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The evolution of modern communication systems into fifth-generation (5G) and sixth-
generation (6G) networks has introduced new challenges and opportunities in 
handover decision techniques, particularly in dynamic and heterogeneous 
environments. Traditional handover methods, which rely on received signal strength, 
often result in frequent handovers, especially for unmanned aerial vehicles (UAVs) 
acting as drone base stations (DBSs). This frequent handover can degrade network 
performance and reduce service reliability, particularly in emergency scenarios where 
rapid and stable connectivity is critical. The purpose of this research survey is to 
provide a comprehensive review of existing handover decision techniques in UAV-
based communication systems, methodically analysing the advantages and limitations 
of each method. By reviewing recent research papers sourced from leading databases 
such as Web of Science, Scopus, and IEEE, this survey identifies key trends, 
methodologies, and performance metrics used in the field. In the analysis of 
categories, various performance metrics are used to evaluate handover techniques. 
The shortcomings identified in current research are discussed in the research gaps and 
issues section, offering a thorough overview of the current state of UAV-based 
communication systems. This survey enhances the understanding of handover decision 
techniques, setting the stage for the development of more efficient and reliable drone 
communication networks. 
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1. Introduction  
1.1 Research Background  

 
       Drones, or Unmanned Aerial Vehicles (UAVs), have become integral across industries such as 
agriculture, logistics, and surveillance due to their agility and speed. Ensuring a stable and persistent 
network connection is essential for their successful operation in these applications, necessitating an 
efficient mobility management scheme. However, cellular networks, originally designed for ground-
based User Equipment (UEs), face challenges when integrating drones, particularly in managing 
frequent handovers due to their unique mobility patterns and high-speed, 3D movements Sing et al., 
[1] Zeng et al., [2] Warrier et al., [4]. The advent of 5G/6G cellular networks and beyond is expected 
to increase base station density within small cells to meet high data rate demands and Quality of 
Service (QoS) requirements. However, the proliferation of base stations and the use of higher 
frequencies result in smaller cell footprints and increased signalling costs due to frequent handovers, 
posing challenges in maintaining functional connectivity with drones Zeng et al., [2] Wang et al., [4] 
Fan et al., [5]. 
       The integration of UAVs within 5G and 6G mobile networks is attracting considerable interest due 
to their adaptability and cost-effectiveness. Drones, functioning as Aerial Base Stations (ABSs) and 
relays, have the potential to improve connectivity across diverse environments. Nevertheless, 
challenges like power limitations, rapid mobility, and frequent handovers underscore the 
requirement for advanced strategies in managing mobility and handovers. Handover is a critical 
aspect of UAV communication systems, where a seamless transfer of communication links from one 
base station (BS) to another is essential to maintain connectivity as the UAV moves. The need for 
handover arises from several factors, including the limited coverage area of individual BSs, the high-
speed movement of UAVs, and the requirement to maintain QoS as the UAV transitions between 
different BSs Sing et al., [1] Zeng et al., [2] Wang et al., [4]. However, unnecessary handovers can lead 
to increased signalling costs, latency, and service disruptions, particularly in densely populated 
cellular networks Wang et al., [3] Jha et al., [6]. These unnecessary handovers are often triggered by 
suboptimal handover decision-making processes, such as basing handover solely on signal strength 
without considering other network parameters or future trajectory predictions Fan et al., [5] Jha et 
al., [6]. 
       In traditional mobility management, the selection of a target Base Station (BS) is based on the 
Received Signal Strength Indication (RSSI) for ground user equipment, a method ill-suited to drones 
due to their intermittent network coverage caused by weak and inconsistent side lobes of cellular 
antennas, often leading to ping-pong handovers Lin et al., [7]. Recent studies have highlighted the 
challenges of conventional handover mechanisms for drones, showing an increase in handover 
failure rates with higher speeds and altitudes of drones Almuallim et al., [8]. To ensure uninterrupted 
connectivity, handovers for drones must be executed judiciously, considering the optimal target BS 
Despite extensive research on drone mobility, few schemes have been proposed to enhance 
handover performance Banagar et al., [9]. 
 
1.2 Previous Review Paper 
 
       This section provides a brief overview of previous reviews and survey papers on UAV handover 
communication. It will summarize key findings and insights from existing literature, highlighting the 
various techniques and strategies that have been explored to manage handovers in UAV networks. 
       Study by Abir et al., [10] Software-Defined UAV Networks for 6G Systems: Requirements, 
Opportunities, Emerging Techniques, Challenges, and Research Directions. This comprehensive 
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review evaluated software-defined UAV networks (SDUAV) for 6G systems, identifying key 
requirements, opportunities, and emerging techniques. Despite offering valuable insights, the review 
lacks specific implementation guidelines necessary for practical application. The broad scope of the 
paper highlights the need for more focused research that provides concrete frameworks and detailed 
solutions. Future studies should bridge this gap by developing practical guidelines and case studies 
that address the identified challenges in SDUAV implementation. 
       Angjo et al., [ 11] explored the integral role of drones in future mobile communication networks, 
where they serve both as mobile users and mobile base stations in the sky, offering solutions for 
communication and non-communication services. However, the integration of drones into these 
networks poses challenges, particularly in managing handovers. Unlike terrestrial networks, drones 
operate in a three-dimensional environment, complicating mobility issues. The study provided an 
overview of handover management for connected drones, summarizing current research approaches 
and focusing on the complexities of the handover process. Additionally, it discussed the integration 
of drones into heterogeneous networks and proposes specific solutions to address potential 
problems. Moreover, the survey insights into upcoming research directions, guiding future studies 
related to connected drones in heterogeneous network environments. 
       Shayea et al., [12] conducted a comprehensive survey focusing on handover management for 
drone networks within future mobile networks. The study underscored the significance of intelligent 
handover schemes, particularly those leveraging machine learning and deep learning techniques. By 
reviewing existing research, the survey addressed the challenges and potential solutions for 
enhancing mobility management in forthcoming generations of mobile networks such as 5G, 6G, and 
beyond. 
       Alshaibani et al., [13] the impending deployment of Ultra-Dense Networks (UDNs) to manage the 
increasing mobile data traffic, leading to more handover scenarios and potential challenges in 
connectivity, stability, and reliability. It emphasized the additional complexity brought by Unmanned 
Aerial Vehicles (UAVs) in future networks due to their 3D mobility and unique communication 
characteristics. The study aimed to provide an overview of mobility management for connected UAVs 
in upcoming networks like 5G, 6G, and satellite networks. It discussed recent solutions and identifies 
challenges, serving as a foundation for future research in UAV mobility management by defining 
existing problems and presenting the latest research outcomes. 
Table 1 shows analysis of recent survey papers on handover management in UAV communication 
system.  
 

Table 1 
Analysis of existing survey papers on handover management in UAV communication 
system 

Author, Year Title 
      No. of papers     
      considered for the  
      survey 

This paper,2024  
 
 
  

Navigating Handover Technique:  
A Comprehensive Review of  
UAV-Based Communication 
Systems 

      29 

 
Abir et al., 2023   
 
 
 
 
 

Software Defined UAV Network 
for 6G System: Requirements, 
Opportunities, emerging 
Techniques, Challenges, and 
Research Direction 
 

       
       21 
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W T Alshaibani et al.,  
2022 
 
 
 
Shayea et al., 2020 
 
 
 
 
Angjo J. et al., 2021  
 
 
           

Mobility Management of 
Unmanned Aerial Vehicles in 
Ultra-Dense Heterogeneous 
Networks 
 
Handover Management for 
Drones in Future Mobile 
Networks – A Survey 
 
 
Handover Management of Drone 
in Future Mobile Networks: 6G 
Technologies 
 

        29 
 
 
 
 
        20 
 
 
 
 
        20 

 
       This review paper surveys recent advancements in handover decision techniques in UAV 
communication systems. Specifically, it analyzes recent handover techniques proposed from 2020 to 
2024, with research papers sources from Web of Science, Scopus, and IEEE. focusing on their 
effectiveness in mitigating the challenges posed by the unique mobility patterns of drones and 
improving network performance. By analyzing existing literature from reputable sources, we seek to 
identify key trends, methodologies, performance metrics, and tools employed by researchers in this 
field. Additionally, we will discuss the challenges and opportunities in future handover decision 
techniques for drones, highlighting areas requiring further research and development to meet the 
evolving requirements of future communication networks. 
       This survey paper is organized as follows: Section 2 provides a review of the methodology of 
handover technologies in UAV communication systems, while Section 3 identifies the research gaps 
and issues. Section 4 is the analysis based on publication years, tools used, performance metrics, and 
the value of the handover rate.  Section 5 discusses the challenges and opportunities, and the paper 
concludes with Section 6. 
 
2. Methodology Review 
 
       This section reviews various techniques used for handover mechanisms in UAV communication 
systems, specifically on drone communication networks. The evolution of modern communication 
systems into fifth-generation (5G) and sixth-generation (6G) networks has introduced new challenges 
and opportunities in handover decision techniques, particularly in dynamic and heterogeneous 
environments. Traditional handover methods, which rely on received signal strength, often result in 
frequent handovers, especially for unmanned aerial vehicles (UAVs) acting as drone base stations 
(DBSs). This frequent handover can degrade network performance and reduce service reliability, 
particularly in emergency scenarios where rapid and stable connectivity is critical.  
       Figure 1 illustrates the architecture for heterogeneous handover techniques in these systems. 
Due to the high frequency used in UAV communication, which limits its range, heterogeneous 
networks are employed. These networks utilize multiple base stations to cover large areas, as shown 
in Figure 1, with each base station classified based on its transmission power. Drones can connect to 
multiple base stations but typically select the one with the strongest signal. Figure 2 categorizes 
handover-based technologies in UAV or drone communication networks. These include 
reinforcement learning techniques, machine learning or AI-based techniques, optimization-based 
techniques, received signal strength-based techniques, and fuzzy logic-based techniques. The 
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challenges associated with these methods are assessed to encourage researchers to develop 
innovative handover mechanisms for UAV or drone communication networks. 
 

