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1. Introduction
1.1 Research Background

Drones, or Unmanned Aerial Vehicles (UAVs), have become integral across industries such as
agriculture, logistics, and surveillance due to their agility and speed. Ensuring a stable and persistent
network connection is essential for their successful operation in these applications, necessitating an
efficient mobility management scheme. However, cellular networks, originally designed for ground-
based User Equipment (UEs), face challenges when integrating drones, particularly in managing
frequent handovers due to their unique mobility patterns and high-speed, 3D movements Sing et al.,
[1] Zeng et al., [2] Warrier et al., [4]. The advent of 5G/6G cellular networks and beyond is expected
to increase base station density within small cells to meet high data rate demands and Quality of
Service (QoS) requirements. However, the proliferation of base stations and the use of higher
frequencies result in smaller cell footprints and increased signalling costs due to frequent handovers,
posing challenges in maintaining functional connectivity with drones Zeng et al., [2] Wang et al., [4]
Fan et al,, [5].

The integration of UAVs within 5G and 6G mobile networks is attracting considerable interest due
to their adaptability and cost-effectiveness. Drones, functioning as Aerial Base Stations (ABSs) and
relays, have the potential to improve connectivity across diverse environments. Nevertheless,
challenges like power limitations, rapid mobility, and frequent handovers underscore the
requirement for advanced strategies in managing mobility and handovers. Handover is a critical
aspect of UAV communication systems, where a seamless transfer of communication links from one
base station (BS) to another is essential to maintain connectivity as the UAV moves. The need for
handover arises from several factors, including the limited coverage area of individual BSs, the high-
speed movement of UAVs, and the requirement to maintain QoS as the UAV transitions between
different BSs Sing et al., [1] Zeng et al., [2] Wang et al., [4]. However, unnecessary handovers can lead
to increased signalling costs, latency, and service disruptions, particularly in densely populated
cellular networks Wang et al., [3] Jha et al., [6]. These unnecessary handovers are often triggered by
suboptimal handover decision-making processes, such as basing handover solely on signal strength
without considering other network parameters or future trajectory predictions Fan et al., [5] Jha et
al., [6].

In traditional mobility management, the selection of a target Base Station (BS) is based on the
Received Signal Strength Indication (RSSI) for ground user equipment, a method ill-suited to drones
due to their intermittent network coverage caused by weak and inconsistent side lobes of cellular
antennas, often leading to ping-pong handovers Lin et al., [7]. Recent studies have highlighted the
challenges of conventional handover mechanisms for drones, showing an increase in handover
failure rates with higher speeds and altitudes of drones Almuallim et al., [8]. To ensure uninterrupted
connectivity, handovers for drones must be executed judiciously, considering the optimal target BS
Despite extensive research on drone mobility, few schemes have been proposed to enhance
handover performance Banagar et al., [9].

1.2 Previous Review Paper

This section provides a brief overview of previous reviews and survey papers on UAV handover
communication. It will summarize key findings and insights from existing literature, highlighting the
various techniques and strategies that have been explored to manage handovers in UAV networks.

Study by Abir et al., [10] Software-Defined UAV Networks for 6G Systems: Requirements,
Opportunities, Emerging Techniques, Challenges, and Research Directions. This comprehensive
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review evaluated software-defined UAV networks (SDUAV) for 6G systems, identifying key
requirements, opportunities, and emerging techniques. Despite offering valuable insights, the review
lacks specific implementation guidelines necessary for practical application. The broad scope of the
paper highlights the need for more focused research that provides concrete frameworks and detailed
solutions. Future studies should bridge this gap by developing practical guidelines and case studies
that address the identified challenges in SDUAV implementation.

Angjo et al., [ 11] explored the integral role of drones in future mobile communication networks,
where they serve both as mobile users and mobile base stations in the sky, offering solutions for
communication and non-communication services. However, the integration of drones into these
networks poses challenges, particularly in managing handovers. Unlike terrestrial networks, drones
operate in a three-dimensional environment, complicating mobility issues. The study provided an
overview of handover management for connected drones, summarizing current research approaches
and focusing on the complexities of the handover process. Additionally, it discussed the integration
of drones into heterogeneous networks and proposes specific solutions to address potential
problems. Moreover, the survey insights into upcoming research directions, guiding future studies
related to connected drones in heterogeneous network environments.

Shayea et al., [12] conducted a comprehensive survey focusing on handover management for
drone networks within future mobile networks. The study underscored the significance of intelligent
handover schemes, particularly those leveraging machine learning and deep learning techniques. By
reviewing existing research, the survey addressed the challenges and potential solutions for
enhancing mobility management in forthcoming generations of mobile networks such as 5G, 6G, and
beyond.

Alshaibani et al., [13] the impending deployment of Ultra-Dense Networks (UDNs) to manage the
increasing mobile data traffic, leading to more handover scenarios and potential challenges in
connectivity, stability, and reliability. It emphasized the additional complexity brought by Unmanned
Aerial Vehicles (UAVs) in future networks due to their 3D mobility and unique communication
characteristics. The study aimed to provide an overview of mobility management for connected UAVs
in upcoming networks like 5G, 6G, and satellite networks. It discussed recent solutions and identifies
challenges, serving as a foundation for future research in UAV mobility management by defining
existing problems and presenting the latest research outcomes.

Table 1 shows analysis of recent survey papers on handover management in UAV communication
system.

Table 1
Analysis of existing survey papers on handover management in UAV communication
system
No. of papers
Author, Year Title considered for the
survey
This paper,2024 Navigating Handover Technique: 29

A Comprehensive Review of
UAV-Based Communication
Systems
. Software Defined UAV Network

Abir etal., 2023 for 6G System: Requirements, 21
Opportunities, emerging
Techniques, Challenges, and
Research Direction
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W T Alshaibani et al., Mobility Management of 29
2022 Unmanned Aerial Vehicles in

Ultra-Dense Heterogeneous

Networks
Shayea et al., 2020 Handover Management for 20

Drones in Future Mobile
Networks — A Survey

Angjo J. et al., 2021 Handover Management of Drone 20
in Future Mobile Networks: 6G
Technologies

This review paper surveys recent advancements in handover decision techniques in UAV
communication systems. Specifically, it analyzes recent handover techniques proposed from 2020 to
2024, with research papers sources from Web of Science, Scopus, and IEEE. focusing on their
effectiveness in mitigating the challenges posed by the unique mobility patterns of drones and
improving network performance. By analyzing existing literature from reputable sources, we seek to
identify key trends, methodologies, performance metrics, and tools employed by researchers in this
field. Additionally, we will discuss the challenges and opportunities in future handover decision
techniques for drones, highlighting areas requiring further research and development to meet the
evolving requirements of future communication networks.

This survey paper is organized as follows: Section 2 provides a review of the methodology of
handover technologies in UAV communication systems, while Section 3 identifies the research gaps
and issues. Section 4 is the analysis based on publication years, tools used, performance metrics, and
the value of the handover rate. Section 5 discusses the challenges and opportunities, and the paper
concludes with Section 6.

2. Methodology Review

This section reviews various techniques used for handover mechanisms in UAV communication
systems, specifically on drone communication networks. The evolution of modern communication
systems into fifth-generation (5G) and sixth-generation (6G) networks has introduced new challenges
and opportunities in handover decision techniques, particularly in dynamic and heterogeneous
environments. Traditional handover methods, which rely on received signal strength, often result in
frequent handovers, especially for unmanned aerial vehicles (UAVs) acting as drone base stations
(DBSs). This frequent handover can degrade network performance and reduce service reliability,
particularly in emergency scenarios where rapid and stable connectivity is critical.

Figure 1 illustrates the architecture for heterogeneous handover techniques in these systems.
Due to the high frequency used in UAV communication, which limits its range, heterogeneous
networks are employed. These networks utilize multiple base stations to cover large areas, as shown
in Figure 1, with each base station classified based on its transmission power. Drones can connect to
multiple base stations but typically select the one with the strongest signal. Figure 2 categorizes
handover-based technologies in UAV or drone communication networks. These include
reinforcement learning techniques, machine learning or Al-based techniques, optimization-based
techniques, received signal strength-based techniques, and fuzzy logic-based techniques. The
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challenges associated with these methods are assessed to encourage researchers to develop
innovative handover mechanisms for UAV or drone communication networks.
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Fig. 1. Architecture of UAV Handover Network

2.1 Classification of Handover Techniques

The research examining various techniques used for handover mechanisms in UAV
communication systems is described below:

2.1.1 Fuzzy Logic-Based Technique

Haghrah et al., [14] introduced handover triggering estimation based on Fuzzy Logic for LTE-A/5G
Networks with Ultra-Dense Small Cells. Fuzzy logic is used to estimate and trigger handovers in ultra-
dense networks. It considered multiple factors such as signal strength, user mobility, and network
load to make more nuanced and accurate handover decisions. This approach reduced unnecessary
handovers and improves overall network performance by adapting to the dynamic conditions of the
network environment.

