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ARTICLE INFO ABSTRACT

Article history: High-dimensional sparse numerical data are normally encountered in machine
Received 2 August 2024 learning, recommender systems, finance and medical imaging. The problem with this
22:;2‘;'2;?:”52%;:“ 14 August 2024 type of data is that it has high dimensions (many features) and highly sparse (most
Available online 30 April 2025 values are zero), which is prone to overfitting. The data visualization can be achieved
through a neural network architecture called stacked autoencoders. These multilayer
autoencoders are designed to reconstruct input data, but overfitting is a major
problem. To overcome this problem novel L1 Regularization-dropout technique is
introduced to reduce overfitting and boost stacked autoencoder performance. L1
regularization penalizes large weights, simplifying data representations whereas the
dropout technique randomly turns off neurons during training and makes the model
dependent only on the selected turn-on neurons. The model employs batch
normalization to improve the performance of the autoencoder. The approach was
implemented on a high-dimensional sparse numerical dataset in the field of
cybersecurity to minimize the loss function, measured by Mean Square Error (MSE)
and Mean Absolute Error (MAE). The findings were compared to the conventional

Keywords: stacked autoencoder. The study revealed that the suggested method effectively
Autoencoder; deep learning; high- mitigated the issue of overfitting. Stacked autoencoders, when combined with L1
dimensional data; stacked autoencoder; regularisation and the dropout approach, are very successful in handling high-
sparse data dimensional sparse numerical data in a diverse range of applications.

1. Introduction

Recently, the analysis of high-dimensional data has become essential due to its application across
several domains, including bioinformatics, image processing, natural language processing, and
cybersecurity. A dataset is classified as high-dimensional when the number of features (p) exceeds
the number of observations (N). For instance, a dataset with six features (p = 6) and only three
observations (N = 3) are considered high-dimensional due to the greater number of features relative
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to data points [1]. High-dimensional data can be categorized into two types: sparse data and dense
data. A dataset is dense if most of its values are non-zero; otherwise, it is classified as sparse [2], [3].
This distinction is crucial because it fundamentally impacts how the data is processed and analyzed.
Sparse data is prevalent in many large-scale internet applications, such as search engines,
recommendation systems, and online advertising. However, most deep learning frameworks are
designed for dense data and tend to perform poorly on sparse datasets [4]. The exponential growth
in the quantity, variety, complexity, and dimensions of digital data presents unique challenges,
particularly in managing high-dimensional sparse data [5]. Various fields, including biology, computer
vision, and text processing, frequently utilize sparse, high-dimensional vectors for data
representation [6].

Several methodologies have been proposed to address these challenges. For instance, Kuan et al.
[7] introduced a new approach for learning similarity measures in high-dimensional sparse data,
aiming to overcome the limitations of traditional methods. While innovative, these approaches often
suffer from computational inefficiency when handling large, complex datasets and generally offer
limited theoretical guarantees. Another significant development is the industrial deep learning
framework (XDL), a distributed, scalable, and high-performance system designed specifically for high-
dimensional data. However, the lack of open-source availability of XDL restricts its accessibility for
academic research and broader contributions from the scientific community [3]. Similarly, the Fast
Autoencoder (FAE) model investigates high-dimensional structural (HiDS) data and reduces
computational costs. Nevertheless, empirical evidence supporting its effectiveness across diverse
datasets remains limited, raising questions about its generalizability and robustness [8]. The SL-LF
model, which employs a smooth L1-norm approach, is designed for predicting missing data in high-
dimensional sparse matrices. Despite its strengths, it struggles with automatic hyperparameter
tuning and maintaining non-negative constraints, affecting its optimal performance [9]. Meanwhile,
the Multi-Metric Latent Factor (MMLF) technique enhances performance by uncovering latent
structures in complex data, but introduces additional computational complexity due to its intricate
design [10]. Deep learning (DL) has gained significant popularity for high-dimensional data analysis
because of its ability to uncover low-dimensional subspaces. Deep feedforward networks and
convolutional neural networks have achieved remarkable results in image processing, natural
language interpretation, and robotic control [11], [12]. In these models, a multivariate function is
modelled through a hierarchical structure of features, each representing nonlinear transformations
that manage high-dimensional challenges effectively. However, training deep networks typically
demands large-scale datasets, which may be prohibitively expensive for practical engineering
applications [13][14]. Compared to traditional machine learning (ML) approaches, deep learning
represents a distinct research paradigm that has demonstrated outstanding success in multiple fields.
Feature engineering, a critical bottleneck in standard ML pipelines, often limits scalability due to the
heavy reliance on human expertise [15]. In contrast, DL algorithms naturally extract hierarchical
representations from raw data through multiple nonlinear transformations, minimizing the need for
manual feature selection [16]. Advances in GPU technology and computational infrastructure have
further facilitated the training of deep learning models. Methods such as the Stacked Autoencoder
(SAE) have proven highly effective in learning critical data representations, making them valuable for
classification and other applications. However, SAEs are vulnerable to overfitting, particularly when
trained on limited datasets, due to their complex architectures and large numbers of trainable
parameters [4]. Table 1 provides a comparative summary of representative state-of-the-art
approaches proposed for high-dimensional sparse data analysis.