 
 

Fig. 1. Architecture of UAV Handover Network  
 

2.1 Classification of Handover Techniques 
 
       The research examining various techniques used for handover mechanisms in UAV 
communication systems is described below: 
 
2.1.1 Fuzzy Logic-Based Technique 
 
       Haghrah et al., [14] introduced handover triggering estimation based on Fuzzy Logic for LTE-A/5G 
Networks with Ultra-Dense Small Cells. Fuzzy logic is used to estimate and trigger handovers in ultra-
dense networks. It considered multiple factors such as signal strength, user mobility, and network 
load to make more nuanced and accurate handover decisions. This approach reduced unnecessary 
handovers and improves overall network performance by adapting to the dynamic conditions of the 
network environment. 
       Singh et al., [15] addressed the complexity of managing handover (HO) in mobile communication 
systems involving Unmanned Aerial Vehicles (UAVs) by proposing a novel method using a multi-level 
fuzzy system. Their research focused on reducing the rule complexity of fuzzy systems to enhance 
the performance of handover systems. The methodology involved processing various parameters 
across three levels: at the first level, coverage, speed limit, and cost are considered; at the second 
level, connection time, security, and power consumption are evaluated. These parameters generated 
intermediate probability outputs, which were then processed at the third level to produce the final 
estimation level. The tools used in this study include MATLAB software, where the efficacy of the 
proposed multi-level fuzzy system was analysed and compared with traditional handover systems to 
prove its efficiency. 
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2.1.2 Machine Learning Based Technique  
 
(a)  Supervised Learning (using labeled data) 

 
       Zhao et al., [16] proposed UAV-Assisted Handover Scheme for Coverage Maximization against 5G 
Coverage Holes. This study used a Machine learning-based proactive handover scheme using Long 
Short-Term Memory (LSTM) networks. The technique used LSTM networks, a type of recurrent neural 
network (RNN), to predict future coverage holes in 5G networks. By anticipating areas with weak or 
no coverage, the UAV could proactively hand over to base stations with better coverage, thereby 
maximizing the network's overall coverage and reliability. 
       Anderson et al., [19] aimed to improve handover procedures in Aerial 5G and Beyond Systems by 
analysing different Deep Learning (DL) algorithms. Their methodology involved modelling a 5G Air-
to-Ground radio channel and using DL techniques, particularly Recurrent Neural Networks (RNN), for 
trajectory and signal predictions. They extended the 5G Standalone (SA) libraries of the OMNeT++ 
simulator to implement and evaluate their approach. The goal was to enhance Quality of Service 
(QoS) metrics, such as reducing delay and packet loss, compared to the baseline 5G handover 
procedure. The tools used included the OMNeT++ simulator and various DL algorithms, with a focus 
on the Gated Recurrent Unit (GRU) for signal prediction, which showed the best results. This study 
provided insights into using DL techniques to improve handover procedures in Aerial Networks, 
benefiting UAV-BS networks. 
       Wang et al., [17] conducted Stable Matching with Evolving Preference for Adaptive Handover in 
Cellular-Connected UAV Networks. This study used a dynamic stable matching-based adaptive 
handover (DSMAH) algorithm. This technique applied a stable matching algorithm, which dynamically 
evolved preferences based on network conditions and UAV requirements. It ensured that handover 
decisions adapt to changing environments and user preferences, maintaining stable and optimal 
connections for UAVs in cellular networks. This tackled the issue of frequent UAV handovers in future 
6G networks, which could disrupt services. The approach involved converting the handover problem 
into a stable matching model and expanding it to encompass the entire time-space dimension. This 
adaptation allowed for the representation of changing time-space information as evolving 
preference relations. The proposed DSMAH algorithm adjusts the preference lists' evolution to match 
the current network topology, ensuring efficient and stable matching in dynamic settings. The 
method sought to strike a balance between communication quality, handover frequency, and 
convergence speed, ultimately enhancing cellular-connected network stability.  
 
(b) Reinforcement Learning Technique 
 

 A Hybrid Scheme using TOPSIS and Q-Learning for handover decision-making in UAV assisted 
heterogeneous network is conducted by Zhong et al., [18] This study introduced a handover decision-
making algorithm that leverages the strengths of Technique for Order Preference by Similarity to An 
Ideal Solution (TOPSIS) and Q-Learning to enhance the performance of UAV-assisted heterogeneous 
networks (HetNet’s). The objective is to reduce the number of handovers and improve energy 
efficiency. Combining TOPSIS, which is a multi-criteria decision-making approach, with the 
reinforcement learning capabilities of Q-Learning, the proposed method aims to optimize handover 
decisions in dynamic network environments. TOPSIS was used to evaluate multiple handover 
candidates based on several criteria, such as signal strength and network load. Q-learning, a 
reinforcement learning technique, optimizes the handover decisions over time by learning from the 
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environment. This combined approach ensures efficient and adaptive handover decisions in 
heterogeneous networks. 

Azari et al., [20] highlighted the challenges and opportunities associated with cellular 
connectivity for drones, particularly focusing on communication dynamics influenced by three-
dimensional mobility and line-of-sight channel characteristics, leading to increased handovers with 
altitude changes. The research employed cell planning simulations to assess the coexistence of aerial 
and terrestrial users, highlighting severe interference from drones to base stations, which poses a 
major challenge for uplink communications of terrestrial users. Using real geographical network data 
for Stockholm, the study derives analytical models for key performance indicators (KPIs), including 
communication delay and interference over cellular networks. Subsequently, the authors formulated 
the handover and radio resource management (H-RRM) optimization problem and propose a deep 
reinforcement learning solution to address it. The methodology involved transforming the problem 
into a Machine Learning (ML) problem and utilizing simulation results to demonstrate how drone 
speed, altitude, and interference tolerance shape the optimal H-RRM policy in the network. 
Specifically, the study presented heat maps of handover decisions for different drone altitudes and 
speeds, aiming to prompt a revision of legacy handover schemes and cell boundaries in the sky. 

