Eq. (1) below, 

 

𝑢(𝑥, 𝑡) = (∑ 𝐹(𝑖)𝑥𝑖∞
𝑖=0 )(∑ 𝐺(𝑗)𝑡𝑗∞

𝑗=0 ) = ∑ 𝑈𝑘(𝑥)𝑡𝑘∞
𝑘=0 .                    (1) 

 
In this context, the t-dimensional spectrum function of 𝑢(𝑥, 𝑡) is represented as 𝑈𝑘(𝑥). The 

essential definitions of the RDTM are outlined as follows [25]: 
 

i. Definition 1: If the domain of interest's function 𝑢(𝑥, 𝑡) is analytical and continuously 
differentiable with regard to time 𝑡 and space 𝑥 as in Eq. (2), 

 

𝑈𝑘(𝑥) =
1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘 𝑢(𝑥, 𝑡)]
𝑡=0

,                        (2) 

 
Where, the transformed function is the 𝑡-dimension spectrum function 𝑈𝑘(𝑥). In this paper, the 
primary function is denoted by the small letter 𝑢(𝑥, 𝑡), while the altered function is symbolized by 
the capital letter 𝑈𝑘(𝑥). 
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ii. Definition 2: Given the following for the differential inverse transform of 𝑈𝑘(𝑥) as in Eq. (3), 
 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘∞
𝑘=0 .                   (3) 

 
Then, by combining Eqs. (2) and (3), we obtain Eq. (4), 

 

𝑢(𝑥, 𝑡) = ∑
1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘
𝑢(𝑥, 𝑡)]

𝑡=0
𝑡𝑘∞

𝑘=0 .           (4) 

 
Building upon the definitions provided earlier, the concept of RDTM is derived from the expanded 

power series. Consider the following operator-form nonlinear PDE to explain the fundamental RDTM 
concepts as in Eq. (5): 

 
ℒ𝑢(𝑥, 𝑡) + ℛ𝑢(𝑥, 𝑡) + 𝒩𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),                      (5) 
 
with initial condition of Eq. (6), 

 
𝑢(𝑥, 0) =  𝑓(𝑥),                         (6) 

 

Where, ℒ =
𝜕

𝜕𝑡
, ℛ is a partial derivatives linear operator, 𝒩𝑢(𝑥, 𝑡) is a nonlinear operator and 𝑔(𝑥, 𝑡) 

is an inhomogeneous term. Based on AHRDTM, the iteration formula shown below may be formed 
as in Eq. (7), 

 
(𝑘 +  1)𝑈𝑘+1(𝑥) =  𝒢𝑘(𝑥) −  ℛ𝑈𝑘(𝑥) −  𝒩𝑈𝑘(𝑥),                     (7) 

 
Where, 𝑈𝑘(𝑥), ℛ𝑈𝑘(𝑥), 𝒩𝑈𝑘(𝑥) 𝑎𝑛𝑑 𝒢𝑘(𝑥) are the transformations of the respected functions 
ℒ𝑢(𝑥, 𝑡), ℛ𝑢(𝑥, 𝑡), 𝒩𝑢(𝑥, 𝑡), 𝑎𝑛𝑑 𝑔(𝑥, 𝑡). We write the transformed initial condition Eq. (6)  

 
𝑈0(𝑥) =  𝑓(𝑥).                         (8) 

 
2.2 Modified Reduced Differential Transform Method 

 
Ray [31] denoted the nonlinear term as follows in Eq. (9), 
 

𝑁𝑢(𝑥, 𝑡) = ∑ 𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥))∞
𝑛=0 .                     (9) 

 
The method proposed for computing the Adomian polynomials as shown in Eq. (10), and Eq. (11), 
 

𝐴0 = 𝑁(𝑈0(𝑥)),                       (10) 

 

𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥)) =
1

𝑛!
(

𝑑𝑛

𝑑𝜆𝑛
[𝑁(∑ 𝜆𝑘𝑈𝑘(𝑥)𝑛

𝑘=0 )])
𝜆=0

, 𝑛 ≥ 1,                            (11) 

 
such that 𝒩𝑈𝑘(𝑥) is the term of nonlinearity. When the nonlinear term is replaced by its Adomian 
polynomial, the solution yields Eq. (12), 

