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The present study aims to create a model that would help to classify viral skin disease 
images based on deep learning. The dataset used in the current study included 770 
images that were taken with a normal camera, so-called raw camera images. This 
dataset consisted of four subtypes of diseases such as Normal, Monkeypox, Measles 
and Chickenpox. It should be mentioned that the current dataset was characterized 
with a class imbalance since the number of samples in each category was quite 
different. To address the problem with the class imbalance, the data were augmented 
by using the library Augmentator, which was then converted back to a dataset. The 
augmented dataset finally included 1000 images of each class. The parameters of the 
augmentation included rotate (10° left and 10° right, probability 0.7 each), flip left-
right, probability 0.5 and the zoom with the area 0.8 and the probability 0.5. An 
augmented dataset was used to train convolutional neural network models such as 
DenseNet121, DenseNet169, DenseNet201 and EfficientNetB0. The generated 
augmented dataset was used for training and, afterwards, the models were validated 
based on the accuracy of the results. The validation results indicated that the most 
accurate model was. while DenseNet201 resulted in validation accuracy 
overperforming DenseNet169. Improved DenseNet121 had a validation dataset with 
accuracy equal to 99.08%. Moreover, EfficientNetB0 with a Squeeze Excitation layer 
was similarly efficient with a validation accuracy estimated to be. Additionally, the 
network had a validation accuracy of 99.41% without the problem of overfitting. The 
results imply that data augmentation and certain CNNs are effective in image 
classification. 
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1. Introduction 
 

Monkeypox is an illness that falls under the Ortho- poxvirus group, which also includes the variola 
virus, renowned for inducing smallpox. The term "monkeypox" originated from its identification, in 
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monkeys back in 1958. However, instances of monkeypox in humans were not documented until in 
1970, within the Democratic Republic of the Congo [1]. 

Monkeypox is attributed to a virus known as the monkeypox virus, which is classified within the 
Ortho-pox virus family. It is believed that this virus naturally exists in animals, rodents or other small 
mammals primarily found in West African regions [2]. Humans can contract the infection by 
encountering the animals or their bodily fluids. There may also be a risk of transmission through 
consuming their meat. This disease can be transmitted from animals to humans. Transmission can 
also occur among humans through contact with infected blood or bodily fluids via droplets, as well 
as through skin-to-skin contact with characteristic lesions or pustules [3]. To curb the transmission of 
this disease, it is crucial to limit contact with animals maintain hygiene practices and implement 
quarantine measures during outbreaks. Ongoing research aims to gain an understanding of the 
reservoirs of this virus and develop effective strategies, for preventing and controlling monkeypox 
outbreaks. The proposed work also aims towards achievement of better healthy life for world 
population as an effort for sustainable development goals [4]. 

Monkeypox usually shows up with a variety of symptoms that typically emerge Within a span of 
5 to 21 days after exposure to the virus [5]. At first, you might experience fever, headache, muscle 
and back pain along with chills and a feeling of fatigue [6]. It is common to have lymph nodes near 
the infection site. A distinctive symptom of monkeypox is the emergence of a rash on the face, which 
subsequently extends to other areas of the body. The rash then turns into pustules. Lesions at 
different stages may be present. While most cases resolve on their severe instances can occur in 
individuals with weakened systems. The severity of symptoms varies from person to person. 
Sometimes supportive care is needed for management. Seeking attention is crucial for accurate 
diagnosis and proper treatment especially, in areas where monkeypox occurs naturally or during 
outbreaks. 

Diagnosing monkeypox requires an approach that starts with a clinical evaluation. Healthcare 
experts carefully examine symptoms, like fever and different stages of lesions. Laboratory tests play 
a role in this process. PCR tests are employed for detecting monkeypox virus DNA in blood, skin 
lesions or respiratory secretions [7]. In cases, imaging studies like chest X-rays may be conducted to 
evaluate involvement [8]. Given the potential for human-to-human transmission, achieving precise 
diagnosis is paramount to implementing public health measures such as isolation, contact tracing and 
vaccination to mitigate further spread of the virus. Healthcare professionals and public health 
authorities work closely together to manage and contain outbreaks. 