Yun Chen et al., [21] addressed the challenge of providing reliable wireless connectivity to drone 
user equipment (UEs) in cellular networks, which are primarily designed for ground UEs. They 
proposed a novel handover (HO) mechanism for cellular-connected drones to enhance connectivity 
and mobility support. The key feature of their approach is the use of a Q-learning algorithm from 
reinforcement learning to dynamically optimize HO decisions. This algorithm allowed the drone to 
learn and adapt its HO strategy based on its interactions with the network environment, aiming to 
minimize the number of HOs while maintaining robust connectivity. The methodology involved 
developing and implementing the Q-learning algorithm within the cellular-connected drone system, 
integrating it with the network's HO decision-making process. The tools used in this study include 
software and hardware components for simulating drone mobility and network connectivity 
scenarios, as well as programming tools for implementing the Q-learning algorithm. 
       Reinforcement Learning-Based Optimization for Drone Mobility in 5G and Beyond Ultra-Dense 
Networks is conducted by Tanveer et al., [22]. This study Q-learning to optimize handover decisions 
in ultra-dense networks for drones, addressing challenges like signal strength variations and co-
channel interference. The proposed approach minimized handover costs while maintaining robust 
connectivity, demonstrating significant improvements in time-sensitive applications and high data 
rate communications. The study aimed to address the challenges faced by 4G and 5G cellular 
networks in ensuring dynamic control and safe mobility for drones, particularly in scenarios such as 
crowded events, disaster response, and UAV traffic management. The primary focus was on 
optimizing the handover process to maintain robust connectivity and minimize handover costs, which 
are critical when drones operate in three-dimensional space and encounter issues, such as signal 
strength variations and co-channel interference. The methodology employed Q-learning-based 
approach to enhance the handover algorithm, moving beyond the baseline greedy handover method 
that only ensures the strongest connection, often resulting in multiple handovers. By leveraging Q-
learning, a type of machine learning technique suited for fast environment learning, the study 
evaluated the handover decision process in three different scenarios. This approach enabled the 
drone to learn optimal routes and maintain high data rates, essential for time-sensitive applications 
like tactile internet and haptic communication. Simulation results confirmed that the proposed Q-
learning algorithm effectively reduced handover costs and enhanced connectivity, presenting a 
significant contribution to the optimization of drone mobility in ultra-dense network environments. 
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       Jang et al., [23] proposed a Deep Reinforcement Learning (DRL)-based handover decision 
scheme. The DRL is used to optimize handover decisions by learning from the UAV’s interactions with 
the network environment. This technique allowed the UAV to make proactive and intelligent 
handover decisions, minimizing the number of handovers and maintaining robust connectivity even 
in dynamic network conditions. 
       Jang et al., [24] expanded their proposal for a UAV handover decision system using deep 
reinforcement learning, specifically the Proximal Policy Optimization (PPO) algorithm, in a 3D UAV 
mobility environment. The use of PPO in UAV handover decision-making is a novel approach and 
shows promise in enhancing handover performance. However, the study lacked a comprehensive 
comparison with existing handover decision methods. It would be beneficial to see a comparison of 
the proposed PPO algorithm with traditional handover decision approaches in terms of handover 
latency, success rate, and network efficiency. Furthermore, the scalability and adaptability of the PPO 
algorithm to different UAV mobility scenarios need to be investigated to assess its practical utility in 
real-world applications. 
       On the other hand, the study by Cao et al., [25] introduced the use of Deep Reinforcement 
Learning (DRL) for Multi-User Access Control in Non-Terrestrial Networks (NTNs). The approach of 
using a centralized agent to train parameters of a deep Q-network (DQN) was innovative and 
addressed the complex nature of access control in NTNs. However, the study lacked in-depth analysis 
and evaluation of the proposed method. The authors could provide more insights into the 
performance of the DQN in different scenarios, such as varying network loads or user mobility 
patterns. Additionally, the practical feasibility and scalability of deploying a centralized DRL agent for 
access control in large-scale NTN environments need to be discussed further. 
       Yan et al., [26] conducted multi-UAV speed control with collision avoidance and handover-aware 
cell association which employed Deep Reinforcement Learning (DRL) to optimize the cell association 
and velocity decisions of multiple UAVs. The aim was to improve transportation and communication 
performance by minimizing collisions and ensuring Optimal Handovers (HOs). The methodology 
involved training DRL models to make dynamic decisions on UAV velocities and their associations 
with ground cells, enhancing overall system efficiency. Simulation environments are used to test and 
validate the proposed solutions, demonstrating their effectiveness compared to traditional methods. 
       Previously, Chowdhury et al., [27], aimed to address the challenges in providing robust wireless 
connectivity and mobility support for cellular-connected UAVs in beyond visual line of sight scenarios. 
The focus was on dynamically adjusting the down tilt (DT) angles of ground base stations (GBSs) using 
a model-free Reinforcement Learning (RL) algorithm to ensure better connectivity and mobility 
support for UAVs while maintaining good throughput performance for ground users. The 
methodology involved leveraging tools from RL to dynamically adjust DT angles of GBSs. The RL 
algorithm is model-free, allowing for adaptability to changing network conditions. The technique 
involved optimizing the received signal quality at UAVs while ensuring good throughput performance 
for ground users. The study used simulation tools to evaluate the proposed RL-based mobility 
management technique. The simulations compared the proposed technique with a baseline scheme 
where the network keeps the DT angle fixed. The proposed RL-based mobility management 
technique shows promise in reducing the number of handovers while maintaining performance 
goals. By dynamically adjusting DT angles, the technique aimed to provide efficient mobility support 
for UAVs in complex air-to-ground path loss environments. 
       The study by Jang et al., [28] focused on enhancing the handover decision mechanism for UAVs 
by addressing the shortcomings of traditional ground-user-centric methods. Their proposed UAV 
Handover Decision (UHD) scheme utilized Deep Reinforcement Learning (DRL) to dynamically 
determine the optimal moments for UAVs to execute handovers, ensuring stable connectivity. They 
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employed the Proximal Policy Optimization (PPO) algorithm within a simulated 3D UAV mobility 
environment. This advanced learning framework allows the UAVs to adaptively learn and manage 
handover decisions, reducing unnecessary handovers caused by signal strength fluctuations. 
       Deng et al. [29] aimed to minimize the challenges faced by UAVs due to overlapping coverage 
areas and interference with terrestrial users. Their study proposed a joint optimization approach for 
UAV trajectory design and handover management using a duelling double deep Q-network (D3QN) 
based reinforcement learning algorithm. This method optimized the UAV's path to avoid overlapping 
coverage areas, thereby reducing interference and the frequency of handovers. The algorithm 
dynamically adjusted the UAV’s trajectory to balance key performance indicators such as delay, 
uplink interference, and handover numbers. 
       Almasri et al. [30] aimed to tackle the connectivity challenges faced by Unmanned Aerial Vehicles 
(UAVs) in cellular networks, which were increasingly vital across various sectors. The study 
introduced a Q-learning-based algorithm designed to optimize the number of handovers (HOs) that 
occured frequently due to the high speed and altitude of UAVs. This method involved simulations in 
rural, semi-rural, and urban settings to assess the algorithm's performance compared to a baseline 
where drones connected to the cell with the strongest signal. A unique aspect of this research was 
the consideration of decision distance, which allowed drones to make informed handover decisions 
based on their proximity to cell towers. While the use of reinforcement learning was innovative, there 
were potential limitations, such as the algorithm's scalability in dense urban areas and the 
generalizability of simulation results to real-world scenarios.        
       Supervised learning techniques using labelled data were applied by Zhao et al. [16] and Anderson 
et al. [19]. Reinforcement learning methods that adapt and learn from the environment were 
employed by Zhong et al. [18], Azari et al. [20], Yun Chen et al. [21], Tanveer et al. [22], Jang et al. 
[23, 24, 28], Cao et al. [25], Yan et al. [26], Chowdhury et al. [27], Deng et al. [29], and Almasri et al. 
[30]. Wang et al. [17] used a dynamic matching algorithm that adapts to network changes. 
 
2.1.3 Optimization-Based Techniques 
 
       Cheung et al., [31] focused on reducing the age of information (AoI) for unmanned aerial vehicles 
(UAVs) by improving network selection. While previous methods often prioritize the closest or 
strongest signal base stations (BSs) for data rate optimization, they overlook BS queueing and 
handover delays. The research aims to minimize AoI in network access and handover by considering 
BS load and UAV flight plans. Each UAV must choose between uncongested BSs for quicker updates 
or BSs along its path for fewer handovers. The UAVs' decisions were modelled as a noncooperative 
game to minimize their cost, which included BS AoI and handover penalties. The study introduced a 
distributed BS association (DBA) algorithm to find a Nash equilibrium, ensuring UAVs select BSs based 
on load and flight plans. Simulation results demonstrated that the proposed DBA scheme reduced 
AoI compared to existing methods. 
       A Novel Cooperative Relaying-Based Vertical Handover Technique for Unmanned Aerial Vehicles 
was proposed by Haider et al., [32]. The research introduced a relay-based vertical handover 
technique for UAVs, employing multicriteria handover parameter triggering to minimize packet loss 
and delay. Simulation results indicated enhanced handover success rates and reduced end-to-end 
delay, proving the method's effectiveness in maintaining seamless connectivity during vertical 
handovers. 
       Furthermore, Hajiakhondi-Meybodi et al., [33] proposed Joint Transmission Scheme and Coded 
Content Placement in Cluster-Centric UAV-Aided Cellular Networks. The Technique proposed a coded 
content placement strategy and a coordinated multipoint (CoMP) transmission approach. This 
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technique used a coded content placement strategy to pre-position data in the network, combined 
with CoMP transmission to enhance signal strength and reliability. Its improved data availability and 
reduces latency during handovers by coordinating transmissions from multiple base stations. 
       Huichen et al., [34] aimed to enhance mobility management in wireless networks for UAV 
inspection in a 5G-enabled smart grid, recognizing the need for high data rates, minimal latency, and 
robustness. Their focus was on the unique challenges posed by UAVs' agile movements and 
demanding communication requirements. To address these challenges, they introduced the uplink-
based pre-handover scheme, comprising a pre-handover decision algorithm and signalling 
procedure. This scheme aimed to improve handover efficiency and reliability. The methodology 
involved implementing and testing the proposed scheme in simulations to compare its performance 
with traditional methods. Their technique cantered on developing and implementing this new 
scheme to optimize handover decisions and signalling for UAVs. The study likely employed simulation 
tools to evaluate the scheme's effectiveness in a controlled environment. 
       Bekkouche et al., [35] aim to address the challenges associated with managing the mobility of 
services in Multi-Access Edge Computing (MEC) environments, particularly for Unmanned Aerial 
Vehicles (UAVs). The primary objective is to ensure sustainable Quality-of-Service (QoS) as UAVs 
move and undergo handovers across distributed MEC hosts. To achieve this, the authors proposed 
using predefined UAV flight plans to develop proactive service relocation strategies. The 
methodology involved formulating the Proactive Service Relocation for UAV (PSRU) problem using 
linear programming. This approach was designed to handle asynchronous relocation processes 
efficiently by anticipating UAV movements and making informed decisions on where and when to 
relocate services. 
       Fonseca et al., [36] aimed to highlight the challenges faced by network operators in providing 
connectivity for UAVs in cellular networks. The focus was on understanding and addressing the 
network planning and optimization challenged that arose when UAVs become users of the network. 
The methodology involved analysing 3GPP specifications, existing research literature, and a publicly 
available UAV connectivity dataset. The study classified challenges into network planning and 
network optimization categories to provide a comprehensive understanding of the issues. The study 
used real-world datasets to support its findings about the challenges faced by network operators in 
providing connectivity for UAVs. It also discussed possible approaches to address these challenges. 
The study provided a thorough analysis of the challenges faced by network operators in enabling UAV 
connectivity in cellular networks. By considering network planning and optimization challenges, the 
study highlighted the need for network operators to adapt their planning and operation strategies to 
accommodate UAVs as users of the network. 
 