In this study, we propose a Regularized Stacked Autoencoder (RSAE) model specifically designed
to address overfitting issues associated with high-dimensional sparse data. The proposed method
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integrates L1 regularization and dropout layers to promote sparsity and reduce model complexity,
thereby enhancing generalization performance. The RSAE model demonstrates outstanding
performance on a cybersecurity dataset, highlighting its potential applicability across other domains
involving high-dimensional sparse data, such as image processing, natural language processing, and
bioinformatics.

The contributions of this paper are summarized as follows:

i.  The RSAE model, combining L1 regularization with dropout layers, significantly improves upon
the traditional Stacked Autoencoder (SAE) for handling high-dimensional sparse data.

ii. The RSAE model outperforms conventional techniques, including the classic SAE, by
effectively mitigating overfitting and achieving superior error metrics.

The rest of this paper is organized as follows: Section 2 details the workings of the Stacked

Autoencoder (SAE) enhanced with L1 regularization.

Table 1

Comparative summary for state-of-the-art approaches

Literature  Method Limitation Conclusion

Kuan et Frank-Wolfe Scalability and generalization are  This approach increases similarity learning

al., [7] limited because of high in sparse data, resulting in better
computing costs, reliance on performance but requiring additional
labelled data and probable scalability enhancements.
overfitting.

Jiang et XDL Framework Large-scale dataset optimization Demonstrates good handling of high-

al., [3] is complex and requires a lot of dimensional sparse data, with potential for
processing power. industrial-scale use.

Jiang et Fast Deep Computationally intensive, Effectively handles high-dimensional

al., [8] AutoEncoder reconstruction accuracy and sparse matrices in recommender systems,
efficiency must be carefully improving speed and scalability.
tuned.

Wuetal., Robust Latent Factor  Hyperparameter selection can be  Accurately and robustly represents high-

[9] Analysis critical, and optimal performance  dimensional sparse data, boosting data
may need significant adjustment.  analysis and modelling precision.

Wuetal, Multi-Metric Latent The integration of many Improves analysis of high-dimensional

[10] Factor Model measurements is complex, and sparse data by using numerous metrics to
parameter adjustment may be increase accuracy and understanding.
tough.

Zhang et Stacked Sparse The model is computationally The model successfully enhances intrusion

al.,, [17] Autoencoder (SSAE) demanding and necessitates detection accuracy in high-dimensional

and Improved
Gaussian Mixture
Model (GMM)

significant parameter adjustment,
which might affect scalability and
performance in big or noisy
datasets.

data by utilizing the Stacked Sparse
Autoencoder and Improved Gaussian
Mixture Model, however, it may be
restricted by computational complexity
and tuning issues.

2. Methodology
2.1 Data Preprocessing

Raw datasets often present several challenges, including the presence of outliers, missing values,
varying feature dimensions, and lack of comparability [18]. Data must undergo thorough cleaning
and preprocessing before it can be effectively utilized as input for model training [19]. Furthermore,
because the input to the Stacked Sparse Autoencoder (SSAE) network must be in the form of a
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numerical matrix, symbolic attributes must be converted into corresponding numerical features. To
ensure feature values are comparable and standardized, a min-max normalization technique is
applied to rescale the original feature values into a common range, facilitating consistent
interpretation across different features [20].