 
(𝑘 +  1)𝑈𝑘+1(𝑥) =  𝒢𝑘(𝑥) −  ℛ𝑈𝑘(𝑥) −  𝐴𝑘.                   (12) 
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It's important to note that this approach doesn't necessitate time-consuming computations 
involving high derivatives. Iterative calculation can be used to obtain 𝑈𝑘(𝑥) values by combining Eq. 
(8) into Eq. (12). Furthermore, the set of inverse transformation values, {𝑈𝑘(𝑥)}𝑘=0

𝑛  yields the 
approximate solution as follows in Eq. (13), 

 
𝑢𝑛(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘∞

𝑘=0 , 𝑡 ∈ [0, 𝑇].                     (13) 
 

2.3 Multistep Reduced Differential Transform Method 
 
The MsRDTM identifies the RDTM series by partitioning the interval [0, 𝑇] into 𝑅 subintervals of 

equal length. However, dealing with both linear and nonlinear differential equations often requires 
choosing a small-time step size. This, in turn, leads to obtaining RDTM solutions across a greater 
number of subintervals. Therefore, selecting a smaller time step size and increasing the number of 
subintervals result in longer computation times. To tackle this challenge, a novel approach is needed 
and an adaptive methodology is suggested as a solution. 

 
2.4 Adaptive Multistep Differential Transform Method 

 
The following adaptive time step-size control algorithm is taken from the algorithm introduced in 

AMsDTM. The algorithm is then applied according to the adaptive scheme by El-Zahar et al., [41]: 
 

i. One gives the admissible local error 𝛿 > 0 and chooses the order 𝑁 of the multistep scheme. 

ii. From calculations, the values |𝑈𝑘,𝑟(𝑁)|, 𝑘 =  1, 2, . . . , 𝑛, are known for every solution 

component 𝑘. 

iii. At the grid point 𝑡𝑟, we calculate the value 𝐸𝑁 = 𝑚𝑎𝑥(|𝑈𝑘,𝑟(𝑁)|), 𝑘 =  1, 2, . . . , 𝑛. 

iv. We select the step-size ℎ𝑟 for which ℎ𝑟 = 𝜏 (
𝛿

𝐸𝑁
)

1

𝑁
≤  ℎ𝑚𝑎𝑥  and 𝑡𝑟+1  =  𝑡𝑟 + ℎ𝑟, where 𝜏 is a 

safety factor and ℎ𝑚𝑎𝑥  is the maximum allowed step-size. 
 
Firstly, MRDTM is applied to the initial value problem of interval [0, 𝑡1]. Then, by using the initial 

conditions as in Eq. (14), 
 

𝑢(𝑥, 0) =  𝑓0(𝑥).                       (14) 
 
We obtain the approximate result in Eq. (15), 
 

𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑘,1(𝑥)𝑡𝑘k
𝑘=0 , 𝑡 ∈ [0, 𝑡1].                    (15) 

 
The adaptive step-size control algorithm is then applied to determine 𝑡1 of [0, 𝑡1]. Then, for each 

subinterval [𝑡𝑟−1, 𝑡𝑟], the initial condition in Eq. (16), 
 

𝑢𝑟(𝑥, 𝑡𝑟−1) = 𝑢𝑟−1(𝑥, 𝑡𝑟−1),                      (16) 
 

is used for 𝑟 ≥ 2 and the implementation of AHRDTM to the initial value problem on [𝑡𝑟−1, 𝑡𝑟]. For 
𝑟 = 1,2, … , 𝑅, the algorithm is then applied repeatedly for each subinterval [𝑡𝑟−1, 𝑡𝑟] of 𝑅 variable-
length subintervals to determine each 𝑡𝑟. Thus, the interval [0, 𝑇] is a combination of variable-length 
subintervals, [𝑡𝑟−1, 𝑡𝑟] for 𝑡 𝜖 [0, 𝑇].  
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The process is iteratively repeated to construct an approximate solutions sequence 𝑢𝑟(𝑥, 𝑡) for 
𝑟 = 1,2, … , 𝑅, as follows in Eq. (17),  

 
𝑢𝑟(𝑥, 𝑡) = ∑ 𝑈𝑘,𝑟(𝑥)(𝑡 − 𝑡𝑟−1)𝑘𝐾

𝑘=0 , 𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟].                   (17) 

 
Finally, the AHRDTM proposes the following solutions in Eq. (18), 
 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡1]

𝑢2(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈, [𝑡1, 𝑡2] 
⋮

𝑢𝑅(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈, [𝑡𝑅−1, 𝑡𝑅]

.                    (18) 

 
It is crucial to note that when the step size 𝑠 = 𝑇, the MRDTM is derived from AHRDTM. 
 