2.1.4 Handover Count (HOC)- Based Techniques 
 
       Chowdhury et al., [37] aimed to estimate the velocity of cellular-connected Unmanned Aerial 
Vehicles (UAVs) to ensure reliable and effective mobility management. It focuses on deriving a 
probability mass function (PMF) of handover count (HOC) for different UAV velocities and ground 
base station (GBS) densities and proposes a velocity estimation method based on the HOC 
measurement time. The study modelled the relationship between HOC and UAV velocity and derived 
the Cramer-Rao lower bound (CRLB) for velocity estimation. It also provided a simple unbiased 
estimator for UAV velocity based on GBS density and HOC measurement time. The study evaluated 
the accuracy of the proposed velocity estimation method under different GBS densities and HOC 
measurement windows. The study provided a valuable contribution to the field of cellular-connected 
UAVs by proposing a method for velocity estimation based on HOC. By considering the impact of GBS 
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density and HOC measurement time, the study addressed key challenges in mobility management 
for UAVs. 
       Again Chowdhury et al., [38] investigated the estimation of UAV speed to improve mobility 
management and service quality for cellular-connected UAVs. The study aimed to develop a reliable 
method for detecting UAV mobility states based on handover count (HOC) statistics. The authors 
proposed an approximation of the probability mass function of HOC considering UAV height, velocity, 
and ground base station (GBS) density. Using this approximation, they derived the Cramer-Rao lower 
bound (CRLB) for speed estimation and introduced a simple biased estimator for UAV speed, which 
became unbiased under specific conditions. The methodology employed statistical analysis tools to 
correlate handover counts with UAV speed, providing a practical approach to mobility state detection 
in UAV networks. 
 
2.1.5 Others Based Techniques 
 
       Teeluck et al., [39] proposed a seamless handover mechanism for UAVs acting as base stations, 
utilizing an RSS (Received Signal Strength) decision algorithm. The goal was to enable continuous 
service provision to ground users by seamlessly swapping UAVs without introducing downtime. The 
methodology involved designing and implementing the handover mechanism, which included the 
development of the RSS decision algorithm. The technique used was based on leveraging RSS 
measurements to determine the optimal timing for UAV swapping, ensuring continuous coverage. 
The tools used likely included simulation software for testing the handover mechanism and algorithm 
to validate its effectiveness in maintaining uninterrupted service. 
       Queiroz et al., [40] aimed to address the challenges of handover procedures for ground users 
assisted by a network of Unmanned Aerial Vehicles (UAVs) acting as base stations (UAV-BSs) in 5G 
and beyond (B5G) systems. The focus was on developing intelligent handover strategies using Deep 
Learning (DL) algorithms to improve Quality of Service (QoS) metrics for ground users. The study 
models a 5G Air-to-Ground radio channel and proposes DL techniques for handover management 
based on Recurrent Neural Networks (RNNs) for trajectory and signal predictions. The techniques 
were implemented and evaluated using the OMNeT++ simulator, with new modules added to extend 
the 5G Standalone (SA) libraries. The study used the OMNeT++ simulator with extended 5G SA 
libraries to implement and evaluate the proposed DL-based handover management techniques. The 
study provided a novel approach to improving handover procedures in aerial 5G and beyond systems 
using DL algorithms. By focusing on trajectory and signal predictions, the study addressed key 
challenges in maintaining service continuity for ground users in UAV-BS networks. 
       The study in Goudarzi et al., [41] aimed to improve handover processes in heterogeneous 
wireless networks, particularly in future 5G cellular networks, using cooperative game theory. The 
focus was on selecting the best UAV during the handover process to optimize handover among UAVs, 
reducing end-to-end delay, handover latency, and signalling overheads. The study proposed a 
method based on cooperative game theory to optimize handover among UAVs. The method utilized 
the software-defined network (SDN) design with media-independent handover as forwarding 
switches to achieve seamless mobility. The study employed cooperative game theory and SDN design 
principles as theoretical frameworks for optimizing handover among UAVs. The study introduced a 
novel approach to improving handover processes in UAV-assisted communications using cooperative 
game theory. By focusing on optimizing handover among UAVs, the study addressed key challenges 
in maintaining QoS for mobile devices. 
       Meer I. A, et al. [42] explored the challenges of mobility management for cellular-connected 
UAVs, emphasizing the need to maintain service availability while minimizing unnecessary 
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handovers. They highlighted that the traditional Mobility Robustness Optimization (MRO) 
procedures, optimized for terrestrial users, fail to address the unique challenges faced by aerial users 
such as frequent handovers due to line-of-sight conditions with multiple ground base stations (BSs). 
To address this, the authors proposed two approaches: a model-based service availability-aware 
MRO and a deep Q-network based model-free approach. Both approaches aimed to reduce 
handovers and increase service availability, with simulation results showing over a 40% increase in 
service availability and a 50% reduction in handovers compared to traditional methods. 
 