Singh et al., [15] addressed the complexity of managing handover (HO) in mobile communication
systems involving Unmanned Aerial Vehicles (UAVs) by proposing a novel method using a multi-level
fuzzy system. Their research focused on reducing the rule complexity of fuzzy systems to enhance
the performance of handover systems. The methodology involved processing various parameters
across three levels: at the first level, coverage, speed limit, and cost are considered; at the second
level, connection time, security, and power consumption are evaluated. These parameters generated
intermediate probability outputs, which were then processed at the third level to produce the final
estimation level. The tools used in this study include MATLAB software, where the efficacy of the
proposed multi-level fuzzy system was analysed and compared with traditional handover systems to
prove its efficiency.
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2.1.2 Machine Learning Based Technique
(a) Supervised Learning (using labeled data)

Zhao et al., [16] proposed UAV-Assisted Handover Scheme for Coverage Maximization against 5G
Coverage Holes. This study used a Machine learning-based proactive handover scheme using Long
Short-Term Memory (LSTM) networks. The technique used LSTM networks, a type of recurrent neural
network (RNN), to predict future coverage holes in 5G networks. By anticipating areas with weak or
no coverage, the UAV could proactively hand over to base stations with better coverage, thereby
maximizing the network's overall coverage and reliability.

Anderson et al., [19] aimed to improve handover procedures in Aerial 5G and Beyond Systems by
analysing different Deep Learning (DL) algorithms. Their methodology involved modelling a 5G Air-
to-Ground radio channel and using DL techniques, particularly Recurrent Neural Networks (RNN), for
trajectory and signal predictions. They extended the 5G Standalone (SA) libraries of the OMNeT++
simulator to implement and evaluate their approach. The goal was to enhance Quality of Service
(QoS) metrics, such as reducing delay and packet loss, compared to the baseline 5G handover
procedure. The tools used included the OMNeT++ simulator and various DL algorithms, with a focus
on the Gated Recurrent Unit (GRU) for signal prediction, which showed the best results. This study
provided insights into using DL techniques to improve handover procedures in Aerial Networks,
benefiting UAV-BS networks.

Wang et al., [17] conducted Stable Matching with Evolving Preference for Adaptive Handover in
Cellular-Connected UAV Networks. This study used a dynamic stable matching-based adaptive
handover (DSMAH) algorithm. This technique applied a stable matching algorithm, which dynamically
evolved preferences based on network conditions and UAV requirements. It ensured that handover
decisions adapt to changing environments and user preferences, maintaining stable and optimal
connections for UAVs in cellular networks. This tackled the issue of frequent UAV handovers in future
6G networks, which could disrupt services. The approach involved converting the handover problem
into a stable matching model and expanding it to encompass the entire time-space dimension. This
adaptation allowed for the representation of changing time-space information as evolving
preference relations. The proposed DSMAH algorithm adjusts the preference lists' evolution to match
the current network topology, ensuring efficient and stable matching in dynamic settings. The
method sought to strike a balance between communication quality, handover frequency, and
convergence speed, ultimately enhancing cellular-connected network stability.

(b) Reinforcement Learning Technique

A Hybrid Scheme using TOPSIS and Q-Learning for handover decision-making in UAV assisted
heterogeneous network is conducted by Zhong et al., [18] This study introduced a handover decision-
making algorithm that leverages the strengths of Technique for Order Preference by Similarity to An
Ideal Solution (TOPSIS) and Q-Learning to enhance the performance of UAV-assisted heterogeneous
networks (HetNet’s). The objective is to reduce the number of handovers and improve energy
efficiency. Combining TOPSIS, which is a multi-criteria decision-making approach, with the
reinforcement learning capabilities of Q-Learning, the proposed method aims to optimize handover
decisions in dynamic network environments. TOPSIS was used to evaluate multiple handover
candidates based on several criteria, such as signal strength and network load. Q-learning, a
reinforcement learning technique, optimizes the handover decisions over time by learning from the
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environment. This combined approach ensures efficient and adaptive handover decisions in
heterogeneous networks.

Azari et al., [20] highlighted the challenges and opportunities associated with cellular
connectivity for drones, particularly focusing on communication dynamics influenced by three-
dimensional mobility and line-of-sight channel characteristics, leading to increased handovers with
altitude changes. The research employed cell planning simulations to assess the coexistence of aerial
and terrestrial users, highlighting severe interference from drones to base stations, which poses a
major challenge for uplink communications of terrestrial users. Using real geographical network data
for Stockholm, the study derives analytical models for key performance indicators (KPIs), including
communication delay and interference over cellular networks. Subsequently, the authors formulated
the handover and radio resource management (H-RRM) optimization problem and propose a deep
reinforcement learning solution to address it. The methodology involved transforming the problem
into a Machine Learning (ML) problem and utilizing simulation results to demonstrate how drone
speed, altitude, and interference tolerance shape the optimal H-RRM policy in the network.
Specifically, the study presented heat maps of handover decisions for different drone altitudes and
speeds, aiming to prompt a revision of legacy handover schemes and cell boundaries in the sky.

Yun Chen et al., [21] addressed the challenge of providing reliable wireless connectivity to drone
user equipment (UEs) in cellular networks, which are primarily designed for ground UEs. They
proposed a novel handover (HO) mechanism for cellular-connected drones to enhance connectivity
and mobility support. The key feature of their approach is the use of a Q-learning algorithm from
reinforcement learning to dynamically optimize HO decisions. This algorithm allowed the drone to
learn and adapt its HO strategy based on its interactions with the network environment, aiming to
minimize the number of HOs while maintaining robust connectivity. The methodology involved
developing and implementing the Q-learning algorithm within the cellular-connected drone system,
integrating it with the network's HO decision-making process. The tools used in this study include
software and hardware components for simulating drone mobility and network connectivity
scenarios, as well as programming tools for implementing the Q-learning algorithm.

Reinforcement Learning-Based Optimization for Drone Mobility in 5G and Beyond Ultra-Dense
Networks is conducted by Tanveer et al., [22]. This study Q-learning to optimize handover decisions
in ultra-dense networks for drones, addressing challenges like signal strength variations and co-
channel interference. The proposed approach minimized handover costs while maintaining robust
connectivity, demonstrating significant improvements in time-sensitive applications and high data
rate communications. The study aimed to address the challenges faced by 4G and 5G cellular
networks in ensuring dynamic control and safe mobility for drones, particularly in scenarios such as
crowded events, disaster response, and UAV traffic management. The primary focus was on
optimizing the handover process to maintain robust connectivity and minimize handover costs, which
are critical when drones operate in three-dimensional space and encounter issues, such as signal
strength variations and co-channel interference. The methodology employed Q-learning-based
approach to enhance the handover algorithm, moving beyond the baseline greedy handover method
that only ensures the strongest connection, often resulting in multiple handovers. By leveraging Q-
learning, a type of machine learning technique suited for fast environment learning, the study
evaluated the handover decision process in three different scenarios. This approach enabled the
drone to learn optimal routes and maintain high data rates, essential for time-sensitive applications
like tactile internet and haptic communication. Simulation results confirmed that the proposed Q-
learning algorithm effectively reduced handover costs and enhanced connectivity, presenting a
significant contribution to the optimization of drone mobility in ultra-dense network environments.

224



Journal of Advanced Research Design
Volume 139 Issue 1 (2026) 218-247

Jang et al., [23] proposed a Deep Reinforcement Learning (DRL)-based handover decision
scheme. The DRL is used to optimize handover decisions by learning from the UAV’s interactions with
the network environment. This technique allowed the UAV to make proactive and intelligent
handover decisions, minimizing the number of handovers and maintaining robust connectivity even
in dynamic network conditions.

Jang et al., [24] expanded their proposal for a UAV handover decision system using deep
reinforcement learning, specifically the Proximal Policy Optimization (PPO) algorithm, in a 3D UAV
mobility environment. The use of PPO in UAV handover decision-making is a novel approach and
shows promise in enhancing handover performance. However, the study lacked a comprehensive
comparison with existing handover decision methods. It would be beneficial to see a comparison of
the proposed PPO algorithm with traditional handover decision approaches in terms of handover
latency, success rate, and network efficiency. Furthermore, the scalability and adaptability of the PPO
algorithm to different UAV mobility scenarios need to be investigated to assess its practical utility in
real-world applications.

On the other hand, the study by Cao et al., [25] introduced the use of Deep Reinforcement
Learning (DRL) for Multi-User Access Control in Non-Terrestrial Networks (NTNs). The approach of
using a centralized agent to train parameters of a deep Q-network (DQN) was innovative and
addressed the complex nature of access control in NTNs. However, the study lacked in-depth analysis
and evaluation of the proposed method. The authors could provide more insights into the
performance of the DQN in different scenarios, such as varying network loads or user mobility
patterns. Additionally, the practical feasibility and scalability of deploying a centralized DRL agent for
access control in large-scale NTN environments need to be discussed further.

Yan et al., [26] conducted multi-UAV speed control with collision avoidance and handover-aware
cell association which employed Deep Reinforcement Learning (DRL) to optimize the cell association
and velocity decisions of multiple UAVs. The aim was to improve transportation and communication
performance by minimizing collisions and ensuring Optimal Handovers (HOs). The methodology
involved training DRL models to make dynamic decisions on UAV velocities and their associations
with ground cells, enhancing overall system efficiency. Simulation environments are used to test and
validate the proposed solutions, demonstrating their effectiveness compared to traditional methods.