3. Results  
 
Three numerical examples have been examined to demonstrate the reliability of the AHRDTM 

and its efficacy in solving the NLSE: 
 

i. Example 1: Cubic NLSE was taken consideration [43]: 
 

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2|𝑢|2𝑢 = 0,                      (19) 
 

is considered with initial condition: 
 

𝑢(𝑥, 0) = 𝑒𝑖𝑥.                        (20) 
 

𝑒𝑖(𝑥+𝑡) is the exact solution of this equation. By applying the AHRDTM to Eq. (19) and using 
fundamental properties of AHRDTM, we have: 

 

𝑈𝑘+1,r(𝑥) = (
𝐼

𝑘+1
) (

𝜕2

𝜕𝑥2 𝑈𝑘,𝑟(𝑥) + 2𝐴𝑘,𝑟).                    (21) 

 
We write the transformed initial condition Eq. (20) as: 

 

𝑈0(𝑥) = 𝑒𝑖𝑥.                        (22) 
 
The adaptive algorithm is then implemented to obtain an approximate solution. Graphical 

comparisons of the approximate solution using MRDTM, AHRDTM at 𝑁 = 6, with respect to the 
admissible local error, 𝛿 = 0.01 and the exact solution for 𝑡 ∈ [2.5, 5] and 𝑥 ∈ [−5, 5], 
encompassing the real and imaginary parts, are presented in Figure 1(a) and Figure 1(b) respectively. 
The comparisons in Figure 1(a) and Figure 1(b) distinctly reveal that the graphs of AHRDTM with 𝛿 =
0.01 closely resemble the shape and size of the exact solutions in contrast to the graph of MRDTM. 
Consequently, AHRDTM demonstrates superior accuracy in approximating solutions. The solutions 
obtained by AHRDTM for this type of NLSE are thus shown to be nearly accurate in comparison to 
the exact solutions. 
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(a) (b) 

Fig. 1. The graphs shown in (a) and (b) are the exact solutions, MRDTM and AHRDTM 
with 𝛿 = 0.01 involving the real and imaginary part respectively 

 
Table 1 provides the performance error analysis. According to the table, numerical results for 

absolute error (AE) and error norms 𝐿2 and 𝐿∞ from AHRDTM with 𝛿 = 1.0 × 10−10 are smaller, 
indicating greater accuracy than MRDTM. AHRDTM yields superior results in solving the NLSE 
compared to MRDTM. 

 
Table 1 
Error analysis of semi-analytic solution for MRDTM and AHRDTM 
T Exact Solutions AE MRDTM AE AHRDTM 

0 0.5403023059 + 0.8414709848I 0 0 
0.1 0.4535961214 + 0.8912073601I 2.996664813 × 10−10 2.996664813 × 10−10 
0.2 0.3623577545 + 0.9320390860I 2.580697580 × 10−9 2.580697580 × 10−9 
0.3 0.2674988286 + 0.9635581854I 4.330415684 × 10−8 4.270316148 × 10−8 
0.4 0.1699671429 + 0.9854497300I 3.246369357 × 10−7 4.715347283 × 10−8 
0.5 0.07073720167 + 0.9974949866I 1.547822690 × 10−6 5.406933419 × 10−8 
0.6 -0.02919952230 + 0.9995736030I 5.542108513 × 10−6 9.859808365 × 10−8 

0.7 -0.1288444943 + 0.9916648105I 1.629145204 × 10−5 1.073450511 × 10−7 

0.8 -0.2272020947 + 0.9738476309I 4.144872897 × 10−5 1.186779255 × 10−7 

0.9 -0.3232895669 + 0.9463000877I 9.443486255 × 10−5 1.674857009 × 10−7 

1.0 -0.4161468365 + 0.9092974268I 1.972130480 × 10−4 1.808347588 × 10−7 

 𝐿2 2.022634535 × 10−4 3.210198349 × 10−7 

 𝐿∞ 1.972130480 × 10−4 1.808347588 × 10−7 

 
ii. Example 2: NLSE with zero trapping potential of the form [43]: 