 
Fig. 2. Classification of Handover Based Techniques 

                       
3. Research Gap Issues 
 
       This section highlights the research gaps and issues encountered by previous handover 
approaches in UAV communication systems. 
       Handover Triggering Estimation Based on Fuzzy Logic for LTE-A/5G Networks with Ultra-Dense 
Small Cells was conducted by Haghrah et al., [14]. The study improved handover performance and 
radio link quality in ultra-dense small cell networks using a fuzzy logic-based handover triggering 
mechanism. Despite these improvements, the method's dependency on accurate positional data 
remains a significant drawback. Inaccurate positional information can lead to suboptimal handover 
decisions. Future work should focus on developing adaptive algorithms capable of handling positional 
inaccuracies, thereby enhancing the reliability and applicability of the handover mechanism in real-
world scenarios. 
     Singh et al., [15] demonstrated the effectiveness of their multi-level fuzzy system in managing 
handover (HO) in mobile communication systems with UAVs. The results showed that their approach 
reduced the complexity of the HO decision-making process while enhancing system performance. By 
considering parameters such as coverage, speed limit, cost, connection time, security, and power 
consumption, their system provided more efficient and reliable HO decisions compared to traditional 
methods. However, the study did not delve deeply into the practical implementation of the proposed 
system in real-world scenarios, leaving a gap in understanding its scalability and adaptability to 
dynamic environments. Despite this, the research represented a significant step towards improving 
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HO management in mobile communication systems with UAVs, highlighting the potential of fuzzy 
logic in enhancing system performance. Nevertheless, the inherent complexity of fuzzy systems 
themselves presented a challenge, potentially offsetting the benefits of reduced overall system 
complexity. The trade-off between system simplification and the complexity of the fuzzy logic 
approach needed careful consideration. Future work could aim to streamline the fuzzy inference 
process, perhaps through hybrid models that combine fuzzy logic with other, simpler decision-making 
techniques. 
       Zhao et al., [16] proposed a Machine Learning-based proactive handover scheme using LSTM to 
enhance network performance by minimizing handover delays. The results showed a reduction in 
ping-pong rates and end-to-end delays. However, the study did not detail specific performance gaps, 
which are crucial for understanding the method's limitations. Future research should include 
comprehensive empirical testing across diverse environments to identify and address potential 
performance issues, ensuring the robustness of the proposed scheme. 
       Wang et al., [17] proposed stable matching with evolving preference for adaptive handover in 
cellular-connected UAV networks. The study utilized a Dynamic Stable Matching Algorithm (DSMAH) 
to improve network stability for cellular-connected UAVs. The results showed improvements in 
communication quality and reduced handover frequency. However, the frequent handovers and 
ping-pong effects observed indicate a need for further refinement. Simulation results showcased the 
algorithm's superiority over standard schemes, with the study utilizing simulation tools to assess the 
algorithm's performance in dynamic conditions. Integrating predictive mechanisms to pre-emptively 
address potential handover triggers could reduce the frequency of handovers and mitigate the ping-
pong effect, leading to a more stable network. 
        Study by Zhong et al., [18] aimed to reduce the number of handovers and improve energy 
efficiency in UAV-assisted heterogeneous networks by employing a combined approach of TOPSIS 
and Q-learning algorithms. The results demonstrated a significant reduction in handover numbers 
and an improvement in average energy efficiency. However, the approach was heavily dependent on 
a large volume of training data, which introduced significant challenges and complexities, particularly 
in real-time implementation scenarios. This reliance on extensive data sets poses a barrier to practical 
deployment, making the system less agile and more resource intensive. To enhance the real-time 
applicability and efficiency of the proposed method, future research could focus on developing 
algorithms that require less data or employ data-efficient training techniques. 
       The finding of Anderson et al., [19] study indicated significant improvements in Quality of Service 
(QoS) metrics for handover procedures in Aerial 5G and Beyond Systems. By using Deep Learning (DL) 
algorithms, particularly the Gated Recurrent Unit (GRU) for signal prediction, they were able to 
reduce delay and packet loss compared to the baseline 5G handover procedure. However, the study 
did not specify the exact extent of improvement achieved. One issue arose was the complexity and 
computational overhead of implementing DL algorithms for real-time handover decision-making in 
UAV-BS networks. Additionally, the research gap lied in the lack of exploration into the scalability and 
robustness of the proposed DL-based handover strategies across different network scenarios and 
deployment environments. A critical review suggested that while DL showed promise in improving 
handover procedures, further research was needed to address these issues and validate the 
scalability and practicality of DL-based approaches in real-world Aerial Network deployments. 
       Azari et al., [20] study revealed significant insights into the challenges and dynamics of cellular 
connectivity for drones, particularly emphasizing the interference issues between drones and 
terrestrial users. By providing analytical models and proposing a Machine Learning solution, the 
research offered a systematic approach to optimize handover and resource management in such 
networks. However, the study also highlighted the need for further research to address remaining 
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challenges and gaps, such as the practical implementation of proposed solutions and the adaptation 
of existing network infrastructure to accommodate drone communications. A critical review 
suggested that future studies could focus on real-world validation of proposed algorithms and 
explore additional factors influencing handover decisions in diverse environmental conditions. 
Additionally, recommendations included the development of standardized protocols and guidelines 
for integrating drones into cellular networks effectively. 
       Yun Chen et al., [21] developed a novel handover (HO) mechanism for cellular-connected drones, 
utilizing a Q-learning algorithm to dynamically optimize HO decisions. Their results demonstrated a 
significant reduction of up to 80% in the number of HOs compared to a baseline scheme, highlighting 
the potential of their approach to improving connectivity and mobility support for drone user 
equipment (UEs) in cellular networks. However, while the study's findings were promising, several 
critical aspects warranted further investigation. Firstly, the performance of the proposed HO 
mechanism should be validated through real-world experiments to assess its practical feasibility and 
scalability. Additionally, the impact of reduced HOs on other performance metrics, such as network 
throughput and latency, needed to be thoroughly evaluated to understand the trade-offs involved. 
Furthermore, the study's focus on reducing the number of HOs might overlook other important 
aspects of HO optimization, such as the quality of service (QoS) experienced by drone UEs. Future 
research could explore these aspects to provide a more comprehensive understanding of the 
implications of HO optimization in cellular-connected drone systems. 
              Tanveer et al., [22] revealed that the Q-learning-based approach significantly reduces 
handover costs and improves connectivity for drones in 5G networks. The simulation results 
demonstrated the algorithm's effectiveness in providing efficient mobility support, high data rates, 
and robust connections, especially in time-sensitive applications like the tactile internet and haptic 
communication. However, the research identified issues, such as the increased handover cost due to 
variations in the received signal strength indicator, co-channel interference, and abrupt signal drops 
caused by antenna nulls. These challenges highlighted the need for more sophisticated algorithms to 
manage drone mobility in ultra-dense network environments. Despite its promising findings, the 
study had some limitations, such as the scope of scenarios evaluated and the potential need for real-
world testing to validate the simulation results. A critical review suggested that future research could 
explore hybrid approaches combining Q-learning with other machine learning techniques or 
investigate adaptive algorithms that respond to dynamic network conditions in real-time. 
Additionally, expanding the testing environment to include more diverse and complex scenarios 
would provide a more comprehensive understanding of the proposed algorithm's capabilities and 
limitations. 
       Jang et al., [23] aimed to prevent unnecessary handovers while maintaining stable connectivity 
using a Deep Reinforcement Learning (DRL)-based scheme. The results showed reduced unnecessary 
handovers and maintained stable RSSI. However, the approach is not suitable for ground users, 
limiting its applicability. Future work should integrate ground user considerations into the model to 
provide a more comprehensive solution that addresses both aerial and terrestrial connectivity needs.  
       Furthermore, Jang et al., [24] proposed a DRL-based UAV handover decision scheme to manage 
stable connectivity. The results indicated reduced handover frequency and maintained signal 
strength. However, frequent fluctuations in signal strength due to UAV mobility present challenges. 
Stabilizing signal strength through advanced prediction models could improve overall performance 
and reliability. Future work should focus on developing algorithms that can dynamically adjust to 
maintain consistent signal strength despite UAV mobility. 
          Cao et al., [25] proposed a UE-driven DRL-based scheme to optimize multi-user access control 
in non-terrestrial networks. The results demonstrated improvements in long-term system 
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throughput and reduced handover frequency. However, the dynamic environment of non-terrestrial 
networks poses unique challenges, such as the mobility of NT-BSs. Adapting the model to better 
handle these dynamic conditions could improve its robustness and applicability. Future work should 
focus on enhancing the algorithm to manage the mobility and variability of non-terrestrial networks 
more effectively. 
       Yan et al., [26] demonstrated significant improvements in both collision avoidance and 
communication performance, with reduced handover rates and better connectivity. However, the 
complexity of implementing DRL in real-time environments remained a critical issue, along with the 
scalability of the solution in dense UAV networks. The research gap included the need for real-world 
validation and addressing the computational overhead associated with DRL. Critically, while the 
approach showed promise in simulations, its real-world application could be constrained by the 
current technological limitations in processing power and real-time learning capabilities. 
       Chowdry et al., [27] found that the Reinforcement Learning-based approach significantly reduces 
the number of handovers without compromising the quality of service (QoS). It ensured robust 
connectivity and efficient mobility management for UAVs in cellular networks. However, issues, such 
as computational complexity and the need for real-time learning pose challenges. The research gap 
lied in the lack of extensive real-world testing and the need for more efficient algorithms to handle 
large-scale deployments. Critically, while the study demonstrated potential, its practical applicability 
was limited by the high computational demands and the need for more extensive real-world 
validation. 
       The experimental results in Jang et al., [28] of the UHD scheme showed a significant reduction in 
handovers, up to 76% compared to conventional methods and 73% compared to other target 
methods, while maintaining stable signal strength. This indicated a substantial improvement in the 
efficiency and reliability of UAV communications. However, the study highlighted the need for further 
optimization of the DRL algorithms to handle more complex and dynamic UAV environments. Future 
research should focus on refining these algorithms and conducting real-world validations to ensure 
robustness and applicability in practical scenarios. 
       Deng et al., [29] The results demonstrated that the proposed D3QN-based approach could reduce 
handover numbers by 90% and interference by 18%, with only a minor increased in transmission 
delay. Additionally, incorporating trajectory design into the D3QN policy reduced interference by 29% 
and handover numbers by 33%. Despite these promising outcomes, the study suggested that further 
refinement was needed to optimize the balance between transmission delay and interference 
reduction. Future research should explore more sophisticated trajectory planning and resource 
allocation strategies to enhance the overall performance of UAV communication systems. 
       Almasri et al., [30] found that the Q-learning-based algorithm significantly reduced the average 
number of HOs compared to the baseline, enhancing quality of service and reducing energy 
consumption for UAV operations. The findings also emphasized the importance of hyper-parameters 
in different environments. However, the study did not fully explore the effects of varying drone 
speeds and altitudes on handover performance or the long-term adaptability of the algorithm to 
dynamic network conditions. These gaps highlighted the need for further research, including 
extensive real-world testing and the development of adaptive algorithms that could optimize 
continuously in changing environments. Additionally, integrating Machine Learning with predictive 
analytics for network load balancing could further improve UAV connectivity's efficiency and 
reliability across diverse operational scenarios. 
       Cheung et al., [31] provided valuable insights into minimizing the age of information (AoI) for 
UAVs in cellular networks, addressing a critical need for reducing latency in real-time status updates. 
By focusing on optimizing network selection to consider both BS load and UAV flight plans, the 
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research introduced a novel approach that could significantly improve the efficiency of UAV 
communication. However, despite its innovative contributions, the study lacked a detailed analysis 
of the practical implementation challenges and scalability of the proposed DBA algorithm. 
Additionally, the research gap lied in the limited consideration of factors, such as network congestion, 
varying UAV speeds, and dynamic network conditions, which could impact the effectiveness of the 
proposed approach in real-world scenarios. Further research could explore these factors to enhance 
the applicability and robustness of the proposed solution in complex UAV communication 
environments. 
          Haider et al., [32] focused on addressing the challenges of vertical handover in UAV 
communication by proposing a relay-based technique. Results indicated that the proposed method 
enhances connectivity and performance during the handover process. However, the study lacked a 
detailed discussion on the specific scenarios or conditions under which the relay-based technique 
outperformed existing methods. Additionally, the research gap lied in the absence of a thorough 
analysis of the impact of environmental factors, such as weather conditions or interference, on the 
proposed technique's effectiveness. Moreover, the critical review suggested further investigation 
into the scalability and adaptability of the relay-based approach in different UAV communication 
scenarios. It is recommended to conduct field trials or real-world simulations to validate the 
proposed technique's performance in practical UAV deployment scenarios. Furthermore, 
incorporating Machine Learning or AI algorithms could potentially enhance the relay selection 
process, leading to more efficient vertical handover in UAV communication networks. 
        Joint Transmission Scheme and Coded Content Placement in Cluster-Centric UAV-Aided Cellular 
Networks was developed by Hajiakhondi-Meybodi et al., [33]. This research focused on increasing 
content diversity and managing user requests efficiently using a coded content placement and 
coordinated multipoint (CoMP) approach. The results indicated improvements in cache-hit-ratio, 
SINR, and access delay. However, the method's efficiency dropped significantly in indoor 
environments due to signal attenuation and UAV battery constraints. Future research should explore 
hybrid solutions that combine both indoor and outdoor strategies to enhance overall network 
efficiency and content delivery performance. 
       Huichen et al., [34] The study introduced a novel uplink-based pre-handover scheme for UAV 
inspection in a 5G-enabled smart grid, aiming to enhance transmission rates, reduce latency, and 
improve reliability. Simulation results indicated a 38% decrease in handover failure compared to 
traditional schemes, demonstrating the effectiveness of the proposed approach. However, the study 
lacked a detailed discussion on the specific performance metrics used to evaluate the scheme's 
effectiveness, such as throughput, latency, and reliability metrics. Additionally, the research could 
benefit from a more comprehensive comparison with existing handover schemes to establish its 
superiority more convincingly. Despite these limitations, the study focused on optimizing handover 
decisions for UAVs in 5G-enabled smart grids was crucial for enhancing communication network 
performance in such scenarios. Further research could delve deeper into specific optimization 
algorithms or consider real-world implementation challenges to validate the scheme's practicality 
and effectiveness. 
      Bekkouche et al., [35] proposed proactive service relocation for UAVs in MEC. This research 
introduced a proactive service relocation method using linear programming to manage MEC service 
mobility efficiently. While the results showed improvements in service relocation efficiency, the 
complexity of decision-making processes remained a significant challenge. Simplifying the algorithm 
and enhancing decision-making efficiency were crucial for practical deployment. Future studies 
should focus on streamlining the relocation process to make it more feasible for real-world 
applications. 
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       Fonseca et al., [36] identified several key challenges, including network coverage planning, PCI 
collision and confusion, automatic neighbouring relation (ANR), and handover issues. These 
challenges were important considerations for network operators as UAV technology becomes more 
prevalent. The study suggested possible approaches to address these challenges, but further 
research was needed to validate these approaches and develop practical solutions for network 
operators.    
       Simulation in Chowdhury et al., [37] introduced an approximate probability mass function (PMF) 
for handover count (HOC) in UAVs, considering different velocities and ground base station (GBS) 
densities. The researchers derived the Cramer-Rao lower bound (CRLB) for UAV velocity estimation 
and proposed an unbiased estimator dependent on GBS density and HOC measurement time. 
Simulation results showed that higher GBS densities and longer HOC measurement windows 
improved velocity estimation accuracy. However, issues included the dependency on GBS density, 
which might vary, and assumptions about consistent HOC measurements, potentially affected by 
interference and environmental factors. The study also did not fully address the impact of other 
network parameters on accuracy.  The study presented a valuable approach to UAV velocity 
estimation but was limited by its reliance on GBS density, which might not be uniform across different 
areas. Future research should explore adaptive algorithms to handle varying GBS densities and 
incorporate additional data sources, such as GPS or onboard sensors, to enhance accuracy. Field tests 
in diverse environments were recommended to validate the method and identify areas for 
improvement, ensuring reliable connectivity and effective mobility management for UAVs in various 
scenarios.           
       Further research by Chowdhury et al., [38] indicated that the proposed estimator could 
accurately estimate UAV speed under various conditions, with the CRLB providing a theoretical lower 
bound for estimation accuracy. However, the study identified several issues and research gaps, such 
as the potential for biased estimates under high handover conditions and the needed for further 
validation in diverse operational environments. The research suggests that future work should 
explore more sophisticated estimation techniques that can account for varying UAV trajectories and 
environmental factors. Additionally, integrating this estimator with real-time network data could 
enhance its practical applicability, leading to more effective mobility management solutions for 
cellular-connected UAVs. 
       Teeluck et al., [39] proposed a new method for seamless handover of UAV base stations in fifth-
generation mobile networks to ensure continuous coverage. Their approach aimed to address the 
challenge of limited UAV flight time due to battery constraints by swapping UAVs acting as base 
stations without downtime. The study demonstrated the effectiveness of the proposed method in 
maintaining uninterrupted service during UAV swapping, giving the impression of perpetual UAV 
flight. While the study was a significant advancement, it lacked an in-depth exploration of practical 
implementation challenges and their impact on network performance. Future research could focus 
on addressing these issues and comparing the proposed method with existing techniques. Despite 
these potential limitations, this work was a promising step toward improving the reliability and 
continuity of UAV-based communication systems. 
       Queiroz et al., [40] indicated the effectiveness of the DL-based approach in improving QoS 
metrics for ground users compared to baseline 5G handover procedures. However, the study did not 
address the scalability and complexity of implementing DL algorithms in real-world UAV-BS networks. 
Further research was needed to address these implementation challenges and validate the proposed 
techniques in practical scenarios.  
       The results in Goudarzi et al., [41] demonstrated the effectiveness of the proposed approach in 
reducing the number of handovers, cost, and delay. However, the study did not consider practical 