The primary way to treat monkeypox is, by providing care since there are currently no antiviral 
treatments available. Symptomatic relief focuses on managing symptoms such as fever, headaches 
and muscle aches through the use of pain relievers and medication to reduce body temperature [9]. 
Individuals with skin lesions need to practice wound care to prevent bacterial infections and 
antibiotics may be prescribed if there are concerns about such infections. To curb the transmission 
of monkeypox among individuals, isolation protocols and infection control measures are 
implemented. While monkeypox has no specific vaccine, during outbreaks the smallpox vaccination 
effectiveness has been observed among high-risk populations. It is essential to monitor patients in 
severe cases and ongoing research endeavours strive to deepen our comprehension of the virus while 
also formulating more specific treatments.  

Since the outbreak commenced, there have been a cumulative total of 92,182 confirmed cases 
of monkeypox. reported in 113 countries. The impact of the cases varies across regions. In Africa, 
there have been 12,873 confirmed cases, which accounts for 14% of the number. The Americas have 
the prevalence, with 57,128 cases making up around 62% of the count. The Eastern Mediterranean 
region has reported 3,521 cases (4% of the total) while Europe has reported 13,128 cases 
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(representing 14%). In the regions of Southeast Asia and the Western Pacific, a total of 2,552 cases 
have been reported (around 3%) and 2,980 (3%) monkeypox cases [10]. These numbers clearly 
demonstrate how widespread the monkeypox outbreak is globally with a burden experienced in the 
Americas specifically. It is important to bear in mind that these statistics are data-driven and subject 
to updates as the situation evolves. Therefore, it is important to stay informed by referring to health 
organizations for up-to-date information and insights. 

The reported global fatality rate, for monkeypox is 0.18%. This means that out of every 1,000 
people who contract monkeypox 2 individuals succumb to the virus [11]. When we break down the 
fatality rates by region, Africa has experienced a rate of 1.1% while the Americas have a rate of 0.16%. 
In the Eastern Mediterranean region, the fatality rate stands at 0.28% Europe reports a lower rate of 
0.04% and Southeast Asia and the Western Pacific region have rates of 0.20% and 0.23% respectively. 
It is important to note that these statistics are based on data and may be subject, to updates as the 
situation progresses.  

India recorded its initial case of monkeypox on July 14, 2022, the country has reported a total of 
23 confirmed cases [12]. Among these, 10 cases have been confirmed in Delhi, while Kerala has 
reported 5 confirmed cases. Additionally, there are 8 suspected cases, with 1 each in Delhi and 
Telangana and 2 in Bihar. Uttar Pradesh has the highest number of cases that are suspected. The 
scenario is dynamic and since changes occur fast, what will provide a more accurate picture is to 
watch or keep abreast of developments through reliable health authorities updates. In India, there 
have not been any reports of deaths by monkeypox002E 

  
2. Latest Related Works 

 
There are several studies that examined advanced algorithms for disease diagnosis. Transfer 

learning has also been utilized in image-based disease diagnosis [13]. First of all, referring to the work 
of Saleh et al., [14], it should be noted that he considers the same clinical similarity between 
monkeypox and smallpox and introducing the Accurate Monkeypox Diagnosing Strategy. In 
particular, it has a Feature Selection Phase and the Classification Phase, which allows you to apply 
the Dynamic Recursive Gray Wolf Optimization approach as a modification of the Traditional Gray 
Wolf Optimization. It can be seen that this modification improves the problem of position sharing in 
TGWO and makes the pursuit and positioning of prey more accurate. In this case, CP uses classifiers, 
which are SVM, NB, KNN, as well as DNN. The experiment results show that AMDS significantly 
increases the recall, accuracy, precision and F- score for monkeypox confirmation, also the 
information proves that this method is particularly useful in these cases. 