Previously, Chowdhury et al., [27], aimed to address the challenges in providing robust wireless
connectivity and mobility support for cellular-connected UAVs in beyond visual line of sight scenarios.
The focus was on dynamically adjusting the down tilt (DT) angles of ground base stations (GBSs) using
a model-free Reinforcement Learning (RL) algorithm to ensure better connectivity and mobility
support for UAVs while maintaining good throughput performance for ground users. The
methodology involved leveraging tools from RL to dynamically adjust DT angles of GBSs. The RL
algorithm is model-free, allowing for adaptability to changing network conditions. The technique
involved optimizing the received signal quality at UAVs while ensuring good throughput performance
for ground users. The study used simulation tools to evaluate the proposed RL-based mobility
management technique. The simulations compared the proposed technique with a baseline scheme
where the network keeps the DT angle fixed. The proposed RL-based mobility management
technique shows promise in reducing the number of handovers while maintaining performance
goals. By dynamically adjusting DT angles, the technique aimed to provide efficient mobility support
for UAVs in complex air-to-ground path loss environments.

The study by Jang et al., [28] focused on enhancing the handover decision mechanism for UAVs
by addressing the shortcomings of traditional ground-user-centric methods. Their proposed UAV
Handover Decision (UHD) scheme utilized Deep Reinforcement Learning (DRL) to dynamically
determine the optimal moments for UAVs to execute handovers, ensuring stable connectivity. They
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employed the Proximal Policy Optimization (PPO) algorithm within a simulated 3D UAV mobility
environment. This advanced learning framework allows the UAVs to adaptively learn and manage
handover decisions, reducing unnecessary handovers caused by signal strength fluctuations.

Deng et al. [29] aimed to minimize the challenges faced by UAVs due to overlapping coverage
areas and interference with terrestrial users. Their study proposed a joint optimization approach for
UAV trajectory design and handover management using a duelling double deep Q-network (D3QN)
based reinforcement learning algorithm. This method optimized the UAV's path to avoid overlapping
coverage areas, thereby reducing interference and the frequency of handovers. The algorithm
dynamically adjusted the UAV’s trajectory to balance key performance indicators such as delay,
uplink interference, and handover numbers.

Almasri et al. [30] aimed to tackle the connectivity challenges faced by Unmanned Aerial Vehicles
(UAVs) in cellular networks, which were increasingly vital across various sectors. The study
introduced a Q-learning-based algorithm designed to optimize the number of handovers (HOs) that
occured frequently due to the high speed and altitude of UAVs. This method involved simulations in
rural, semi-rural, and urban settings to assess the algorithm's performance compared to a baseline
where drones connected to the cell with the strongest signal. A unique aspect of this research was
the consideration of decision distance, which allowed drones to make informed handover decisions
based on their proximity to cell towers. While the use of reinforcement learning was innovative, there
were potential limitations, such as the algorithm's scalability in dense urban areas and the
generalizability of simulation results to real-world scenarios.

Supervised learning techniques using labelled data were applied by Zhao et al. [16] and Anderson
et al. [19]. Reinforcement learning methods that adapt and learn from the environment were
employed by Zhong et al. [18], Azari et al. [20], Yun Chen et al. [21], Tanveer et al. [22], Jang et al.
[23, 24, 28], Cao et al. [25], Yan et al. [26], Chowdhury et al. [27], Deng et al. [29], and Almasri et al.
[30]. Wang et al. [17] used a dynamic matching algorithm that adapts to network changes.

2.1.3 Optimization-Based Techniques

Cheung et al., [31] focused on reducing the age of information (Aol) for unmanned aerial vehicles
(UAVs) by improving network selection. While previous methods often prioritize the closest or
strongest signal base stations (BSs) for data rate optimization, they overlook BS queueing and
handover delays. The research aims to minimize Aol in network access and handover by considering
BS load and UAV flight plans. Each UAV must choose between uncongested BSs for quicker updates
or BSs along its path for fewer handovers. The UAVs' decisions were modelled as a noncooperative
game to minimize their cost, which included BS Aol and handover penalties. The study introduced a
distributed BS association (DBA) algorithm to find a Nash equilibrium, ensuring UAVs select BSs based
on load and flight plans. Simulation results demonstrated that the proposed DBA scheme reduced
Aol compared to existing methods.

A Novel Cooperative Relaying-Based Vertical Handover Technique for Unmanned Aerial Vehicles
was proposed by Haider et al., [32]. The research introduced a relay-based vertical handover
technique for UAVs, employing multicriteria handover parameter triggering to minimize packet loss
and delay. Simulation results indicated enhanced handover success rates and reduced end-to-end
delay, proving the method's effectiveness in maintaining seamless connectivity during vertical
handovers.

Furthermore, Hajiakhondi-Meybodi et al., [33] proposed Joint Transmission Scheme and Coded
Content Placement in Cluster-Centric UAV-Aided Cellular Networks. The Technique proposed a coded
content placement strategy and a coordinated multipoint (CoMP) transmission approach. This
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technique used a coded content placement strategy to pre-position data in the network, combined
with CoMP transmission to enhance signal strength and reliability. Its improved data availability and
reduces latency during handovers by coordinating transmissions from multiple base stations.

Huichen et al., [34] aimed to enhance mobility management in wireless networks for UAV
inspection in a 5G-enabled smart grid, recognizing the need for high data rates, minimal latency, and
robustness. Their focus was on the unique challenges posed by UAVs' agile movements and
demanding communication requirements. To address these challenges, they introduced the uplink-
based pre-handover scheme, comprising a pre-handover decision algorithm and signalling
procedure. This scheme aimed to improve handover efficiency and reliability. The methodology
involved implementing and testing the proposed scheme in simulations to compare its performance
with traditional methods. Their technique cantered on developing and implementing this new
scheme to optimize handover decisions and signalling for UAVs. The study likely employed simulation
tools to evaluate the scheme's effectiveness in a controlled environment.

Bekkouche et al., [35] aim to address the challenges associated with managing the mobility of
services in Multi-Access Edge Computing (MEC) environments, particularly for Unmanned Aerial
Vehicles (UAVs). The primary objective is to ensure sustainable Quality-of-Service (QoS) as UAVs
move and undergo handovers across distributed MEC hosts. To achieve this, the authors proposed
using predefined UAV flight plans to develop proactive service relocation strategies. The
methodology involved formulating the Proactive Service Relocation for UAV (PSRU) problem using
linear programming. This approach was designed to handle asynchronous relocation processes
efficiently by anticipating UAV movements and making informed decisions on where and when to
relocate services.

Fonseca et al., [36] aimed to highlight the challenges faced by network operators in providing
connectivity for UAVs in cellular networks. The focus was on understanding and addressing the
network planning and optimization challenged that arose when UAVs become users of the network.
The methodology involved analysing 3GPP specifications, existing research literature, and a publicly
available UAV connectivity dataset. The study classified challenges into network planning and
network optimization categories to provide a comprehensive understanding of the issues. The study
used real-world datasets to support its findings about the challenges faced by network operators in
providing connectivity for UAVs. It also discussed possible approaches to address these challenges.
The study provided a thorough analysis of the challenges faced by network operators in enabling UAV
connectivity in cellular networks. By considering network planning and optimization challenges, the
study highlighted the need for network operators to adapt their planning and operation strategies to
accommodate UAVs as users of the network.

2.1.4 Handover Count (HOC)- Based Techniques

Chowdhury et al., [37] aimed to estimate the velocity of cellular-connected Unmanned Aerial
Vehicles (UAVs) to ensure reliable and effective mobility management. It focuses on deriving a
probability mass function (PMF) of handover count (HOC) for different UAV velocities and ground
base station (GBS) densities and proposes a velocity estimation method based on the HOC
measurement time. The study modelled the relationship between HOC and UAV velocity and derived
the Cramer-Rao lower bound (CRLB) for velocity estimation. It also provided a simple unbiased
estimator for UAV velocity based on GBS density and HOC measurement time. The study evaluated
the accuracy of the proposed velocity estimation method under different GBS densities and HOC
measurement windows. The study provided a valuable contribution to the field of cellular-connected
UAVs by proposing a method for velocity estimation based on HOC. By considering the impact of GBS
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density and HOC measurement time, the study addressed key challenges in mobility management
for UAVs.

Again Chowdhury et al., [38] investigated the estimation of UAV speed to improve mobility
management and service quality for cellular-connected UAVs. The study aimed to develop a reliable
method for detecting UAV mobility states based on handover count (HOC) statistics. The authors
proposed an approximation of the probability mass function of HOC considering UAV height, velocity,
and ground base station (GBS) density. Using this approximation, they derived the Cramer-Rao lower
bound (CRLB) for speed estimation and introduced a simple biased estimator for UAV speed, which
became unbiased under specific conditions. The methodology employed statistical analysis tools to
correlate handover counts with UAV speed, providing a practical approach to mobility state detection
in UAV networks.

2.1.5 Others Based Techniques

Teeluck et al., [39] proposed a seamless handover mechanism for UAVs acting as base stations,
utilizing an RSS (Received Signal Strength) decision algorithm. The goal was to enable continuous
service provision to ground users by seamlessly swapping UAVs without introducing downtime. The
methodology involved designing and implementing the handover mechanism, which included the
development of the RSS decision algorithm. The technique used was based on leveraging RSS
measurements to determine the optimal timing for UAV swapping, ensuring continuous coverage.
The tools used likely included simulation software for testing the handover mechanism and algorithm
to validate its effectiveness in maintaining uninterrupted service.