 

𝑖𝑢𝑡 +
1

2
𝑢𝑥𝑥 + |𝑢|2𝑢 = 0,                      (23) 

 
was considered with initial condition: 

 

𝑢(𝑥, 0) = 𝑒𝑖𝑥.                        (24) 
 

𝑒𝑖(𝑥+
𝑡

2
) is this equation’s exact solution. By applying the AHRDTM to Eq. (23) and using fundamental 

properties of AHRDTM, we have: 
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𝑈𝑘+1,r(𝑥) = (
𝐼

𝑘+1
) (

1

2

𝜕2

𝜕𝑥2 𝑈𝑘,𝑟(𝑥) + 𝐴𝑘,𝑟).                    (25) 

 
We write the transformed initial condition Eq. (24) as: 

 

𝑈0(𝑥) = 𝑒𝑖𝑥.                        (26) 
 
Next, the adaptive algorithm is applied to obtain an approximate solution for this example. 

Graphical comparisons of the approximate solution using MRDTM, AHRDTM at 𝑁 = 6, with respect 
to the specified tolerance, 𝛿 = 0.01 and the exact solution for 𝑡 ∈ [3, 7] and 𝑥 ∈ [−5, 5], 
encompassing the real and imaginary parts, are depicted in Figure 2(a) and Figure 2(b) respectively. 
The comparisons in Figure 2(a) and Figure 2(b) show that the graphs of AHRDTM with 𝛿 = 0.01 
closely resemble the shape and size of the exact solutions in contrast to the graph of MRDTM. 
Consequently, the solutions obtained by AHRDTM for this type of NLSE are demonstrated to be 
approximately accurate compared to the exact solutions. 

 

  
(a) (b) 

Fig. 2. The graphs shown in (a) and (b) are the exact solutions, MRDTM, AHRDTM with 
𝛿 = 0.01, which involve the real and imaginary part respectively 

 
Table 2 presents the performance error analysis, including absolute error (AE) and error norms 

𝐿2 and 𝐿∞. The numerical results from AHRDTM with 𝛿 = 1.0 × 10−10 are notably more accurate 
than those from MRDTM, affirming that AHRDTM provides better results in solving the NLSE 
compared to MRDTM. 

 
iii. Example 3: NLSE with trapping potential of the form [43]: 

 

𝑖𝑢𝑡 +
1

2
𝑢𝑥𝑥 − 𝑢𝑐𝑜𝑠2(𝑥) − |𝑢|2𝑢 = 0,                    (27) 

 
had been considered with initial condition: 

 
𝑢(𝑥, 0) = sin(𝑥).                       (28) 
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Table 2 
Error analysis of semi-analytic solution for MRDTM and AHRDTM 
T Exact Solutions AE MRDTM AE AHRDTM 

0 0.5403023059 + 0.8414709848I 0 0 
0.1 0.4975710479 + 0.8674232256I 3.551056181 × 10−10 3.551056181 × 10−10 
0.2 0.4535961214 + 0.8912073601I 2.996664813 × 10−10 2.996664813 × 10−10 
0.3 0.4084874409 + 0.9127639403I 2.441311123 × 10−10 2.441311123 × 10−10 
0.4 0.3623577545 + 0.9320390860I 2.580697580 × 10−9 2.580697580 × 10−9 
0.5 0.3153223624 + 0.9489846194I 1.204408569 × 10−8 1.204408569 × 10−8 
0.6 0.2674988286 + 0.9635581854I 4.330415684 × 10−8 4.270316148 × 10−8 

0.7 0.2190066871 + 0.9757233578I 1.276094040 × 10−7 4.499288833 × 10−8 

0.8 0.1699671429 + 0.9854497300I 3.246369357 × 10−7 4.715347283 × 10−8 

0.9 0.1205027694 + 0.9927129910I 7.404440897 × 10−7 4.938187927 × 10−8 

1.0 0.07073720167 + 0.9974949866I 1.547822690 × 10−6 5.405972715 × 10−8 
 𝐿2 1.751488817 × 10−6 1.076308023 × 10−7 

 𝐿∞ 1.547822690 × 10−6 5.405972715 × 10−8 

 

sin(𝑥)𝑒(−
3𝑖

2
𝑡) is this equation’s exact solution. By applying the AHRDTM to Eq. (27) and using 

fundamental properties of AHRDTM, we have: 
 