Another study, Attention to Monkeypox: An Interpretable Monkeypox Detection Technique Using 
Attention Mechanism by Raha et al., [15] proposes an attention-based MobileNetV2 model. The 
model’s purpose is the rapid and precise monkeypox diagnosis on edge devices. The spatial and 
channel attention mechanisms are integrated into the network to boost the precision of such a 
diagnosis. The study also introduces a new version of the Monkeypox Skin Images Dataset where 
training data is more diverse as it contains more classes of similar skin diseases. Grad-CAM and LIME 
are also applied to make the process of monkeypox detection interpretable. Such evaluation metrics 
as Cohen’s Kappa, Matthews Correlation Coefficient, Youden’s J Index, accuracy, F1-score, precision, 
recall, sensitivity and specificity are applied. The model shows more than 92% accuracy on the 
extended MSID, more than 98% on the original MSID and more than 93% on the (MSLD). 

Sitaula et al., [16] compares 13 different pre-trained deep learning models for monkeypox 
detection. The models were fine-tuned with custom layers and evaluated using precision, recall, F1-
score and accuracy metrics. The identified major models with the best performance were further 
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enhanced by an ensemble learning approach which performed majority voting over the probabilistic 
output of these models. Experiments were conducted on a publicly available dataset, achieving 
average precision, recall, F1-score and accuracy of 85.44%, 85.47%, 85.40% and 87.13%, respectively. 
These results outperform state-of-the-art methods, demonstrating the proposed approach's 
applicability for mass screening by health practitioners. 

Nayak et al., [17] have done investigation to utilize deep learning to diagnose instances of 
monkeypox from skin lesions images. The experiment used five pre-trained deep neural networks 
implemented on publicly available datasets: GoogLeNet, Places365-GoogLeNet, SqueezeNet, 
AlexNet and ResNet-18. The results of the experiment “show that the validation accuracy of ResNet-
18 is the greatest” and “equals 99.49%,” with the rest of the models also achieving an accuracy 
greater than 95%.The results indicate that deep leering models, standing especially for the ResNet-
18-based model, work well for monkeypox detection.  

This research paper of Kumar [18] is about the monkeypox problematic and provides research on 
deep convolutional neural network features in combination with machine learning classifiers used 
for monkeypox diagnosis. More specifically, the research combines bottleneck features from 
AlexNet, GoogLeNet and VGG16Net and fifteen classifiers including SVM, KNN, Naïve Bayes and the 
like. The obtained outcomes reveal that the combination of VGG16Net features and the last classifier 
in the list are 91.11% accurate. The article may prove useful for the purpose of the proposed research 
as it shows how CNN features can be applied with traditional machine learning classifiers given a view 
through an AI assistant diagnostic system used as an effective and accurate tool in terms of 
monkeypox with solid propositions made by Florida Gulf Coast University. 

According to the results, deep leering models work effectively for monkeypox detection, 
especially the ResNet-18-based one. At the same time, the developed models can work for their 
target, which is smartphones. Moreover, the positive aspect of the current research is that it is based 
on explainable AI technologies, including LIME and GradCAM to visualize the obtained predictions 
and thereby provide medics with the patterns of why these decisions were made. These aspects 
prove that deep learning models can successfully be used to combat the monkeypox virus and disease 
effectively. 

The work’s main result is comparative analysis of DenseNet121, DenseNet169, DenseNet201 and 
EfficientNetB0 models, according to their diagnostic accuracy and efficiency to skin disease. The 
comparison showed that the “EfficientNetB0 with Squeeze-and-Excitation layers” was the best 
performer. According to the outcome of the comparison, it is recommended for the clinical use in 
dermatology because of its high accuracy and efficiency in diagnosing viral skin disease, particularly, 
the monkeypox. 