Queiroz et al., [40] aimed to address the challenges of handover procedures for ground users
assisted by a network of Unmanned Aerial Vehicles (UAVs) acting as base stations (UAV-BSs) in 5G
and beyond (B5G) systems. The focus was on developing intelligent handover strategies using Deep
Learning (DL) algorithms to improve Quality of Service (QoS) metrics for ground users. The study
models a 5G Air-to-Ground radio channel and proposes DL techniques for handover management
based on Recurrent Neural Networks (RNNs) for trajectory and signal predictions. The techniques
were implemented and evaluated using the OMNeT++ simulator, with new modules added to extend
the 5G Standalone (SA) libraries. The study used the OMNeT++ simulator with extended 5G SA
libraries to implement and evaluate the proposed DL-based handover management techniques. The
study provided a novel approach to improving handover procedures in aerial 5G and beyond systems
using DL algorithms. By focusing on trajectory and signal predictions, the study addressed key
challenges in maintaining service continuity for ground users in UAV-BS networks.

The study in Goudarzi et al.,, [41] aimed to improve handover processes in heterogeneous
wireless networks, particularly in future 5G cellular networks, using cooperative game theory. The
focus was on selecting the best UAV during the handover process to optimize handover among UAVs,
reducing end-to-end delay, handover latency, and signalling overheads. The study proposed a
method based on cooperative game theory to optimize handover among UAVs. The method utilized
the software-defined network (SDN) design with media-independent handover as forwarding
switches to achieve seamless mobility. The study employed cooperative game theory and SDN design
principles as theoretical frameworks for optimizing handover among UAVs. The study introduced a
novel approach to improving handover processes in UAV-assisted communications using cooperative
game theory. By focusing on optimizing handover among UAVs, the study addressed key challenges
in maintaining QoS for mobile devices.

Meer I. A, et al. [42] explored the challenges of mobility management for cellular-connected
UAVs, emphasizing the need to maintain service availability while minimizing unnecessary
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handovers. They highlighted that the traditional Mobility Robustness Optimization (MRO)
procedures, optimized for terrestrial users, fail to address the unique challenges faced by aerial users
such as frequent handovers due to line-of-sight conditions with multiple ground base stations (BSs).
To address this, the authors proposed two approaches: a model-based service availability-aware
MRO and a deep Q-network based model-free approach. Both approaches aimed to reduce
handovers and increase service availability, with simulation results showing over a 40% increase in
service availability and a 50% reduction in handovers compared to traditional methods.
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Fig. 2. Classification of Handover Based Techniques
3. Research Gap Issues

This section highlights the research gaps and issues encountered by previous handover
approaches in UAV communication systems.

Handover Triggering Estimation Based on Fuzzy Logic for LTE-A/5G Networks with Ultra-Dense
Small Cells was conducted by Haghrah et al., [14]. The study improved handover performance and
radio link quality in ultra-dense small cell networks using a fuzzy logic-based handover triggering
mechanism. Despite these improvements, the method's dependency on accurate positional data
remains a significant drawback. Inaccurate positional information can lead to suboptimal handover
decisions. Future work should focus on developing adaptive algorithms capable of handling positional
inaccuracies, thereby enhancing the reliability and applicability of the handover mechanism in real-
world scenarios.

Singh et al., [15] demonstrated the effectiveness of their multi-level fuzzy system in managing
handover (HO) in mobile communication systems with UAVs. The results showed that their approach
reduced the complexity of the HO decision-making process while enhancing system performance. By
considering parameters such as coverage, speed limit, cost, connection time, security, and power
consumption, their system provided more efficient and reliable HO decisions compared to traditional
methods. However, the study did not delve deeply into the practical implementation of the proposed
system in real-world scenarios, leaving a gap in understanding its scalability and adaptability to
dynamic environments. Despite this, the research represented a significant step towards improving
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HO management in mobile communication systems with UAVs, highlighting the potential of fuzzy
logic in enhancing system performance. Nevertheless, the inherent complexity of fuzzy systems
themselves presented a challenge, potentially offsetting the benefits of reduced overall system
complexity. The trade-off between system simplification and the complexity of the fuzzy logic
approach needed careful consideration. Future work could aim to streamline the fuzzy inference
process, perhaps through hybrid models that combine fuzzy logic with other, simpler decision-making
techniques.

Zhao et al., [16] proposed a Machine Learning-based proactive handover scheme using LSTM to
enhance network performance by minimizing handover delays. The results showed a reduction in
ping-pong rates and end-to-end delays. However, the study did not detail specific performance gaps,
which are crucial for understanding the method's limitations. Future research should include
comprehensive empirical testing across diverse environments to identify and address potential
performance issues, ensuring the robustness of the proposed scheme.

Wang et al., [17] proposed stable matching with evolving preference for adaptive handover in
cellular-connected UAV networks. The study utilized a Dynamic Stable Matching Algorithm (DSMAH)
to improve network stability for cellular-connected UAVs. The results showed improvements in
communication quality and reduced handover frequency. However, the frequent handovers and
ping-pong effects observed indicate a need for further refinement. Simulation results showcased the
algorithm's superiority over standard schemes, with the study utilizing simulation tools to assess the
algorithm's performance in dynamic conditions. Integrating predictive mechanisms to pre-emptively
address potential handover triggers could reduce the frequency of handovers and mitigate the ping-
pong effect, leading to a more stable network.

Study by Zhong et al., [18] aimed to reduce the number of handovers and improve energy
efficiency in UAV-assisted heterogeneous networks by employing a combined approach of TOPSIS
and Q-learning algorithms. The results demonstrated a significant reduction in handover numbers
and an improvement in average energy efficiency. However, the approach was heavily dependent on
a large volume of training data, which introduced significant challenges and complexities, particularly
in real-time implementation scenarios. This reliance on extensive data sets poses a barrier to practical
deployment, making the system less agile and more resource intensive. To enhance the real-time
applicability and efficiency of the proposed method, future research could focus on developing
algorithms that require less data or employ data-efficient training techniques.

The finding of Anderson et al., [19] study indicated significant improvements in Quality of Service
(QoS) metrics for handover procedures in Aerial 5G and Beyond Systems. By using Deep Learning (DL)
algorithms, particularly the Gated Recurrent Unit (GRU) for signal prediction, they were able to
reduce delay and packet loss compared to the baseline 5G handover procedure. However, the study
did not specify the exact extent of improvement achieved. One issue arose was the complexity and
computational overhead of implementing DL algorithms for real-time handover decision-making in
UAV-BS networks. Additionally, the research gap lied in the lack of exploration into the scalability and
robustness of the proposed DL-based handover strategies across different network scenarios and
deployment environments. A critical review suggested that while DL showed promise in improving
handover procedures, further research was needed to address these issues and validate the
scalability and practicality of DL-based approaches in real-world Aerial Network deployments.

Azari et al., [20] study revealed significant insights into the challenges and dynamics of cellular
connectivity for drones, particularly emphasizing the interference issues between drones and
terrestrial users. By providing analytical models and proposing a Machine Learning solution, the
research offered a systematic approach to optimize handover and resource management in such
networks. However, the study also highlighted the need for further research to address remaining
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challenges and gaps, such as the practical implementation of proposed solutions and the adaptation
of existing network infrastructure to accommodate drone communications. A critical review
suggested that future studies could focus on real-world validation of proposed algorithms and
explore additional factors influencing handover decisions in diverse environmental conditions.
Additionally, recommendations included the development of standardized protocols and guidelines
for integrating drones into cellular networks effectively.

Yun Chen et al., [21] developed a novel handover (HO) mechanism for cellular-connected drones,
utilizing a Q-learning algorithm to dynamically optimize HO decisions. Their results demonstrated a
significant reduction of up to 80% in the number of HOs compared to a baseline scheme, highlighting
the potential of their approach to improving connectivity and mobility support for drone user
equipment (UEs) in cellular networks. However, while the study's findings were promising, several
critical aspects warranted further investigation. Firstly, the performance of the proposed HO
mechanism should be validated through real-world experiments to assess its practical feasibility and
scalability. Additionally, the impact of reduced HOs on other performance metrics, such as network
throughput and latency, needed to be thoroughly evaluated to understand the trade-offs involved.
Furthermore, the study's focus on reducing the number of HOs might overlook other important
aspects of HO optimization, such as the quality of service (QoS) experienced by drone UEs. Future
research could explore these aspects to provide a more comprehensive understanding of the
implications of HO optimization in cellular-connected drone systems.

Tanveer et al., [22] revealed that the Q-learning-based approach significantly reduces
handover costs and improves connectivity for drones in 5G networks. The simulation results
demonstrated the algorithm's effectiveness in providing efficient mobility support, high data rates,
and robust connections, especially in time-sensitive applications like the tactile internet and haptic
communication. However, the research identified issues, such as the increased handover cost due to
variations in the received signal strength indicator, co-channel interference, and abrupt signal drops
caused by antenna nulls. These challenges highlighted the need for more sophisticated algorithms to
manage drone mobility in ultra-dense network environments. Despite its promising findings, the
study had some limitations, such as the scope of scenarios evaluated and the potential need for real-
world testing to validate the simulation results. A critical review suggested that future research could
explore hybrid approaches combining Q-learning with other machine learning techniques or
investigate adaptive algorithms that respond to dynamic network conditions in real-time.
Additionally, expanding the testing environment to include more diverse and complex scenarios
would provide a more comprehensive understanding of the proposed algorithm's capabilities and
limitations.