2.2 Dataset

The UNSW-NB15 dataset was selected for the evaluation of the RSAE model. It was generated in
2015 by the Australian Centre for Cyber Security (ACCS) laboratory using the IXIA Perfect Storm too
[21]. Table 2 provides a detailed breakdown of the dataset’s 49 features. In total, the dataset
comprises 2,540,044 traffic samples distributed across four CSV files. For experimental purposes, a
training set and a testing set were created from the original samples. The dataset was uploaded to
Google Drive to ensure efficient data management and ease of access. Experimental procedures were
conducted using Google Colab, leveraging the free GPU environment provided by Google Cloud. This
setup enhanced computational efficiency by enabling seamless dataset access and significantly
accelerating processing tasks.

Table 2

The UNSW-NB15 dataset features

Feature category Feature name

Low features scrip,sport,dstip,dsport,proto

Base features state,dur,sbytes,dbytes,sttl,dttl,sloss,dloss,service,sload,dload,spkts,dpkts
Content features swin, dwin,stcpb,dtcpb,smeansz, dmeansz, trans_depth,res_bdy_len
Time features sjit, djit,stime,ltime,sintpkt,dintpkt,tcprtt,synack,ackdat

Additional generated features (general is_sm_ips_ports,ct_state_ttl,ct_flw_http_mthd,is_ftp_login,ct_ftp_cmd
purpose features)

Additional generated features ct_srv_src,ct_srv_dst,ct_dst_Itm,ct_src_Itm,ct_src_dport_ltm,ct_dst_sp
(connection features) ort_ltm,ct_dst_src_Itm

Labelled features attack_cat,Labe

2.3 Numeralization

One-hot encoding is employed to convert categorical attributes into a numerical format. The
symbolic features present in the high-dimensional dataset include “proto”, “service”, “state”, and
“attack_cat”. As a result of this numeralization process, the dimensionality of the dataset increases,
since each categorical value is transformed into a binary vector representation. This step is essential

for enabling compatibility with deep learning models that require numerical input [22].
2.4 Normalization

The maximal-minimum normalization approach provided in Eq. (1) is used to normalize the
feature values in the dataset to make it easier to compare the findings [17]. The value of x is scaled
into the numeric range [0,1] using the min-max normalization method,

’ X—-min(X)

X' =2-mnd) (1)

max(X)—min(X)

Where X' = normalized value, X = Original value, min(X) = minimum value of X, max(X) = maximum
value of X
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2.5 Dropout Layer

A neural network model can employ a dropout strategy to learn more robust features and reduce
interdependent learning among neurons. In this context, dropout units refer to nodes that are
temporarily removed from the network along with all their incoming and outgoing connections [23].
During training, random units are dropped from the network, helping to break up complex co-
adaptations among neurons. In this work, dropout is incorporated during the unsupervised learning
phase to mitigate overfitting and prevent redundant feature extraction. When dropout is applied,
specific nodes are assigned zero values during a training iteration and are effectively removed from
the network, meaning they do not contribute to the prediction or backpropagation processes.
Consequently, each training run results in a slightly altered network architecture, encouraging the
model to develop redundant-free and generalized feature representations. When configuring the
dropout layer, a drop probability must be defined, specifying the proportion of nodes to be set to
zero in each layer. It is important to note that dropout is only active during the training phase and is
disabled during testing to ensure full network capacity is utilized for inference [24]. Figure 1 illustrates
the structural difference between a standard neural network and one modified with dropout.

® O

(a) Standard neural network (b) After applying dropout
Fig. 1. Dropout applied to a standard neural network

2.6 Autoencoder Model

The structure of an unsupervised three-layer network, known as an Autoencoder, is illustrated in
Figure 2 and Figure 3, representing the input layer, hidden layer, and output (reconstruction layer)
[25]. An autoencoder accomplishes a nonlinear transformation from a high-dimensional space to a
low-dimensional one by sequentially mapping synthetic feature vectors to abstract feature
representations [26]. The autoencoder architecture can be conceptually divided into two main
stages: encoding and decoding, which are formally defined as follows:

64



Journal of Advanced Research Design
Volume 129 Issue 1 (2025) 60-74

(Low-dimensional Data J

Input Data
Reconstructed Data

- Encoder
Input Layer Hidden Layer Outputlayer
Fig. 2. Basic autoencoder model
Code layer

’ Input data |——> Encoder Decoder 3
\ ) 52
=

w s

o T

Fig. 3. Autoencoder model representation
The encoding process from the input layer to the hidden layer is as in Eq. (2),
H = f0;(X) :U(Win+b1) (2)

The procedure for the decoding from the reconstruction layer to concealed layer is as in Eq. (3),