 
3. Methodology   

 
For the purposes of this study, we have taken a systematic form of methodology as outlined in 

the Figure 1, to identify the optimal CNN architecture for skin disease classification. The methodology 
started with the collection of data from the publicly available dermatology databases on a wide 
variety of skin disease to include category monkeypox. This was followed by pre-processing the 
images through resizing, normalization and data augmentation to up-scaled and improved the quality 
of the images. In the third step, the data was split into the training and test set on an 80-20 basis. 
Four CNN architectures, namely, DenseNet121, DenseNet169, DenseNet201 and EfficientNetB0, 
were developed for the training. At this stage, the training was fully conducted with optimized 
hyperparameters. The training process for each model involved using a categorical cross-entropy loss 
function and an Adam optimizer.  
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Performance evaluation of these models was conducted using the test dataset, assessing key 
metrics such as accuracy, F1-score, recall, precision and AUC. Notably, EfficientNetB0 yielded the best 
initial results, prompting further enhancement by incorporating Squeeze Excitation (SE) layers to 
improve channel-wise feature response recalibration.  

 

 
Fig. 1. Proposed flow diagram of the methodology 

 
3.1 Dataset Description and Data Augmentation 

 
A comprehensive dataset Monkeypox Skin Images Dataset (MSID) consisting of 770 skin disease 

images as shown in Figure 2, was meticulously curated. These images were captured using a standard 
camera setup and encompassed four distinct subtypes of skin diseases: Normal (293 images), 
Monkeypox (279 images), Measles (91 images) and Chickenpox (107 images) [19]. However, a 
notable challenge in the dataset was the presence of class imbalance, whereby certain disease 
categories had a disproportionately lower number of samples compared to others. To rectify this 
issue and ensure robust model training, data augmentation techniques were judiciously applied.  
 

    
(a) (b) (c) (d) 

Fig. 2. Augmented dataset (a) Chickenpox (b) Measles (c) Monkeypox (d) Normal 
 
Leveraging the Augmentator library, an augmentation pipeline was crafted to expand the 

dataset's diversity and balance [20]. The next step comprised of generating augmented images for 
each disease type to reduce the class imbalanced in the dataset. Multiple augmentation 
transformations were applied such as rotation (10° left and 10° right with 0.7 probability each), flip 
left-right with 0.5 probability and zoom with area of 0.8 and 0.5 probability. A total of 1000 images 
were generated for each disease type through systematic augmentation of the dataset. Through 
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systematic augmentation, the original set was made diverse in itself and at the same time, the exact 
number of images of each disease type was made precisely 1000. The resultant data set represented 
class balanced information and as such, this formed the beginning of subsequent processes of feature 
extraction and model training to achieve consistent, generalizable performance in classifying skin 
diseases. 

 
3.2 Model Training and Evaluation 

 
Augmented dataset has been utilized in the process of training and evaluating the model. It is 

evident that several steps have been undertaken to promote the training and implement to ensure 
an effective skin disease classification model. First of all, feature extraction on augmented dataset 
utilizing some pre-trained CNN models, for example, DenseNet121, DenseNet169, DenseNet201 and 
EfficientNetB0 [21]. The process is aligned with the possibility of these models to capture fine-grained 
patterns within an image. In addition, these product models have been fine-tuned to extract the 
meaningful features of the skin diseases images. Afterwards, these features are inputted to fully 
connected layers that perform the task of classification and, therefore, the developed models are 
trained to distinguish particular classes of disease [22]. 

In the paper, various evaluation metrics such as accuracy, precision, recall, F1-score among others 
were determined to evaluate the performance of the models [23,24]. Based on these metrics, the 
models were compared and thus, the network with the highest validation accuracy was chosen to be 
the most effective architecture for skin disease classification.  

. 
3.3 Model Architecture 

 
DenseNet121 and its illustration, as shown in Figure 3, establishes that it is a type of neural 

network constructed uniquely. Desnet121 operates through the idea of “dense connectivity,” and as 
opposed to traditional networks, each layer is connected to every other one that comes before it. 
The direct communication helps to reuse features effectively and keep the flow of information at a 
constant level across the network. In addition, the smart idea results in high accuracy of tasks that 
recognize objects in images while saving the number of parameters to be used. 
 

 
Fig. 3. DenseNet121 architecture 

 
EfficientNet is one of the most famous models that was introduced in 2019. The unique feature 

of this model is that it strikes a balance of the accuracy of a model and its efficiency. The latter is 
achieved by the fact that the model uses Squeeze-and-Excitation blocks, as shown in Figure 4. They 
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are used to increase feature extraction, focusing on important features. Thus, a model is becoming 
more accurate and resources efficient. To use the powerful feature extraction competences, it is 
needed to fine-tune the pretrained model on a dataset. 
 