Jang et al., [23] aimed to prevent unnecessary handovers while maintaining stable connectivity
using a Deep Reinforcement Learning (DRL)-based scheme. The results showed reduced unnecessary
handovers and maintained stable RSSI. However, the approach is not suitable for ground users,
limiting its applicability. Future work should integrate ground user considerations into the model to
provide a more comprehensive solution that addresses both aerial and terrestrial connectivity needs.

Furthermore, Jang et al., [24] proposed a DRL-based UAV handover decision scheme to manage
stable connectivity. The results indicated reduced handover frequency and maintained signal
strength. However, frequent fluctuations in signal strength due to UAV mobility present challenges.
Stabilizing signal strength through advanced prediction models could improve overall performance
and reliability. Future work should focus on developing algorithms that can dynamically adjust to
maintain consistent signal strength despite UAV mobility.

Cao et al., [25] proposed a UE-driven DRL-based scheme to optimize multi-user access control
in non-terrestrial networks. The results demonstrated improvements in long-term system
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throughput and reduced handover frequency. However, the dynamic environment of non-terrestrial
networks poses unique challenges, such as the mobility of NT-BSs. Adapting the model to better
handle these dynamic conditions could improve its robustness and applicability. Future work should
focus on enhancing the algorithm to manage the mobility and variability of non-terrestrial networks
more effectively.

Yan et al., [26] demonstrated significant improvements in both collision avoidance and
communication performance, with reduced handover rates and better connectivity. However, the
complexity of implementing DRL in real-time environments remained a critical issue, along with the
scalability of the solution in dense UAV networks. The research gap included the need for real-world
validation and addressing the computational overhead associated with DRL. Critically, while the
approach showed promise in simulations, its real-world application could be constrained by the
current technological limitations in processing power and real-time learning capabilities.

Chowdry et al., [27] found that the Reinforcement Learning-based approach significantly reduces
the number of handovers without compromising the quality of service (QoS). It ensured robust
connectivity and efficient mobility management for UAVs in cellular networks. However, issues, such
as computational complexity and the need for real-time learning pose challenges. The research gap
lied in the lack of extensive real-world testing and the need for more efficient algorithms to handle
large-scale deployments. Critically, while the study demonstrated potential, its practical applicability
was limited by the high computational demands and the need for more extensive real-world
validation.

The experimental results in Jang et al., [28] of the UHD scheme showed a significant reduction in
handovers, up to 76% compared to conventional methods and 73% compared to other target
methods, while maintaining stable signal strength. This indicated a substantial improvement in the
efficiency and reliability of UAV communications. However, the study highlighted the need for further
optimization of the DRL algorithms to handle more complex and dynamic UAV environments. Future
research should focus on refining these algorithms and conducting real-world validations to ensure
robustness and applicability in practical scenarios.

Deng et al., [29] The results demonstrated that the proposed D3QN-based approach could reduce
handover numbers by 90% and interference by 18%, with only a minor increased in transmission
delay. Additionally, incorporating trajectory design into the D3QN policy reduced interference by 29%
and handover numbers by 33%. Despite these promising outcomes, the study suggested that further
refinement was needed to optimize the balance between transmission delay and interference
reduction. Future research should explore more sophisticated trajectory planning and resource
allocation strategies to enhance the overall performance of UAV communication systems.

Almasri et al., [30] found that the Q-learning-based algorithm significantly reduced the average
number of HOs compared to the baseline, enhancing quality of service and reducing energy
consumption for UAV operations. The findings also emphasized the importance of hyper-parameters
in different environments. However, the study did not fully explore the effects of varying drone
speeds and altitudes on handover performance or the long-term adaptability of the algorithm to
dynamic network conditions. These gaps highlighted the need for further research, including
extensive real-world testing and the development of adaptive algorithms that could optimize
continuously in changing environments. Additionally, integrating Machine Learning with predictive
analytics for network load balancing could further improve UAV connectivity's efficiency and
reliability across diverse operational scenarios.

Cheung et al., [31] provided valuable insights into minimizing the age of information (Aol) for
UAVs in cellular networks, addressing a critical need for reducing latency in real-time status updates.
By focusing on optimizing network selection to consider both BS load and UAV flight plans, the
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research introduced a novel approach that could significantly improve the efficiency of UAV
communication. However, despite its innovative contributions, the study lacked a detailed analysis
of the practical implementation challenges and scalability of the proposed DBA algorithm.
Additionally, the research gap lied in the limited consideration of factors, such as network congestion,
varying UAV speeds, and dynamic network conditions, which could impact the effectiveness of the
proposed approach in real-world scenarios. Further research could explore these factors to enhance
the applicability and robustness of the proposed solution in complex UAV communication
environments.

Haider et al., [32] focused on addressing the challenges of vertical handover in UAV
communication by proposing a relay-based technique. Results indicated that the proposed method
enhances connectivity and performance during the handover process. However, the study lacked a
detailed discussion on the specific scenarios or conditions under which the relay-based technique
outperformed existing methods. Additionally, the research gap lied in the absence of a thorough
analysis of the impact of environmental factors, such as weather conditions or interference, on the
proposed technique's effectiveness. Moreover, the critical review suggested further investigation
into the scalability and adaptability of the relay-based approach in different UAV communication
scenarios. It is recommended to conduct field trials or real-world simulations to validate the
proposed technique's performance in practical UAV deployment scenarios. Furthermore,
incorporating Machine Learning or Al algorithms could potentially enhance the relay selection
process, leading to more efficient vertical handover in UAV communication networks.

Joint Transmission Scheme and Coded Content Placement in Cluster-Centric UAV-Aided Cellular
Networks was developed by Hajiakhondi-Meybodi et al., [33]. This research focused on increasing
content diversity and managing user requests efficiently using a coded content placement and
coordinated multipoint (CoMP) approach. The results indicated improvements in cache-hit-ratio,
SINR, and access delay. However, the method's efficiency dropped significantly in indoor
environments due to signal attenuation and UAV battery constraints. Future research should explore
hybrid solutions that combine both indoor and outdoor strategies to enhance overall network
efficiency and content delivery performance.

Huichen et al., [34] The study introduced a novel uplink-based pre-handover scheme for UAV
inspection in a 5G-enabled smart grid, aiming to enhance transmission rates, reduce latency, and
improve reliability. Simulation results indicated a 38% decrease in handover failure compared to
traditional schemes, demonstrating the effectiveness of the proposed approach. However, the study
lacked a detailed discussion on the specific performance metrics used to evaluate the scheme's
effectiveness, such as throughput, latency, and reliability metrics. Additionally, the research could
benefit from a more comprehensive comparison with existing handover schemes to establish its
superiority more convincingly. Despite these limitations, the study focused on optimizing handover
decisions for UAVs in 5G-enabled smart grids was crucial for enhancing communication network
performance in such scenarios. Further research could delve deeper into specific optimization
algorithms or consider real-world implementation challenges to validate the scheme's practicality
and effectiveness.

Bekkouche et al., [35] proposed proactive service relocation for UAVs in MEC. This research
introduced a proactive service relocation method using linear programming to manage MEC service
mobility efficiently. While the results showed improvements in service relocation efficiency, the
complexity of decision-making processes remained a significant challenge. Simplifying the algorithm
and enhancing decision-making efficiency were crucial for practical deployment. Future studies
should focus on streamlining the relocation process to make it more feasible for real-world
applications.
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Fonseca et al., [36] identified several key challenges, including network coverage planning, PCI
collision and confusion, automatic neighbouring relation (ANR), and handover issues. These
challenges were important considerations for network operators as UAV technology becomes more
prevalent. The study suggested possible approaches to address these challenges, but further
research was needed to validate these approaches and develop practical solutions for network
operators.

Simulation in Chowdhury et al., [37] introduced an approximate probability mass function (PMF)
for handover count (HOC) in UAVs, considering different velocities and ground base station (GBS)
densities. The researchers derived the Cramer-Rao lower bound (CRLB) for UAV velocity estimation
and proposed an unbiased estimator dependent on GBS density and HOC measurement time.
Simulation results showed that higher GBS densities and longer HOC measurement windows
improved velocity estimation accuracy. However, issues included the dependency on GBS density,
which might vary, and assumptions about consistent HOC measurements, potentially affected by
interference and environmental factors. The study also did not fully address the impact of other
network parameters on accuracy. The study presented a valuable approach to UAV velocity
estimation but was limited by its reliance on GBS density, which might not be uniform across different
areas. Future research should explore adaptive algorithms to handle varying GBS densities and
incorporate additional data sources, such as GPS or onboard sensors, to enhance accuracy. Field tests
in diverse environments were recommended to validate the method and identify areas for
improvement, ensuring reliable connectivity and effective mobility management for UAVs in various
scenarios.

Further research by Chowdhury et al., [38] indicated that the proposed estimator could
accurately estimate UAV speed under various conditions, with the CRLB providing a theoretical lower
bound for estimation accuracy. However, the study identified several issues and research gaps, such
as the potential for biased estimates under high handover conditions and the needed for further
validation in diverse operational environments. The research suggests that future work should
explore more sophisticated estimation techniques that can account for varying UAV trajectories and
environmental factors. Additionally, integrating this estimator with real-time network data could
enhance its practical applicability, leading to more effective mobility management solutions for
cellular-connected UAVs.