Y = f0,(H) = c(Wy X + by) (3)
The input data vector in this formula denoted by X = (x4, x5, X3, ... ... Xn) , the reconstruction
vector of the input data is represented by Y = (y1, V2, V3, < - V,) and the low dimensional output

from the hidden layer is denote by H = (h4, hy, hs, ... ... h,).Thus,X € R",Y € R™,H € R™ (where
n is the input vector's dimension and m are the number of hidden units). The weight connection
matrix between the input layer and hidden layer is denoted by W;; € R™ ™ The weight connection

matrix between the output layer and hidden layer is denoted by W, € R™™, Wi = W]-kT often
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occurs in the experiment to reconstruct the input data as precisely as feasible while minimizing the
resource consumption during model training. b; € R™*! and b; € R™* are the bias vectors of input
layer and hidden layer respectively. f6;(:) and f8,() are the activation functions of hidden layer
neuron and output layer neurons respectively. We use Relu activation function and sigmoid
activation function in this paper as in Eq. (4) and (5) respectively,

f6:() = max(0,x) (4)
f0:0) = —= (5)

The Autoencoder makes the reconstruction of original data through training by minimizing the
resulting error between reconstructed output and actual values. At this stage we assume that the
data provided by hidden layer units aggregates all information which was present in initial dataset
and is optimal low-dimensional representation of it. Eq. (6) illustrates the application of the mean
squared-error function in the reconstruction error function Jz (W, b) between H and Y, where N is
the number of input samples.

1
Je(W,b) =525=1IIYr—XrIIZ (6)
2.7 Stacked Autoencoder (SAE)

The concept of sparse coding to model the computational learning of basic cell receptive fields in
the primary visual cortex of mammals was first introduced by Olshausen et al.,[27]. For instance, the
input data is transferred to the output layer by straightforward copying because of the autoencoder's
inevitable issue. In this instance, the autoencoder does not extract any useful features, even though
the original input data can be reconstructed properly. To make the autoencoder generate more
concise and efficient low-dimensional data features under sparse constraints to better depict the
input data, the author used a method of adding L1 penalty terms on hidden layers in an effort. The
term "L1-norm," also known as "Lasso regression," refers to the weight vector W's sum of the
absolute values of each of its elements. It is defined as follows: L1(W) =[[Wl=Y; | W II;,. It can
therefore be applied to select more significant representations. Choosing features that provide
greater value to the model during training is hampered by an abundance of characteristics in the
sample. As a result, we eliminate the connections that add very little to the model and do not affect
the classification performance at all. With high dimensional data, it can extract more valuable
features in less time.

The mean square error term and the regularization term make up the first and second terms of
the error function at this point. As may be seen in Eq. (7):

JeW,b) =SSN IYT = X712+ a X I Wy | (7)

Here, a represents a user-adjustable hyperparameter that controls the strength of L1
regularization, allowing precise regulation of sparsity within the model. This regularization
mechanism is integrated into the autoencoder architecture to enhance feature learning and reduce
overfitting. The encoding and decoding layers of the architecture work together to build hierarchical
feature representations from the input data. Dropout layers are incorporated after each encoding
layer, where neurons are randomly deactivated during training to further prevent overfitting and
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encourage robustness. The structure of the Regularized Stacked Autoencoder (RSAE) network
comprising multiple regularized autoencoders connected sequentially is illustrated in Figure 4.

512 256 128 864 32 32 64 128 256 512

Important Features

Input —» e e e T = Bottleneck > >  —» - - > Output
—_
" |
T =7 T — — 7
Dense Hidden layers of Encoder part Dense Hidden layers of Decoder part

Fig. 4. Regularized Stacked Autoencoder model

Higher-level feature representations of the input data are generated by each successive layer of
the sparse autoencoder, utilizing the output from the previous layer as input. The optimal connection
weights and bias values of the stacked sparse autoencoder network are obtained through the
sequential training of each layer, employing a greedy layer-wise pretraining strategy. Subsequently,
the RSAE model undergoes fine-tuning using error backpropagation, optimizing the parameters until
the reconstructed output closely approximates the original input data. The error function used for
this fine-tuning process is defined in Eq. (6) becomes:

0 d

— i N r _ yr||2 .ol r..
awri]-]E(W’ b) = — Wy r=1lYT = X"||* + a - sign(WT;;) (8)
i — ii N r_ yr||2

Consequently, the following Eq. (10) and (11) is the weight and bias update processes,

a
WHy; = WHy; — #WJE(W, b) (10)

T T a
b" =b" — u-—Jr(W,b) (11)

Where, Y" and X" are respectively the original vector and its corresponding reconstruction vectors. u
represents the learning rate.