 
Fig. 4. EfficientNetB0 + Squeeze 
Excitation Layer architecture 

   
4. Results  
4.1 DenseNet121 

 
In the domain of classifying skin disease images, DenseNet121 exhibited good results with an AUC 

score of 0.9999 and test accuracy of 99.02%. With respect to other models, it was not the best in 
terms of recall, F1-score and precision. Nevertheless, considering that all these variables reached 
99.02% and the model was stable for every disease category, it is an excellent indicator of balanced 
performance. It was especially impressive that DenseNet121 was flawless in detecting the Measles 
subtype with 99.99% precision and recall. For that reason, it can be suggested that this model is 
valuable for assessing dermatological diagnoses due to its high-level performance and dependability, 
as depicted in Table 1 and Figure 5. 

 
Table 1 
DenseNet121 validation report 
Class Precision Recall F1-Score Support 
Chickenpox 0.980583 0.990196 0.985366 102 
Measles 1 1 1 100 
Monkeypox 0.980198 0.980198 0.980198 101 
Normal 1 0.990385 0.995169 104 
accuracy 0.990172 0.990172 0.990172 407 
macro avg 0.990195 0.990195 0.990183 407 
weighted avg 0.990172 0.990172 0.990184 407 

 



Journal of Advanced Research Design 
Volume 143 Issue 1 (2026) 208-221  

215 

 
Fig. 5. DenseNet121 validation confusion matrix 

 
4.2 DenseNet169 

 
DenseNet169, as an enlarged variant of the DenseNet structure with 169 layers, proved to attain 

a high performance for the classification of skin diseases [25]. The model’s AUC was 0.9999, its test 
accuracy was 99.0% and in general, the DenseNet169’s performance was not worse than that of 
other models. At the same time, all the model’s precision, recall and F1-score were at the 99.0% level, 
which indicates the relatively high performance of the developed model and its stability. In addition, 
the model’s precision and recall of the “Measles” subtype were about 99.99% and it means that the 
model is quite reliable when diagnosing this disease. The data that prove the aforementioned results 
are presented in Table 2 and Figure 6 below. 

 
Table 2 
DenseNet169 validation report 
Class Precision Recall F1-Score Support 
Chickenpox 0.97 1 0.99 102 
Measles 1 1 1 100 
Monkeypox 1 0.98 0.99 101 
Normal 1 0.99 1 104 
accuracy 0.99 0.99 0.99 407 
macro avg 0.99 0.99 0.99 407 
weighted avg 0.99 0.99 0.99 407 

 
Fig. 6. DenseNet169 validation confusion matrix 
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4.3 DenseNet201 
 
In classifying skin disease images, DenseNet201 found to be robust and demonstrated good 

performance [26]. Even though the AUC of DenseNet201 is 0.9992, which is slightly lower than other 
models, it delivered competitive results with the testing accuracies of 98.78%. In addition, the 
precision, recall and F1-score of 98.78% for all disease categories show that the performance of 
DenseNet201 is very reliable, which is illustrated in Table 3 and Figure 7. In addition, the model 
presented % precision and recall for the “Normal” disease type and this implies that the DenseNet201 
is an effective model in correctly classifying this disease. 
 

Table 3 
DenseNet201 validation report 
Class Precision Recall F1-Score Support 
Chickenpox 0.98 1 0.99 102 
Measles 0.99 1 1 100 
Monkeypox 1 0.97 0.98 101 
Normal 1 1 1 104 
accuracy 0.99 0.98 0.99 407 
macro avg 0.99 0.99 0.99 407 
weighted avg 0.99 0.98 0.99 407 

 

 
Fig. 7. DenseNet201 validation confusion matrix 

 
4.4 EfficientNetB0 

 
One of the models that showed the high level of performance in skin disease classification is 

EfficientNetB0, which is one of the most balanced models of the EfficientNet family in terms of 
performance and efficiency [27]. The model demonstrated clear superiority with an AUC score of 
1.00 and a test accuracy of 99.46%. The model also had highly valuable discriminative ability. 
Moreover, in comparison with other models analysed, it was the only one that had precision, recall 
and F1-score values of 99.99% across all categories of the disease, which indicates the model’s high 
level of reliability. In general, the fact that it showed exceptional performance 99.41%, as presented 
in Table 4 and Figure 8, explains why EfficientNetB0 is the strongest model in achieving accurate 
reliable skin disease classification. 