Teeluck et al., [39] proposed a new method for seamless handover of UAV base stations in fifth-
generation mobile networks to ensure continuous coverage. Their approach aimed to address the
challenge of limited UAV flight time due to battery constraints by swapping UAVs acting as base
stations without downtime. The study demonstrated the effectiveness of the proposed method in
maintaining uninterrupted service during UAV swapping, giving the impression of perpetual UAV
flight. While the study was a significant advancement, it lacked an in-depth exploration of practical
implementation challenges and their impact on network performance. Future research could focus
on addressing these issues and comparing the proposed method with existing techniques. Despite
these potential limitations, this work was a promising step toward improving the reliability and
continuity of UAV-based communication systems.

Queiroz et al., [40] indicated the effectiveness of the DL-based approach in improving QoS
metrics for ground users compared to baseline 5G handover procedures. However, the study did not
address the scalability and complexity of implementing DL algorithms in real-world UAV-BS networks.
Further research was needed to address these implementation challenges and validate the proposed
techniques in practical scenarios.

The results in Goudarzi et al., [41] demonstrated the effectiveness of the proposed approach in
reducing the number of handovers, cost, and delay. However, the study did not consider practical
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implementation issues and scalability challenges in real-world networks. Further research was
needed to validate the proposed approach and develop practical solutions for network operators.

Irshad A. Meer et al., [42] study's significant contribution lied in its dual-approach methodology,
providing both a model-based and a learning-based solution to UAV mobility management. By fine-
tuning handover control parameters in the model-based approach and leveraging Deep
Reinforcement Learning in the model-free approach, the research offered robust strategies to
enhance the service reliability of UAVs in cellular networks. The findings underscored the importance
of adapting existing terrestrial mobility management techniques to accommodate the distinct
characteristics of aerial users, thus paving the way for more efficient UAV integration into future
cellular networks.

In conclusion, while significant strides have been made in optimizing UAV handover and
connectivity, each study highlighted areas needing further exploration. Addressing these specific
gaps with adaptive and simplified algorithms, enhanced predictive mechanisms, and a focus on
practical deployment challenges will be crucial.

4. Analysis and discussion

This section outlines the study and discussion of handover techniques in unmanned aerial vehicle
(UAV) communication systems, categorized by method, publication year, and performance
evaluation metrics.

4.1 Analysis in Terms of Publication Year

This section categorizes the review according to the publication year, focusing on 29 articles
discussing handover techniques in drone communication systems. The breakdown by publication
year is summarized in Table 2. Among the 29 surveyed articles, a higher number of articles journal
were published in 2022 and a higher number of conference papers were published in 2020, compared
to 2023 and 2024.

Table 2
Analysis based on the publisher's year

Years No. of Articles Journal No. of Conference Paper
2024
2023
2022
2021
2020

N BN U W
W NN -

4.2 Analysis Based on Techniques

Based on the analysis of 29 recent articles published between 2020 and 2024, various techniques
were used for handover in UAV communication systems, as depicted in Figure 3. The most widely
used techniques were Machine Learning Based Technique which accounting for 34% with
Reinforcement learning method indicating their potential and promising role in the field.
Optimization-based approaches at 21%. Fuzzy logic-based techniques and Handover Count-based
approaches were used by 7% of researchers. Additionally, other techniques, such as Deep Learning,
cooperative game theory, model-based, and Received Signal Strength-based techniques constitute
14% of the surveyed articles. Thus, the analysis indicates that Reinforcement Learning as one of the
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Machine Learning Based type, predominantly favoured for handover mechanisms in UAV
communication systems, followed by an optimization-based technique. On the other hand, Fuzzy
Logic-based techniques and Handover count-based approaches were also among the less frequently
used. Machine Learning-based techniques specifically on Reinforce were increasingly favoured by
researchers as a potential future choice for handover management in UAV communication systems,
Fonseca et al., [36] driven by the advancements in Artificial Intelligence.

Optimization-Based Technique

A——— 2%

Machine Learning-Based Technique

T 34%

Fuzzy Logic-Based Technique

%

Handover Count (HOC)-Based

7

Others Based Technique

Il 14% (4 Different Techniques)

Surveyed Articles 0 2 4 6 8 10 12 14 16

Fig. 3. Analysis based on techniques.

The most widely used techniques were Machine Learning Based Technique with RL method
indicating their potential and promising role in the field. RL techniques emerged as the predominant
method used in UAV-related in this study, particularly in handover decision-making, due to several
compelling reasons. These reasons highlighted the adaptability and efficacy of RL in dynamic and
complex environments typical of UAV operations. RL enabled UAVs to learn optimal handover
strategies by interacting with the environment and adapting to changes in real-time. This adaptability
was crucial in UAV operations where conditions such as signal strength, interference, and mobility
patterns varied frequently (Zhong et al., [18]).

Unlike supervised learning, which relied on static labelled data, RL could continuously update
its policies based on new data and experiences. This dynamic decision-making capability was
essential for UAVs to maintain robust connectivity and minimize handovers in fluctuating network
conditions (Azari et al., [20]). RL techniques, particularly Q-learning and deep reinforcement learning
(DRL), could optimize multiple performance criteria simultaneously. For instance, they could balance
minimizing handover frequency with maintaining strong signal strength and reducing energy
consumption (Yun et al., [21]). RL algorithms were highly scalable and could handle the complexity
of UAV networks, which often involved numerous variables and large state spaces. Studies had shown
RL's effectiveness in scenarios ranging from ultra-dense networks to non-terrestrial networks (NTNs),
demonstrating its robustness across different environments (Jang et al., [12]). RL allowed UAVs to
make proactive and intelligent decisions. For example, the use of DRL with Proximal Policy
Optimization (PPO) enabled UAVs to anticipate and react to future network conditions, thereby
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reducing unnecessary handovers and enhancing overall network performance (Cao et al., [25]). Many
RL-based studies had demonstrated practical applicability through simulations and real-world data,
such as the use of geographical network data to model interference and delay in UAV operations.
This practical validation underlined RL's potential for deployment in actual UAV networks (Deng et
al., [29]). Reinforcement learning's ability to continuously learn and adapt, optimize multiple criteria,
and make proactive decisions made it an ideal technique for managing the complexities of UAV
networks. These attributes enabled RL to address the dynamic nature of UAV operations more
effectively than traditional supervised learning methods, which were limited by static datasets and
lacked adaptability in real-time environments.

RL techniques could broadly be classified into three main categories based on their approach
to learning and decision-making: value-based, policy-based, and model-based RL. The RL
classification being used by the researchers is shown in Table 3.

Table 3

Classification of RL Research articles

Value-based Zhong et al., 2024; Y Chen et al., 2021; Tanveer et
al.,2022, Deng et al., 2020;

Policy-based Azari et al., 2019; Jang et al., 2021; Cao et al., 2020;
Jang et al., 2023; Yan et al., 2022;

Model- Free Chowdhury et al., 2021;

Other Wang et al., Wang et al., 20

Value-based RL methods learn a value function that estimates the expected return (cumulative
reward) of being in a particular state and following a certain policy. The value function helps the
agent to make decisions by selecting actions that maximize the expected return. Examples of value-
based RL algorithms include Q-learning, Deep Q-Networks (DQN), and Double Deep Q-Networks
(DDQN). Zhong et al. [18] used Q-learning to optimize handover decisions in UAV-assisted
heterogeneous networks.

Policy-based RL methods directly learn an optimal policy, which is a mapping from states to actions
without explicitly estimating the value function. Policy-based methods can handle large and
continuous action spaces more effectively than value-based methods. Examples include policy
gradient methods, Proximal Policy Optimization (PPO), and Deterministic Policy Gradient (DPG). Jang
etal. [12] utilized the PPO algorithm for UAV handover decision-making in a 3D mobility environment.

Model Free-based RL methods involve learning an internal model of the environment to predict
outcomes of actions. These methods use the learned model to plan actions and make decisions.
Model-based RL can potentially reduce the number of interactions needed with the real environment
compared to model-free approaches include Dyna-Q and Model Predictive Control (MPC) combined
with RL. Chowdhury et al. [27] employed model-free RL to dynamically adjust down tilt angles of
ground base stations for cellular-connected UAVs.

Other RL model is proposed by Wang et al., [17] involves a stable matching algorithm to manage
adaptive handover in cellular-connected UAV networks. Stable matching is a mechanism where two
sets of elements (in this case, UAVs and ground base stations) have preferences for one another, and
the goal is to find a stable matching where there are no two elements that would prefer to swap
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partners. This approach adapts handover decisions based on the evolving preferences and conditions
in the network. The study aims to adapt handover decisions dynamically by evolving the preference
relations between UAVs and ground base stations. This technique is different from traditional RL
methods like value-based, policy-based, or model-based RL, as it focuses on matching preferences
and ensuring stable connectivity rather than directly optimizing actions based on reward signals.

4.3 Analysis Based on Used Tools

This subsection describes the tools used in existing handover mechanisms for UAV
communication systems. Figure 4 provides an analysis based on these toolsets. The software tools
employed in the research papers include MATLAB, MATLAB Simulink, Python, NS-3, and TensorFlow.
According to Figure 4, MATLAB was the most frequently used tool for handover mechanisms in UAV
communication systems, followed by Python, TensorFlow, and NS-3. On the other hand, OMNeT++
and MATLAB Simulink were the least used software tools, as depicted in the graph. It is also noted
that many researchers used multiple tools in combination, such as MATLAB with Python, MATLAB
with NS-3, MATLAB with OMNeT++, and TensorFlow with Python.