Journal of Advanced Research Design 
Volume 139 Issue 1 (2026) 218-247  

235 

implementation issues and scalability challenges in real-world networks. Further research was 
needed to validate the proposed approach and develop practical solutions for network operators. 
       Irshad A. Meer et al., [42] study's significant contribution lied in its dual-approach methodology, 
providing both a model-based and a learning-based solution to UAV mobility management. By fine-
tuning handover control parameters in the model-based approach and leveraging Deep 
Reinforcement Learning in the model-free approach, the research offered robust strategies to 
enhance the service reliability of UAVs in cellular networks. The findings underscored the importance 
of adapting existing terrestrial mobility management techniques to accommodate the distinct 
characteristics of aerial users, thus paving the way for more efficient UAV integration into future 
cellular networks. 
       In conclusion, while significant strides have been made in optimizing UAV handover and 
connectivity, each study highlighted areas needing further exploration. Addressing these specific 
gaps with adaptive and simplified algorithms, enhanced predictive mechanisms, and a focus on 
practical deployment challenges will be crucial.  
 
4. Analysis and discussion 
 
       This section outlines the study and discussion of handover techniques in unmanned aerial vehicle 
(UAV) communication systems, categorized by method, publication year, and performance 
evaluation metrics. 
 
4.1 Analysis in Terms of Publication Year  
 
       This section categorizes the review according to the publication year, focusing on 29 articles 
discussing handover techniques in drone communication systems. The breakdown by publication 
year is summarized in Table 2. Among the 29 surveyed articles, a higher number of articles journal 
were published in 2022 and a higher number of conference papers were published in 2020, compared 
to 2023 and 2024. 
 

Table 2 
Analysis based on the publisher's year 
Years No. of Articles Journal No. of Conference Paper 
2024 3 - 
2023 
2022 
2021   
2020 

5 
7 
4 
2 

1 
2 
2 
3 

 
4.2 Analysis Based on Techniques 
 
       Based on the analysis of 29 recent articles published between 2020 and 2024, various techniques 
were used for handover in UAV communication systems, as depicted in Figure 3. The most widely 
used techniques were Machine Learning Based Technique which accounting for 34% with 
Reinforcement learning method indicating their potential and promising role in the field. 
Optimization-based approaches at 21%. Fuzzy logic-based techniques and Handover Count-based 
approaches were used by 7% of researchers. Additionally, other techniques, such as Deep Learning, 
cooperative game theory, model-based, and Received Signal Strength-based techniques constitute 
14% of the surveyed articles. Thus, the analysis indicates that Reinforcement Learning as one of the 
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Machine Learning Based type, predominantly favoured for handover mechanisms in UAV 
communication systems, followed by an optimization-based technique.  On the other hand, Fuzzy 
Logic-based techniques and Handover count-based approaches were also among the less frequently 
used. Machine Learning-based techniques specifically on Reinforce were increasingly favoured by 
researchers as a potential future choice for handover management in UAV communication systems, 
Fonseca et al., [36] driven by the advancements in Artificial Intelligence. 
 

 
 

Fig. 3. Analysis based on techniques. 
 

The most widely used techniques were Machine Learning Based Technique with RL method 
indicating their potential and promising role in the field. RL techniques emerged as the predominant 
method used in UAV-related in this study, particularly in handover decision-making, due to several 
compelling reasons. These reasons highlighted the adaptability and efficacy of RL in dynamic and 
complex environments typical of UAV operations. RL enabled UAVs to learn optimal handover 
strategies by interacting with the environment and adapting to changes in real-time. This adaptability 
was crucial in UAV operations where conditions such as signal strength, interference, and mobility 
patterns varied frequently (Zhong et al., [18]). 

Unlike supervised learning, which relied on static labelled data, RL could continuously update 
its policies based on new data and experiences. This dynamic decision-making capability was 
essential for UAVs to maintain robust connectivity and minimize handovers in fluctuating network 
conditions (Azari et al., [20]). RL techniques, particularly Q-learning and deep reinforcement learning 
(DRL), could optimize multiple performance criteria simultaneously. For instance, they could balance 
minimizing handover frequency with maintaining strong signal strength and reducing energy 
consumption (Yun et al., [21]). RL algorithms were highly scalable and could handle the complexity 
of UAV networks, which often involved numerous variables and large state spaces. Studies had shown 
RL's effectiveness in scenarios ranging from ultra-dense networks to non-terrestrial networks (NTNs), 
demonstrating its robustness across different environments (Jang et al., [12]). RL allowed UAVs to 
make proactive and intelligent decisions. For example, the use of DRL with Proximal Policy 
Optimization (PPO) enabled UAVs to anticipate and react to future network conditions, thereby 
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reducing unnecessary handovers and enhancing overall network performance (Cao et al., [25]). Many 
RL-based studies had demonstrated practical applicability through simulations and real-world data, 
such as the use of geographical network data to model interference and delay in UAV operations. 
This practical validation underlined RL's potential for deployment in actual UAV networks (Deng et 
al., [29]). Reinforcement learning's ability to continuously learn and adapt, optimize multiple criteria, 
and make proactive decisions made it an ideal technique for managing the complexities of UAV 
networks. These attributes enabled RL to address the dynamic nature of UAV operations more 
effectively than traditional supervised learning methods, which were limited by static datasets and 
lacked adaptability in real-time environments. 