Due to the sparse structure of the RSAE network, it is beneficial to assign distinct learning rates
to individual parameters. Features that are infrequently activated require fewer updates, aligning to
minimize unnecessary parameter adjustments. However, most conventional gradient descent
algorithms, including mini-batch and stochastic gradient descent, apply a uniform learning rate across
all parameters, which complicates the process of selecting an appropriate rate and efficiently
reaching a local minimum [28]. To address this challenge, the adaptive moment estimation (Adam)
optimization algorithm, as proposed by Zhang [29], is employed in this work. Adam dynamically
adjusts learning rates for each parameter based on the first and second moments of the gradients,
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thereby facilitating faster convergence and improving the training efficiency of the RSAE network
model. By calculating the gradient first-order moment estimate m; and second-order moment
estimate v; as shown in Eq. (12) to (14), the Adam algorithm allows for the dynamic adjustment of
various parameters. [3;and 3, stand for the first order and second-order exponential damping
decrements, respectively. The gradient of the parameters at the time step t in the loss function
Je(W, b) is denoted by g;.

me = Bymg_q + (1 —B1).g¢ (12)
Ve = Baveg + (1 —B2) -gtz (13)
ge < Vol (¥9; — 1) (14)

Computer bias-corrected for m; andv; as in Egs. (15) and (16) respectively,

r_ Mg
my = 1-B,° (15)
v = (16)

The update step size is denoted by T and € is constant to prevent the denominator from zero as
in Eq. (17),

T ’

Vp1 =0 — - My (17)

v/ +e

3. Results
3.1 Model Parameters and Sensitivity Analysis

In this work, a Regularized Stacked Autoencoder (RSAE) architecture is employed to extract
significant features and reconstruct input data. The RSAE model consists of an encoder and a
decoder, each comprising five interconnected layers. The encoding layers progressively reduce the
dimensionality of the input data, with dense units utilizing rectified linear unit (ReLU) activation
functions, batch normalization, and dropout mechanisms to mitigate overfitting. As described in
Section 2.1, after preprocessing, the features in the UNSW-NB15 dataset expand from 49 to 202
dimensions. Consequently, the input layer of the RSAE model is configured with 202 neurons.
Extensive experimentation and a comprehensive literature review guided the selection of critical
hyperparameters, including the learning rate, number of neurons in hidden layers, batch size, and L1
regularization strength (a). A grid search technique was employed to optimize these
hyperparameters, ensuring a balanced trade-off between model complexity and performance.

Further investigation confirmed that a five-layer RSAE network structure yielded the best
experimental results, as detailed in Table 3. Within this architecture, the dense layer with 32 units
and RelU activation plays a pivotal role in capturing the most salient features. This critical layer is
additionally regularized using L1 regularization with varying a values, illustrating the effect of sparsity
enforcement on feature extraction. The model is trained using Mean Squared Error (MSE) and Mean
Absolute Error (MAE) as reconstruction loss functions, with optimization performed by the Adam
optimizer using a learning rate of 0.0001 over 100 epochs. Sigmoid activation is applied to the final
output layer, constraining reconstructed values between 0 and 1. Mini batches of 128 samples are
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used to improve generalization and reduce overfitting, while the regularization term further
enhances model robustness. Performance evaluation is conducted by monitoring MSE and MAE
across both training and validation phases. The final experimental configuration and parameters of
the RSAE model are summarized in Table 3.

Table 3
Hyperparameter summary of RSAE
Algorithms Parameter Value
RSAE The number of nodes in the input layer 202
Number of neurons in the initial hidden layer 512
Number of neurons in the second hidden layer 256
Number of neurons in the third hidden layer 128
Number of neurons in the fourth hidden layer 64
Number of neurons in the fifth hidden layer 32
Learning rate 0.0001
Alpha (a) 0.0001,0.001,0.01,0.1,1
Batch size 128
Epochs 100
Activation functions ReLU, Sigmoid
Adam First-order exponential damping decrement 0.9
Second-order exponential damping decrement  0.999
Non-zero constant 1078

An extensive sensitivity analysis was conducted to evaluate the impact of varying the L1
regularization intensity a@ on the RSAE model's performance. This study systematically examined the
effects of different a values on the MSE and MAE for both training and validation datasets. The
findings reveal that the best performance, reflected by the lowest error metrics, is achieved with a
values of 0.0001 and 0.001.