 
Table 4 
EfficientNetB0 validation report 
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Class Precision Recall F1-score Support 
Chickenpox 1 1 1 102 
Measles 0.99 1 1 100 
Monkeypox 1 0.98 0.99 101 
Normal 0.99 1 1 104 
Accuracy 1 1 1 407 
Macro avg 1 1 1 407 
Weighted avg 1 1 1 407 

 

 
Fig. 8. EfficientNetB0 validation confusion matrix 

 
4.5 EfficientNetB0 + Squeeze Excitation Layer 

 
We proposed an addition of a Squeeze Excitation layer to a pretrained EfficientNetB0 model to 

enhance the accuracy of skin disease classification. The discriminative ability of an obtained model 
can be considered outstanding as it was evaluated at an AUC level of 1.00 across disease subtypes. 
During evaluation, it also achieved an accuracy of 100.0% on the test, while several high results were 
observed for precision, recall and F1-scores of 99.99%, as recorded in Table 5 and Figure 9. According 
to class-wise analysis, the model demonstrated a consistently high level of precision and recall in the 
diagnosis of all disease classes. It is remarkable that the addition of this layer to the EfficientNetB0 
model has also had a positive effect on the F1-scores of the Chickenpox and Monkeypox subtypes in 
comparison to the original results. 
 

Table 5 
EfficientNetB0 + Squeeze excitation validation report 
Class Precision Recall F1-Score Support 
Chickenpox 1 1 0.99 102 
Measles 0.99 1 1 100 
Monkeypox 1 0.98 0.98 101 
Normal 1 1 1 104 
accuracy 1 1 1 407 
macro avg 1 1 1 407 
weighted avg 1 1 1 407 
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Fig. 9. EfficientNetB0 + squeeze excitation layer 
validation confusion matrix 

 
Models including DenseNet121, DenseNet169, DenseNet201 and EfficientNetB0 were rigorously 

evaluated using separate datasets for validation and testing. The model DenseNet169 and 
DenseNet201 produced the highest test accuracy of 98.9% followed closely by the model 
DenseNet121 of 98.7%. In addition to that, the model EfficientNetB0 also provided comparable 
performance as it had a test accuracy of 99.1%. The training accuracy of the model ranged between 
98.29% and 99.51% with EfficientNetB0 leading with 99.41%. The outcomes of the validation were 
similar to those of the test, with the models DenseNet169 as well as DenseNet201 providing the best 
performance at 99.26% with EfficientNetB0-Depthwise, Squeeze Excitation having the test accuracy 
of 99.51%. Other classification performance metrics that were evaluated included precision, recall 
and F1-score. Besides, the knowledge gained from misclassified images was used to assist with 
deciding on the best architecture to use for diagnosing dermatological conditions. In general, the 
purpose of this evaluation was to analyse various CNN models and MAC architecture. 

 
5. Discussions 

 
The primary purpose of the current comparative analysis focused on choosing the most efficient 

CNN architecture that can be used for classifying skin disease, which is monkeypox. After extensive 
testing and validation, it was determined that EfficientNetB0 with a Squeeze Excitation layer had the 
best performance, as shown in Table 6. This architecture had excellent results, boasting a test 
accuracy of 99.1% and a validation accuracy of 99.51%. This model performed the best because of its 
large capacity and low computational cost. It can be reliably used for clinical purposes. The inclusion 
of a Squeeze Excitation layer allowed the model to reanalyse channel-wise feature responses socially 
and to recalibrate them adaptively. Such a model will have a higher accuracy at telling different skin 
diseases apart. 