RL techniques could broadly be classified into three main categories based on their approach 
to learning and decision-making: value-based, policy-based, and model-based RL. The RL 
classification being used by the researchers is shown in Table 3. 
 
  Table 3 

Classification of RL Research articles  

Value-based 
 
Zhong et al., 2024; Y Chen et al., 2021; Tanveer et 
al.,2022, Deng et al., 2020;  

Policy-based 
 
 
Model- Free 
 
Other                                         
 

 
Azari et al., 2019; Jang et al., 2021; Cao et al., 2020; 
Jang et al., 2023; Yan et al., 2022; 
 
Chowdhury et al., 2021; 
 
Wang et al., Wang et al., 20 
 
 

 
       Value-based RL methods learn a value function that estimates the expected return (cumulative 
reward) of being in a particular state and following a certain policy. The value function helps the 
agent to make decisions by selecting actions that maximize the expected return. Examples of value-
based RL algorithms include Q-learning, Deep Q-Networks (DQN), and Double Deep Q-Networks 
(DDQN). Zhong et al. [18] used Q-learning to optimize handover decisions in UAV-assisted 
heterogeneous networks.  
   Policy-based RL methods directly learn an optimal policy, which is a mapping from states to actions 
without explicitly estimating the value function. Policy-based methods can handle large and 
continuous action spaces more effectively than value-based methods. Examples include policy 
gradient methods, Proximal Policy Optimization (PPO), and Deterministic Policy Gradient (DPG). Jang 
et al. [12] utilized the PPO algorithm for UAV handover decision-making in a 3D mobility environment.  
       Model Free-based RL methods involve learning an internal model of the environment to predict 
outcomes of actions. These methods use the learned model to plan actions and make decisions. 
Model-based RL can potentially reduce the number of interactions needed with the real environment 
compared to model-free approaches include Dyna-Q and Model Predictive Control (MPC) combined 
with RL. Chowdhury et al. [27] employed model-free RL to dynamically adjust down tilt angles of 
ground base stations for cellular-connected UAVs. 
      Other RL model is proposed by Wang et al., [17] involves a stable matching algorithm to manage 
adaptive handover in cellular-connected UAV networks. Stable matching is a mechanism where two 
sets of elements (in this case, UAVs and ground base stations) have preferences for one another, and 
the goal is to find a stable matching where there are no two elements that would prefer to swap 
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partners. This approach adapts handover decisions based on the evolving preferences and conditions 
in the network. The study aims to adapt handover decisions dynamically by evolving the preference 
relations between UAVs and ground base stations. This technique is different from traditional RL 
methods like value-based, policy-based, or model-based RL, as it focuses on matching preferences 
and ensuring stable connectivity rather than directly optimizing actions based on reward signals. 
       
4.3 Analysis Based on Used Tools 
 
       This subsection describes the tools used in existing handover mechanisms for UAV 
communication systems. Figure 4 provides an analysis based on these toolsets. The software tools 
employed in the research papers include MATLAB, MATLAB Simulink, Python, NS-3, and TensorFlow. 
According to Figure 4, MATLAB was the most frequently used tool for handover mechanisms in UAV 
communication systems, followed by Python, TensorFlow, and NS-3. On the other hand, OMNeT++ 
and MATLAB Simulink were the least used software tools, as depicted in the graph. It is also noted 
that many researchers used multiple tools in combination, such as MATLAB with Python, MATLAB 
with NS-3, MATLAB with OMNeT++, and TensorFlow with Python. 
 

 
Fig. 4. Analysis based on the toolset 

 
4.4 Analysis Using Performance Metrics 
 
       The analysis based on performance metrics is detailed in this section. The performance metrics 
evaluated include signalling cost, throughput, handover number, handover success rate, handover 
failure rate, accuracy, handover success probability, ping pong rate, packet delivery ratio, 
unnecessary handover, handover trigger, energy efficiency, interference, signal-to-noise ratio (SINR), 
and packet loss. According to Table 4, handover rate, handover failure probability, ping pong 
handover, and packet delivery ratio were the most frequently considered metrics. Accuracy was the 
least frequently considered metric. Authentication latency and throughput were the next most 
frequently considered metrics after accuracy. Overall, the handover rate was the most preferred 
metric in UAV communication systems. High handover success rates were reported in studies by 
Goudarzi et al.,[41] Tanveer et al., [22]; Cheung et al., [31]; Chowdhury et al., [38]; Meer et al.,[42]. 
 
 

MATLAB MATLAB SimulinkK NS-3 Python TensorFlow OMNeT++
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Table 4 
Analysis based on performance metrics. 
Performance metrics Research articles  
Handover (HO) number 
 
 

Singh et al., 2024; Fonseca et al., 2021; Goudarzi et 
al.,2021, Zhong et al., 2024; Almasri et al., 2022; Y 
Chen et al.,2020;  

 
HO trigger  
HO failure rate 
Cost 
HO success rate 
 
 
Unnecessary HO                          
 
Ping pong rate 
 
 
Throughput 
Energy efficiency 
 
 
Signal strength 
 
 
 
Delay                                                                                   
 
 
 
 
 
Interference 
Packet loss  
SINR 

 
Kyun Nam Park et al., 
Huichen et al., 2021. 
Cheung et al., 2020.  
Goudarzi et al.,2021 Tanveer et al.,2021; Cheung et 
al., 2020; Chowdhury et al., 2023; Meer et al.,2024.   
 
Z Haider et al., 2024; Jung et al., 2022; Haghrah et 
al.,2023 
H Jung et al., 2023; Wang et al., 2024; Haghrah et 
al., 2023. 
 
Cao et al., 2021; Singh et al., 2022.  
Zhong et al., 2024; Bekkoucheo et al., 2021; Almasri 
et al., 2022.  
 
Anderson Queiroz et al., 2023; Goudarzi et al.,2021; 
Teeluck et al., 2023; A Haghrah et al., 2023; Jung et 
al., 2022; Y Jang et al., 2022 
 
HajiAkhondi et al., 2022 H Jung et al., 2023.  
Z Haider et al., 2024; Singh et al.,2023; Azari et al., 
2020; Zhao et al.,2021; Chowdhury et al.,2020, 
2023 
 
Azari et al., 2020.  
Z Haider et al., 2024; Azari et al., 2020.  
Z HajiAkhondi et al., 2022 

 
 
4.6 Comparison of Existing Handover Decision Technique 
 
       Table 5 presents the advantages and disadvantages of current handover techniques in UAV 
communication systems. Describing the pros and cons of various techniques used in different 
methods is crucial for better comprehension. Fuzzy Logic-based techniques, Machine Learning-based 
techniques, Optimization-based techniques, Received Signal Strength-based techniques, Handover 
Count-based techniques, and others techniques are surveyed, and their benefits and drawbacks are 
outlined in the following table for clarity. 
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Table 5 
Critical Review on Comparison of Existing Handover Decision Technique 
Technique Advantages Disadvantages 
Fuzzy Logic- Based  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Robustness: Fuzzy logic can handle 
imprecise input data and uncertainty, 
making it robust in real-world UAV 
communication scenarios. 
Flexibility: These techniques can 
accommodate multiple input 
parameters and make decisions based 
on fuzzy rules. 
Simplicity: Fuzzy logic systems are 
often straightforward to implement 
and can be tuned through heuristic 
methods. 
Interpretability: Fuzzy logic systems 
provide transparent decision-making 
processes, making it easier to 
understand and trust the system. 
 

Complexity: Designing and optimizing 
fuzzy logic rules and membership 
functions can be complex and require 
domain expertise. 
Performance: Fuzzy logic may not always 
achieve the same level of performance 
optimization as more sophisticated 
machine learning or optimization 
techniques. 
 Limited Adaptation: Fuzzy logic systems 
may struggle to adapt to rapidly changing 
network conditions compared to adaptive 
learning techniques. 
Scaling Issues: Scaling fuzzy logic systems 
to large networks or complex 
environments can be challenging and may 
lead to reduced performance. 
 

Machine Learning (ML)-
Based 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(ML) Reinforcement 
Learning  
 
 
 
 
 
 
 
 
 
 
 
 

Adaptability: Machine Learning 
techniques can adapt to changing 
network conditions and learn 
optimal handover decisions without 
explicit programming. 
Real-time Decision Making: Some 
machine learning models can make 
decisions in real-time, improving 
responsiveness in dynamic UAV 
communication scenarios. 
Efficiency: These techniques can 
optimize handover decisions to 
improve performance metrics such 
as latency, throughput, and energy 
efficiency. 
 Scalability: Once trained, machine 
learning models can scale to large 
networks and diverse environments, 
making them suitable for UAV 
communication systems. 
 
Adaptability and Learning: RL 
techniques can adapt to changing 
network conditions and learn 
optimal handover decisions based on 
environmental factors such as UAV 
speed, signal strength, and network 
load. 
Performance Optimization: RL 
algorithms can optimize handover 
decisions to improve performance 
metrics such as latency, packet loss, 
and throughput. 
Real-time Decision Making: RL 
techniques can make decisions in 

Data Dependency: Machine Learning 
models require large amounts of training 
data, which may not always be available 
or representative of real-world conditions. 
Generalization Issues: Models may not 
generalize well to unseen scenarios, 
leading to potential performance 
degradation in novel environments. 
Complexity: Developing and training 
machine learning models can be complex 
and require expertise in both Machine 
Learning and network optimization. 
Interpretability: Machine Learning models 
are often "black-box" algorithms, making 
it difficult to understand and interpret 
how decisions are made, which can be a 
barrier to trust and adoption. 
 