Conversely, higher a values led to a significant increase in both MSE and MAE, indicating that
excessive regularization degrades model performance. Over-regularization restricts the model’s
flexibility excessively, resulting in reduced accuracy, diminished stability, and impaired generalization
capabilities. In contrast, lower a values contribute to better error minimization and enhance the
model's ability to generalize across unseen data. These results emphasize the critical importance of
carefully tuning the L1 regularization parameter to achieve an optimal balance between sparsity and
predictive accuracy.

3.2 Quantitative Results

The RSAE model's ability to accurately identify structural similarities is demonstrated in Figures 5
and 6, which present the training and validation loss curves. These figures illustrate the RSAE’s strong
generalization capabilities and its effectiveness in mitigating overfitting.

The MSE and MAE metrics are employed to evaluate the reconstruction quality of the
autoencoder under various a configurations. These metrics provide a comprehensive assessment of
the model's training and validation performance as learning progresses. As the number of epochs
increases, both the MSE and MAE for the training dataset steadily decrease, indicating that the model
is successfully learning meaningful representations from the input data. Similarly, a consistent
decline in the validation MSE and MAE suggests that the model effectively generalizes the acquired
knowledge to unseen data. In general, lower values of MSE and MAE correspond to a more optimal
fit and improved model performance.

69



Journal of Advanced Research Design Penerblit

Volume 129 Issue 1 (2025) 60-74 Akademia Baru

Training and Validation MSE

=~ Training - Alpha = 0.0001
==+ Validation - Alpha = 0.0001
= Training - Alpha = 0,001
0.175 + === Validation - Alpha = 0.001
== Training - Alpha = 0.01
=== Validation - Alpha = 0.01
0.150 4 Training - Alpha = 0.1
-~~~ Validation - Alpha = 0.1

= Training - Alpha = 1.0
0.125 ==« Validation - Alpha = 1.0

0.200 1

MSE

0.100 4

0,075 1

0.050 1

0.025 1

0.000 4

0 20 10 60 80 100
Epoch

Fig. 5. Training and validation MSE loss with L1 regularization
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Fig. 6. Training and validation MAE loss with L1 regularization

Table 4 presents a concise summary of how varying a values impact the performance of the RSAE
model. Specifically, it reports the MSE and MAE for both training and validation datasets under
different levels of L1 regularization. The hyperparameter a controls the strength of L1 regularization
applied to the model, where increasing a intensifies regularization, potentially mitigating overfitting
but also restricting the model’s learning capacity. The sensitivity analysis highlights that an a value

70



Journal of Advanced Research Design
Volume 129 Issue 1 (2025) 60-74

of 0.0001 vyields the best performance, achieving the lowest training and validation errors. In
contrast, higher a values (e.g., 0.01, 0.1, and 1.0) result in significantly elevated MSE and MAE values,
indicating that over-regularization adversely affects the model’s accuracy and stability. These findings
confirm that smaller a values are more effective in minimizing reconstruction errors and enhancing
the model’s ability to generalize to unseen data.

Table 4
Sensitivity analysis of RSAE performance metrics with Varying a
Alpha (L1 strength) Training MSE  Validation MSE  Training MAE  Validation MAE

0.0001 0.0043 0.0038 0.0083 0.0072
0.001 0.0108 0.0099 0.0181 0.0167
0.01 0.0225 0.0225 0.0405 0.0405
0.1 0.0225 0.0225 0.0405 0.0405
1.0 0.0225 0.0225 0.0405 0.0405

To validate the effectiveness of the RSAE model against the classical Stacked Autoencoder (SAE),
a comparative analysis is presented in Figure 7. The figure illustrates that the classical SAE, which
lacks regularization, exhibits significant overfitting. This is evident when the training MSE and MAE
are substantially lower than the corresponding validation metrics. Such a discrepancy indicates that
the model has memorized specific features of the training data too closely, thereby compromising its
ability to generalize to unseen data. In contrast, the RSAE model demonstrates improved
generalization by mitigating overfitting through the incorporation of L1 regularization and dropout
mechanisms.