= MATLAB = MATLAB SimulinkK = NS-3 = Python = TensorFlow = OMNeT++ =

Fig. 4. Analysis based on the toolset
4.4 Analysis Using Performance Metrics

The analysis based on performance metrics is detailed in this section. The performance metrics
evaluated include signalling cost, throughput, handover number, handover success rate, handover
failure rate, accuracy, handover success probability, ping pong rate, packet delivery ratio,
unnecessary handover, handover trigger, energy efficiency, interference, signal-to-noise ratio (SINR),
and packet loss. According to Table 4, handover rate, handover failure probability, ping pong
handover, and packet delivery ratio were the most frequently considered metrics. Accuracy was the
least frequently considered metric. Authentication latency and throughput were the next most
frequently considered metrics after accuracy. Overall, the handover rate was the most preferred
metric in UAV communication systems. High handover success rates were reported in studies by
Goudarzi et al.,[41] Tanveer et al., [22]; Cheung et al., [31]; Chowdhury et al., [38]; Meer et al.,[42].
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Table 4
Analysis based on performance metrics.
Performance metrics Research articles

Handover (HO) number Singh et al., 2024; Fonseca et al., 2021; Goudarzi et
al.,2021, Zhong et al., 2024; Almasri et al., 2022; Y
Chen et al.,2020;

:8 ;;ﬁfreer rate Kyun Nam Park et al.,
Huichen et al., 2021.
Cost

Cheung et al., 2020.
Goudarzi et al.,2021 Tanveer et al.,2021; Cheung et
al., 2020; Chowdhury et al., 2023; Meer et al.,2024.

HO success rate

u HO
nhecessary Z Haider et al., 2024; Jung et al., 2022; Haghrah et

Ping pong rate al. 2023
gpong HJung et al., 2023; Wang et al., 2024; Haghrah et
al., 2023.
Throughput Cao et al., 2021; Singh et al., 2022.
Energy efficiency

Zhong et al., 2024; Bekkoucheo et al., 2021; Almasri
et al., 2022.

Signal strength Anderson Queiroz et al., 2023; Goudarzi et al.,2021;
Teeluck et al., 2023; A Haghrah et al., 2023; Jung et
al., 2022; Y Jang et al., 2022

Delay HajiAkhondi et al., 2022 H Jung et al., 2023.
Z Haider et al., 2024; Singh et al.,2023; Azari et al.,
2020; Zhao et al.,2021; Chowdhury et al.,2020,
2023

Interference Azar? etal,, 2020. .

Packet loss Z Haider et al., 2024; Azari et al., 2020.

SINR Z HajiAkhondi et al., 2022

4.6 Comparison of Existing Handover Decision Technique

Table 5 presents the advantages and disadvantages of current handover techniques in UAV
communication systems. Describing the pros and cons of various techniques used in different
methods is crucial for better comprehension. Fuzzy Logic-based techniques, Machine Learning-based
techniques, Optimization-based techniques, Received Signal Strength-based techniques, Handover
Count-based techniques, and others techniques are surveyed, and their benefits and drawbacks are
outlined in the following table for clarity.
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Table 5

Critical Review on Comparison of Existing Handover Decision Technique

Technique

Advantages

Disadvantages

Fuzzy Logic- Based

Machine Learning (ML)-
Based

(ML) Reinforcement
Learning

Robustness: Fuzzy logic can handle
imprecise input data and uncertainty,
making it robust in real-world UAV
communication scenarios.

Flexibility: These techniques can
accommodate multiple input
parameters and make decisions based
on fuzzy rules.

Simplicity: Fuzzy logic systems are
often straightforward to implement
and can be tuned through heuristic
methods.

Interpretability: Fuzzy logic systems
provide transparent decision-making
processes, making it easier to
understand and trust the system.

Adaptability: Machine Learning
techniques can adapt to changing
network conditions and learn
optimal handover decisions without
explicit programming.

Real-time Decision Making: Some
machine learning models can make
decisions in real-time, improving
responsiveness in dynamic UAV
communication scenarios.
Efficiency: These techniques can
optimize handover decisions to
improve performance metrics such
as latency, throughput, and energy
efficiency.

Scalability: Once trained, machine
learning models can scale to large
networks and diverse environments,
making them suitable for UAV
communication systems.

Adaptability and Learning: RL
techniques can adapt to changing
network conditions and learn
optimal handover decisions based on
environmental factors such as UAV
speed, signal strength, and network
load.

Performance Optimization: RL
algorithms can optimize handover
decisions to improve performance
metrics such as latency, packet loss,
and throughput.

Real-time Decision Making: RL
techniques can make decisions in

Complexity: Designing and optimizing
fuzzy logic rules and membership
functions can be complex and require
domain expertise.

Performance: Fuzzy logic may not always
achieve the same level of performance
optimization as more sophisticated
machine learning or optimization
techniques.

Limited Adaptation: Fuzzy logic systems
may struggle to adapt to rapidly changing
network conditions compared to adaptive
learning techniques.

Scaling Issues: Scaling fuzzy logic systems
to large networks or complex
environments can be challenging and may
lead to reduced performance.

Data Dependency: Machine Learning
models require large amounts of training
data, which may not always be available
or representative of real-world conditions.
Generalization Issues: Models may not
generalize well to unseen scenarios,
leading to potential performance
degradation in novel environments.
Complexity: Developing and training
machine learning models can be complex
and require expertise in both Machine
Learning and network optimization.
Interpretability: Machine Learning models
are often "black-box" algorithms, making
it difficult to understand and interpret
how decisions are made, which can be a
barrier to trust and adoption.

Complexity of Implementation:
Developing and training RL models for
handover decisions can be complex and
requires expertise in both reinforcements
learning and network optimization.
Dependency on Training Data: RL models
require large volumes of training data to
learn optimal policies, which can be
challenging to obtain and may not always
be representative of real-world
conditions. Performance Variability:

The performance of RL-based handover
techniques heavily relies on the quality
and relevance of the training data. Poorly
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Optimization-Based

Received Signal Strength
-Based

real-time, which is crucial for
dynamic UAV communication
scenarios where network conditions
can change rapidly.

Efficient Resource Management: RL
can help in efficient resource
management by reducing
unnecessary handovers, which in
turn can save energy and extend
UAV flight time.

Scalability: Once trained, RL models
can scale to large networks and
complex environments, making them
suitable for deployment in various
UAV communication systems.

Mathematical Rigor: Optimization
techniques provide a rigorous
mathematical framework to
minimize handover latency, packet
loss, and other performance metrics.
Efficiency: These techniques can
efficiently allocate resources and
manage handovers based on
predefined objectives and
constraints.

Flexibility: Optimization algorithms
can be customized to adapt to
different network conditions and
scenarios, offering flexibility in
deployment.

Real-time Adaptation: Some
optimization-based techniques can
make decisions in real-time,
enhancing their applicability in
dynamic UAV environments.

Simplicity: RSS-based techniques are
relatively simple and easy to
implement compared to other
methods.

Real-time Decision Making: RSS can
provide real-time feedback on signal
strength, enabling quick decisions
during handovers.

Low Overhead: These techniques
typically have low computational
overhead and energy consumption.
Widely Adopted: RSS is a standard
metric used in many communication
systems, making it widely
understood and implemented.

trained models can lead to suboptimal
decisions. Computational Overhead:

RL algorithms can be computationally
intensive, especially during the training
phase, which may introduce latency and
overhead in real-time decision-making
scenarios.

Interpretability: RL models are often
considered "black box" algorithms, making
it difficult to interpret how decisions are
made, which can be a barrier to trust and
adoption in critical UAV applications.
Generalization Issues: RL models may
struggle to generalize across diverse and
unseen scenarios, leading to potential
performance degradation in novel
environments.

Complexity: Implementing and
configuring optimization algorithms can
be complex and may require expertise in
mathematical modelling and network
optimization.

Dependency on Models: These
techniques often rely on accurate models
of the network and UAV dynamics, which
can be difficult to obtain and maintain.
Computational Overhead: Optimization
algorithms can be computationally
intensive, leading to increased latency and
energy consumption, which may not be
suitable for real-time applications.
Sensitivity to Assumptions: The
performance of optimization techniques
can be sensitive to the assumptions made
during the modelling phase, affecting their
robustness in real-world scenarios.

Accuracy: RSS measurements can be
inaccurate due to factors like multipath
interference, shadowing, and fading,
leading to suboptimal handover decisions.
Dynamic Environment: RSS values can
fluctuate rapidly in dynamic UAV
environments, making it challenging to
maintain reliable connectivity.

Limited Information: RSS alone may not
capture other critical factors affecting
handover decisions, such as network load
or interference.

Threshold Setting: Setting RSS thresholds
for handover decisions can be challenging
and may not always be optimal across
different scenarios.
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Handover Count-Based

Model-Based Service
Availability Aware

Simplicity: Handover count-based
techniques are straightforward to
implement and do not require
complex algorithms.

Real-time Decision Making: These
techniques can make quick decisions
based on the number of handovers,
which is beneficial in dynamic UAV
communication scenarios.

Low Overhead: They typically have
low computational overhead and
energy consumption.

Efficiency: Handover count-based
techniques can optimize handover
decisions to reduce unnecessary
handovers and improve network
efficiency.

Widely Applicable: They are
applicable across various UAV
communication systems and
environments.