𝑈𝑘+1,r(𝑥) = (
𝐼

𝑘+1
) (

1

2

𝜕2

𝜕𝑥2 𝑈𝑘(𝑥) − 𝑈𝑘(𝑥)𝑐𝑜𝑠2(𝑥) − 𝐴𝑘,𝑟).                  (29) 

 
We write the transformed initial condition Eq. (28) as: 

 
𝑈0(𝑥) = sin(𝑥).                       (30) 
 

The adaptive algorithm is then applied to obtain an accurate approximate solution for this 
example. A graphical comparison of the approximate solutions using MRDTM, AHRDTM at 𝑁 = 6, 
with respect to the specified tolerance, 𝛿 = 0.001 and the exact solution for 𝑡 ∈  [1.5, 3.5] and 𝑥 ∈
[−3.5, 3.5], involving the real and imaginary parts, is depicted in Figure 3(a), Figure 3(b), Figure 3(c), 
Figure 3(d), Figure 3(e) and Figure 3(f). Figure 3(c) and Figure 3(d) illustrate that the graphs of 
AHRDTM with 𝛿 = 0.001 closely and significantly resemble their exact solutions compared to the 
graph of MRDTM shown in Figure 3(a) and Figure 3(b). Consequently, AHRDTM demonstrates greater 
accuracy in approximating solutions. The solutions obtained by AHRDTM for this type of NLSE are 
shown to be significantly close to the exact solutions. 

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Fig. 3. The graphs shown in (a) and (b) are the exact solutions and MRDTM, (c) and (d) 
are the exact solutions and AHRDTM with 𝛿 = 0.001, while (e) and (f) are the exact 
solutions, MRDTM and AHRDTM with 𝛿 = 0.001, which involve the real and 
imaginary part, respectively 

 
Table 3 the performance error analysis, where absolute error (AE) and error norms 𝐿2 and 𝐿∞ are 

utilized for error analysis. Numerical results from AHRDTM with 𝛿 = 1.0 × 10−10 are noticeably 
more accurate than those from MRDTM. AHRDTM yields superior results in solving the NLSE 
compared to MRDTM. 
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Table 3 
Error analysis of semi-analytic solution for MRDTM and AHRDTM 
T Exact Solutions AE MRDTM AE AHRDTM 

0 0.8414709848 0 0 
0.1 0.8320221727 - 0.1257478525I 2.660964897 × 10−10 2.660964897 × 10−10 
0.2 0.8038879363 - 0.2486716794I 3.644744902 × 10−8 3.644744902 × 10−8 
0.3 0.7577001100 - 0.3660108763I 6.230741499 × 10−7 4.576620807 × 10−8 
0.4 0.6944959727 - 0.4751302582I 4.663560160 × 10−6 7.734847669 × 10−8 
0.5 0.6156949531 - 0.5735792387I 2.221039714 × 10−5 9.422267329 × 10−8 

0.6 0.5230667522 - 0.6591468660I 7.946428659 × 10−5 1.221756010 × 10−7 
0.7 0.4186915997 - 0.7299114759I 2.333622902 × 10−4 1.462022591 × 10−7 
0.8 0.3049135365 - 0.7842838476I 5.930457850 × 10−4 1.711831216 × 10−7 
0.9 0.1842877727 - 0.8210428948I 1.349438602 × 10−3 2.015161508 × 10−7 

1.0 0.05952330275 - 0.8393630887I 2.814081292 × 10−3 2.244005936 × 10−7 

 𝐿2 3.186381856 × 10−3 4.181551827 × 10−7 

 𝐿∞ 2.814081292 × 10−3 2.244005936 × 10−7 

 
4. Conclusions 

 
This paper introduces a novel, efficient and accurate approach called the Adaptive Hybrid 

Reduced Differential Transform Method (AHRDTM), an adaptive approximation analytical method 
for handling NLSEs. The results illustrate the method's accuracy, effectiveness and reliability, as 
evidenced by the numerical outcomes and graphical representations. Consequently, AHRDTM 
emerges as a valuable mathematical tool for solving NLSEs, providing solutions with high accuracy 
and demonstrating a notable superiority over MRDTM in terms of accuracy. All calculations in this 
paper were conducted using Maple 2021. 
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