Training and Validation MSE

Q0274 —— Traming MSE
Validation MSE
0.027
0.0270
w
£ 00268 4
0.0206
0.0264
0.0262 1 " . ; ' '
20 40 60 80 100
Epoch
Training and Validation MAE
= Traimng MAE
0.0355
= Vadidation MAE
0.0350 4
0.0345 4
4 0.0340 4
-
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0.032% L
o 20 40 &0 80 100
Epoch

Fig. 7. Training and validation loss without L1 regularization
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Table 5 summarizes the outcomes for MSE and MAE of the classic stacked autoencoder,
respectively.

Table 5

SAE without regularization
S/No MSE MAE

1 0.0262 0.0329

A comparison of the training and validation loss curves demonstrates that the application of L1
regularization effectively prevents overfitting and enables stacked autoencoders to achieve
significantly greater generalizability when applied to high-dimensional sparse data. L1 regularization
thus establishes a paradigm for developing example-oriented models that not only fit the training
data but also successfully capture underlying patterns, making them extendable to real-world
applications. By promoting sparsity, facilitating feature selection, and enhancing generalization, L1
regularization proves to be a critical component in improving model robustness and performance.

4. Discussion

The outcomes of the proposed RSAE model demonstrate its effectiveness in mitigating overfitting
and enhancing performance on the cybersecurity dataset. Beyond representing a technological
advancement, these developments carry significant practical implications across multiple domains,
including cybersecurity, bioinformatics, image processing, and natural language processing.

4.1 Cybersecurity Context

In the context of cybersecurity, the improved performance of the RSAE model leads to more
consistent and reliable threat detection. By reducing overfitting, the model becomes better at
distinguishing between legitimate activities and potential threats, thereby lowering both false
positive and false negative rates. This enhanced accuracy in anomaly and threat detection is critical
for enabling faster response times and preventing security breaches. Furthermore, the increased
efficiency of the RSAE model allows for more effective utilization of computational resources,
potentially reducing operational costs and minimizing the time required for threat detection and
incident response.

4.2 Financial Sector

The RSAE model also holds significant potential for enhancing fraud detection in financial
institutions, where security and accuracy are paramount. By improving the model's ability to
recognize anomalous patterns within transactional data, banks and financial organizations can
strengthen their defences against fraudulent activities and insider threats. This advancement
contributes directly to enhancing the security of financial transactions and safeguarding sensitive
customer information.

4.3 Health Sector
The advancements offered by the RSAE model also contribute to strengthening patient data
privacy within the healthcare sector. Enhanced anomaly detection capabilities enable the secure

storage of sensitive health information and support compliance with regulations such as the Health
Insurance Portability and Accountability Act (HIPAA). These improvements not only protect patient
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confidentiality but also foster greater trust in digital healthcare solutions, promoting broader
adoption of secure, data-driven healthcare technologies.

4.4 Manufacturing

In industries where operational technology and critical infrastructure are increasingly targeted by
cyberattacks, the enhanced performance of the RSAE model can help prevent costly disruptions. By
shielding industrial control systems from potential cyber threats, the model promotes operational
continuity and safety while minimizing the significant financial and safety risks associated with
cyberattacks.

5. Conclusions

This study demonstrates that the Regularized Stacked Autoencoder (RSAE) model effectively
addresses the challenges associated with high-dimensional sparse data. By incorporating L1
regularization, controlled through the hyperparameter a, the RSAE model promotes sparsity in the
learned representations, reducing the risk of overfitting and enhancing model interpretability.
Careful tuning of a proved critical to optimizing performance, enabling the model to balance feature
selection and generalization. Experimental results confirm that the RSAE model can efficiently learn
from training data while maintaining strong generalization capabilities on unseen samples. The
model achieved notable improvements in reconstruction accuracy, as evidenced by reductions in
Mean Squared Error (MSE) and Mean Absolute Error (MAE), across various a configurations.
Furthermore, the RSAE architecture demonstrated robustness in cybersecurity applications, with
potential applicability across other domains involving high-dimensional sparse datasets, such as
finance, healthcare, and industrial control systems.

Future research should focus on enhancing the RSAE model's adaptability to evolving cyber
threats, extending its application to prediction tasks such as binary classification, and exploring its
integration into real-time anomaly detection systems. Investigating hybrid regularization strategies
and optimizing the network structure further could also contribute to performance gains in broader
operational environments. Ultimately, the RSAE model, guided by the strategic tuning of L1
regularization a, emerges as a powerful and scalable framework for extracting features from
complex, high-dimensional, sparse data, enabling more intelligent and secure solutions across critical
industries.
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