Increased Service Availability: The
model-based approach is designed to
enhance service availability for
cellular-connected UAVs. By
considering unique aerial user
challenges like line-of-sight
conditions with multiple ground base
stations (BSs), this approach can
significantly increase service
availability. Reduced Handovers: The
model-based approach aims to
minimize unnecessary handovers.
This is crucial for UAVs that
experience frequent handovers due
to their mobility and line-of-sight
conditions with BSs.

Optimized for Aerial Users:
Traditional mobility robustness
optimization (MRO) procedures,
which are typically optimized for
terrestrial users, do not adequately
address the specific challenges faced
by UAVs. The model-based approach
is tailored to meet the unique needs
of aerial users, resulting in more
efficient operation.

Performance Improvement:
According to simulation results
provided by the authors, the model-
based service availability-aware MRO
approach shows significant
improvements. This includes over a
40% increase in service availability
and a 50% reduction in handovers
compared to traditional methods.

Lack of Context: Handover count alone
may not consider other critical factors
affecting handover decisions, such as
network load, signal strength, or
interference.

Threshold Setting: Setting thresholds for
handover counts can be challenging and
may not always be optimal across
different scenarios. Dynamic
Environment: Handover counts may
fluctuate rapidly in dynamic UAV
environments, leading to suboptimal
decision-making. Limited Adaptability:
These technigues may not adapt well to
rapidly changing network conditions or
diverse UAV communication scenarios.

Complexity of Implementation:
Implementing a model-based approach
can be complex and may require
sophisticated mathematical modelling and
simulation techniques.

Dependency on Models: The performance

of model-based techniques heavily

depends on the accuracy of the underlying

assumptions and models of the network
dynamics. If these models are inaccurate,
the performance of the approach may
suffer.

Computational Overhead: Model-based
approaches may introduce computational
overhead, particularly during the
modelling and simulation phases, which
can affect real-time decision-making
capabilities.

Interpretability: Model-based techniques
can sometimes be challenging to
interpret, especially in complex scenarios.
This can limit the understanding of how
decisions are made, which may be a
barrier to trust and adoption.
Generalization Issues: While the model-
based approach shows significant
improvements in simulations, it may face
challenges in generalizing to diverse and
unseen scenarios. The real-world
application may vary from simulation
results.
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Cooperative Game
Theory-Based

Deep Learning-Based

Scalability and Adaptability: Model-
based techniques can scale to large
networks and heterogeneous
environments, making them suitable
for diverse UAV communication
systems.

Resource Allocation: Cooperative
game theory can optimize resource
allocation and enhance cooperation
among UAVs and base stations
during handover. Fairness: It can
ensure fairness in resource allocation
and minimize conflicts during
handover processes.

Performance Optimization: These
techniques can optimize
performance metrics such as latency
and throughput by cooperative
decision-making. Scalability:
Cooperative game theory can scale
to large networks and
heterogeneous environments.
Real-time Decision Making: Some
cooperative game theory-based
techniques can make decisions in
real-time, improving responsiveness
in dynamic UAV communication
scenarios.

Adaptability: Deep learning
techniques can adapt to changing
network conditions and learn
complex patterns from large
amounts of data.

Real-time Decision Making: Some
deep learning models can make
decisions in real time, improving
responsiveness in dynamic UAV
communication scenarios.
Performance Optimization: These
techniques can optimize handover
decisions to improve performance
metrics such as latency, throughput,
and energy efficiency.

Scalability: Once trained, deep
learning models can scale to large
networks and diverse environments,
making them suitable for UAV
communication systems.
Complexity Reduction: Deep
learning can automate the decision-
making process and reduce the
complexity of handover algorithms.

Complexity: Implementing cooperative
game theory-based techniques can be
complex and may require sophisticated
mathematical modelling.
Communication Overhead: The
cooperative decision-making process can
introduce communication overhead
between UAVs and base stations.
Dependency on UAV Cooperation:
Performance heavily depends on the
cooperation level among UAVs and base
stations, which may not always be
optimal.

Model Assumptions: The performance
may vary based on the accuracy of the
underlying assumptions and models of the
network dynamics.

High Computational Requirements: Deep
learning models require significant
computational power and resources, both
for training and real-time execution. This
can be a limitation in UAV systems with
constrained hardware capabilities.
Complexity and Overhead: Implementing
and maintaining deep learning models is
complex and requires specialized
knowledge. The computational overhead
can also lead to increased latency, which
may affect real-time performance.

Data Dependency: The performance of
deep learning models heavily depends on
the quality and quantity of training data.
Inadequate or biased data can lead to
poor handover decisions, impacting
network reliability and user experience.
Training Time: Training deep learning
models can be time-consuming, especially
for large datasets. This can delay
deployment and updates, making it
challenging to keep up with rapidly
changing network conditions.
Vulnerability to Adversarial Attacks:
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Deep learning models can be susceptible
to adversarial attacks, where manipulated
inputs lead to incorrect handover
decisions. Ensuring robustness against
such attacks adds another layer of
complexity to the system.

5. Challenges and Opportunity

The methodologies and techniques presented for handover decision-making in UAV systems
offer various challenges and opportunities. Fuzzy Logic-Based Techniques, as showcased by Haghrah
et al. [14] and Singh et al., [15] demonstrated the challenge of balancing multiple factors like signal
strength, user mobility, and network load to make nuanced handover decisions. The opportunity lied
in reducing unnecessary handovers and improving network performance by adapting to dynamic
network conditions. Machine Learning techniques, such as those proposed by Zhao et al. [16] and
Wang et al., [17] faced the challenge of predicting future coverage holes and optimizing handover
decisions based on evolving preferences.

There is an opportunity to maximize network coverage and reliability by proactively handing over
to base stations with better coverage. Reinforcement Learning techniques, exemplified by studies
from Yun Chen et al. [21] and Tanveer et al., [22] faced the challenge of ensuring reliable wireless
connectivity for drones in cellular networks. The opportunity was to dynamically optimize handover
decisions, minimize handover costs, and maintain robust connectivity, especially in time-sensitive
applications. Optimization-based techniques, like those introduced by Cheung et al. [31] and Haider
et al., [32] faced the challenge of reducing the age of information (Aol) for UAVs and ensuring
seamless connectivity during vertical handovers. The opportunity was to minimize Aol in network
access and handover, enhance handover success rates, and reduce end-to-end delay. Handover
Count (HOC)- Based Techniques, as investigated by Chowdhury et al., [38] aim to estimate UAV
velocity and speed to improve mobility management and service quality, facing the challenge of
detecting UAV mobility states based on HOC statistics. The opportunity lied in developing reliable
methods for detecting UAV mobility states and estimating speed based on HOC. Other techniques,
such as those proposed by Teeluck et al. [39] and Queiroz et al., [40] faced the challenge of providing
seamless handover mechanisms for UAVs acting as base stations and improving handover procedures
for ground users assisted by a network of UAVs acting as base stations in 5G and beyond systems.
The opportunity was to develop intelligent handover strategies using Deep Learning algorithms,
cooperative game theory, and software-defined network (SDN) design principles to improve QoS
metrics for ground users and optimize handover among UAVs.

The research in handover decision techniques for UAV communication systems revealed several
key challenges and opportunities for future research. One of the primary challenges identified was
the reliance on extensive training data for Machine Learning algorithms, such as Q-learning and Deep
Reinforcement Learning (DRL), to make accurate handover decisions. This reliance introduces
complexities and challenges for real-time implementation, as large datasets may not always be
readily available or practical to use. Future research should focus on developing algorithms that
require less data or employ more data-efficient training techniques to enhance real-time applicability
and efficiency.

There is a need for a more comprehensive analysis and consideration of practical implementation
challenges, such as network congestion, environmental factors, and scalability issues. Many studies
have shown promising results in simulation environments, but their effectiveness in real-world
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scenarios remains unclear. Future research should conduct field trials or real-world simulations to
validate the proposed techniques' performance and address practical deployment challenges.
Furthermore, there is a need for algorithms that can dynamically adjust to handle dynamic network
conditions and ensure consistent performance. By addressing these challenges, researchers can
unlock opportunities to improve UAV communication systems' efficiency, reliability, and overall
performance in various operational scenarios.

6. Conclusions

This review, based on 29 research works, explores handover decision techniques in UAV
communication systems. It critically reviews the methodology, categorizes handover approaches,
discusses the findings and research gaps critically, and analyses them in terms of publication year,
tools, techniques, and performance metrics. collected papers are categorized into approaches such
as reinforcement-based techniques, Machine Learning-based techniques, optimization-based
techniques, Fuzzy Logic-based techniques, handover count-based techniques, deep learning,
cooperative game theory, model-based, and received signal strength-based techniques. All research
articles are accessed from platforms, such as Scopus, Web of Science, and IEEE. This survey suggests
potential extensions for the handover decision mechanisms in drone communication systems by
addressing the gaps and issues from the articles reviewed. The analysis and discussion are organized
by classification approaches, toolsets used, and performance metrics. The analysis reveals that the
Reinforcement Learning-based approach which is Machine Learning-based technique was the most
used technique in research papers. Moreover, delay, handover number, handover success rate, and
signal strength were the most frequently used performance metrics. To further advance this field,
future research should focus on developing groundbreaking handover techniques for drone
communication systems using a variety of algorithms to optimize long-term communication stability
and efficiency.
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