It can also be said about derm grades. There exists some peculiarity. Here, the maximum achieved 
test result will be applicable. It was reached in the present case. Since the cut-off was set in the same 
way, most of the values below this limit are also relevant. In this aspect, the linear weighted kappa 
value, which was recorded against the test results, will be beneficial in the present context. That is 
why the reliability coefficient that was calculated and given based on the test results can be trusted, 
as it has high accuracy. As a result, there is the possibility that the value will also be the same. In 
conclusion, it is rational to infer that efficient netb0 is a reliable and precise model that is beneficial 
in both high-resource and extremely low-resource conditions for differentiating between 11 types of 
skin diseases. 



Journal of Advanced Research Design 
Volume 143 Issue 1 (2026) 208-221  

219 

Compared with the existing studies, our work has greatly improved the accuracy of monkeypox 
image classification. Although the previous work has achieved satisfactory accuracy in the 
classification of monkeypox. For example, the average accuracy was 97.9% by the algorithms based 
on the vision transformer architecture and federated learning [26]. According to Table 3, the 
EfficientNetB0 Model with Squeeze Excitation Layer established in this study achieved the accuracy 
of 99.51%. In the meantime, the use of the most updated CNN architecture and new methods has 
also greatly improved the performance of the monkeypox diagnosis as illustrated in Figure 10. 
Additionally, while the MonkeyNet CNN model and the MSID dataset achieved accuracies of 93.19% 
and 98.91% respectively [28] and a Deep Convolutional Neural Network-based model using 
ResNet101 attained 94.25% accuracy, the utilization of EfficientNetB0 with Squeeze Excitation Layer 
in the current study demonstrates superior performance. This advancement not only contributes to 
the field by providing highly accurate classification results but also holds significant promise for 
facilitating early diagnoses and aiding clinicians in effectively managing and mitigating the spread of 
monkeypox.  

 
Table 6 
Comparative analysis of various models 
CNN Architecture Test Accuracy Validation Accuracy 
DenseNet121 98.29% 99.02% 
DenseNet169 98.29% 99.26% 
DenseNet201 98.29% 99.26% 
EfficientNetB0 99.46% 99.41% 
EfficientNetB0 + Squeeze Excitation 99.76% 99.51% 

 

 
Fig. 10. Performance comparison of other existing 
models with proposed model  

 
 

6. Conclusions 
 
Thus, this comprehensive study enabled the identification of the most effective CNN architecture 

for viral skin disease classification tasks. We have concluded that DenseNet169 and DenseNet201 
were the best-performing models. They demonstrated the highest accuracy, which constituted 98.9% 
on the test dataset and 99.26% of the validation dataset. DenseNet121 was an extremely close 
competitor with the values of 98.7% for the test and 99.02% for the validation accuracy. Besides, 
EfficientNetB0 with a Squeeze Excitation layer was also strong in terms of performance, displaying 
99.1% for the test and 99.51% for the validation accuracy, which was the highest across all models. 
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Furthermore, the results were enhanced by analysis considering other essential performance 
measures such as precision, recall and F1-score. It allowed developing a nuanced understanding of 
how each model performed in terms of identifying different disease subcategories. 

Along with comparing the behaviour and the performance of the five models, the comparative 
analysis included the comparison of the training accuracies at which the best training accuracy was 
obtained by the EfficientNetB0 model and accounted for 99.27%. The DenseNet121, DenseNet169 
and DenseNet201 models all had the same training accuracy of 98.29%. However, the EfficientNetB0 
with the Squeeze Excitation layer demonstrated the best training accuracy of 99.51%. In addition, 
the qualitative FMs analysis of the misclassified images may provide valuable hypotheses and 
conclusions about the presence of some malfunction or inefficiency patterns in models, as for each 
type of disease subcategories. As a result, the output of the performed comparative analysis provides 
the recommendation for choosing the most appropriate variant of the CNN model architecture for 
the purpose of dermatological diagnosis in real-world clinical applications [29]. 
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