 
 
 
Complexity of Implementation: 
Developing and training RL models for 
handover decisions can be complex and 
requires expertise in both reinforcements 
learning and network optimization. 
Dependency on Training Data: RL models 
require large volumes of training data to 
learn optimal policies, which can be 
challenging to obtain and may not always 
be representative of real-world 
conditions. Performance Variability:  
The performance of RL-based handover 
techniques heavily relies on the quality 
and relevance of the training data. Poorly 
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Optimization-Based 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Received Signal Strength 
-Based 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

real-time, which is crucial for 
dynamic UAV communication 
scenarios where network conditions 
can change rapidly. 
Efficient Resource Management: RL 
can help in efficient resource 
management by reducing 
unnecessary handovers, which in 
turn can save energy and extend 
UAV flight time. 
Scalability: Once trained, RL models 
can scale to large networks and 
complex environments, making them 
suitable for deployment in various 
UAV communication systems. 
 
 
 
 
Mathematical Rigor: Optimization 
techniques provide a rigorous 
mathematical framework to 
minimize handover latency, packet 
loss, and other performance metrics.  
Efficiency: These techniques can 
efficiently allocate resources and 
manage handovers based on 
predefined objectives and 
constraints. 
Flexibility: Optimization algorithms 
can be customized to adapt to 
different network conditions and 
scenarios, offering flexibility in 
deployment.  
Real-time Adaptation: Some 
optimization-based techniques can 
make decisions in real-time, 
enhancing their applicability in 
dynamic UAV environments. 
 
Simplicity: RSS-based techniques are 
relatively simple and easy to 
implement compared to other 
methods. 
Real-time Decision Making: RSS can 
provide real-time feedback on signal 
strength, enabling quick decisions 
during handovers. 
Low Overhead: These techniques 
typically have low computational 
overhead and energy consumption. 
Widely Adopted: RSS is a standard 
metric used in many communication 
systems, making it widely 
understood and implemented. 
 
 

trained models can lead to suboptimal 
decisions. Computational Overhead:  
RL algorithms can be computationally 
intensive, especially during the training 
phase, which may introduce latency and 
overhead in real-time decision-making 
scenarios. 
Interpretability: RL models are often 
considered "black box" algorithms, making 
it difficult to interpret how decisions are 
made, which can be a barrier to trust and 
adoption in critical UAV applications. 
Generalization Issues: RL models may 
struggle to generalize across diverse and 
unseen scenarios, leading to potential 
performance degradation in novel 
environments. 
 
Complexity: Implementing and 
configuring optimization algorithms can 
be complex and may require expertise in 
mathematical modelling and network 
optimization. 
Dependency on Models: These 
techniques often rely on accurate models 
of the network and UAV dynamics, which 
can be difficult to obtain and maintain. 
Computational Overhead: Optimization 
algorithms can be computationally 
intensive, leading to increased latency and 
energy consumption, which may not be 
suitable for real-time applications. 
Sensitivity to Assumptions: The 
performance of optimization techniques 
can be sensitive to the assumptions made 
during the modelling phase, affecting their 
robustness in real-world scenarios. 
 
 
Accuracy: RSS measurements can be 
inaccurate due to factors like multipath 
interference, shadowing, and fading, 
leading to suboptimal handover decisions. 
Dynamic Environment: RSS values can 
fluctuate rapidly in dynamic UAV 
environments, making it challenging to 
maintain reliable connectivity. 
Limited Information: RSS alone may not 
capture other critical factors affecting 
handover decisions, such as network load 
or interference. 
Threshold Setting: Setting RSS thresholds 
for handover decisions can be challenging 
and may not always be optimal across 
different scenarios. 
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Handover Count-Based 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Model-Based Service 
Availability Aware 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simplicity: Handover count-based 
techniques are straightforward to 
implement and do not require 
complex algorithms. 
Real-time Decision Making: These 
techniques can make quick decisions 
based on the number of handovers, 
which is beneficial in dynamic UAV 
communication scenarios. 
Low Overhead: They typically have 
low computational overhead and 
energy consumption. 
Efficiency: Handover count-based 
techniques can optimize handover 
decisions to reduce unnecessary 
handovers and improve network 
efficiency. 
Widely Applicable: They are 
applicable across various UAV 
communication systems and 
environments. 
 
Increased Service Availability: The 
model-based approach is designed to 
enhance service availability for 
cellular-connected UAVs. By 
considering unique aerial user 
challenges like line-of-sight 
conditions with multiple ground base 
stations (BSs), this approach can 
significantly increase service 
availability. Reduced Handovers: The 
model-based approach aims to 
minimize unnecessary handovers. 
This is crucial for UAVs that 
experience frequent handovers due 
to their mobility and line-of-sight 
conditions with BSs.  
Optimized for Aerial Users: 
Traditional mobility robustness 
optimization (MRO) procedures, 
which are typically optimized for 
terrestrial users, do not adequately 
address the specific challenges faced 
by UAVs. The model-based approach 
is tailored to meet the unique needs 
of aerial users, resulting in more 
efficient operation.  
Performance Improvement: 
According to simulation results 
provided by the authors, the model-
based service availability-aware MRO 
approach shows significant 
improvements. This includes over a 
40% increase in service availability 
and a 50% reduction in handovers 
compared to traditional methods. 

Lack of Context: Handover count alone 
may not consider other critical factors 
affecting handover decisions, such as 
network load, signal strength, or 
interference. 
Threshold Setting: Setting thresholds for 
handover counts can be challenging and 
may not always be optimal across 
different scenarios. Dynamic 
Environment: Handover counts may 
fluctuate rapidly in dynamic UAV 
environments, leading to suboptimal 
decision-making. Limited Adaptability: 
These techniques may not adapt well to 
rapidly changing network conditions or 
diverse UAV communication scenarios. 
 
 
 
 
 
 
 
Complexity of Implementation: 
Implementing a model-based approach 
can be complex and may require 
sophisticated mathematical modelling and 
simulation techniques. 
Dependency on Models: The performance 
of model-based techniques heavily 
depends on the accuracy of the underlying 
assumptions and models of the network 
dynamics. If these models are inaccurate, 
the performance of the approach may 
suffer. 
Computational Overhead: Model-based 
approaches may introduce computational 
overhead, particularly during the 
modelling and simulation phases, which 
can affect real-time decision-making 
capabilities. 
Interpretability: Model-based techniques 
can sometimes be challenging to 
interpret, especially in complex scenarios. 
This can limit the understanding of how 
decisions are made, which may be a 
barrier to trust and adoption. 
Generalization Issues: While the model-
based approach shows significant 
improvements in simulations, it may face 
challenges in generalizing to diverse and 
unseen scenarios. The real-world 
application may vary from simulation 
results. 
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Cooperative Game 
Theory-Based 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Deep Learning-Based 
 

Scalability and Adaptability: Model-
based techniques can scale to large 
networks and heterogeneous 
environments, making them suitable 
for diverse UAV communication 
systems. 
Resource Allocation: Cooperative 
game theory can optimize resource 
allocation and enhance cooperation 
among UAVs and base stations 
during handover. Fairness: It can 
ensure fairness in resource allocation 
and minimize conflicts during 
handover processes. 
Performance Optimization: These 
techniques can optimize 
performance metrics such as latency 
and throughput by cooperative 
decision-making. Scalability: 
Cooperative game theory can scale 
to large networks and 
heterogeneous environments. 
Real-time Decision Making: Some 
cooperative game theory-based 
techniques can make decisions in 
real-time, improving responsiveness 
in dynamic UAV communication 
scenarios. 
 
Adaptability: Deep learning 
techniques can adapt to changing 
network conditions and learn 
complex patterns from large 
amounts of data. 
Real-time Decision Making: Some 
deep learning models can make 
decisions in real time, improving 
responsiveness in dynamic UAV 
communication scenarios. 
Performance Optimization: These 
techniques can optimize handover 
decisions to improve performance 
metrics such as latency, throughput, 
and energy efficiency. 
Scalability: Once trained, deep 
learning models can scale to large 
networks and diverse environments, 
making them suitable for UAV 
communication systems.  
Complexity Reduction: Deep 
learning can automate the decision-
making process and reduce the 
complexity of handover algorithms. 
 

 
 
 
 
 
 
 
 
Complexity: Implementing cooperative 
game theory-based techniques can be 
complex and may require sophisticated 
mathematical modelling. 
Communication Overhead: The 
cooperative decision-making process can 
introduce communication overhead 
between UAVs and base stations. 
Dependency on UAV Cooperation: 
Performance heavily depends on the 
cooperation level among UAVs and base 
stations, which may not always be 
optimal. 
Model Assumptions: The performance 
may vary based on the accuracy of the 
underlying assumptions and models of the 
network dynamics. 
 
 
 
 
 
 
High Computational Requirements: Deep 
learning models require significant 
computational power and resources, both 
for training and real-time execution. This 
can be a limitation in UAV systems with 
constrained hardware capabilities. 
Complexity and Overhead: Implementing 
and maintaining deep learning models is 
complex and requires specialized 
knowledge. The computational overhead 
can also lead to increased latency, which 
may affect real-time performance. 
Data Dependency: The performance of 
deep learning models heavily depends on 
the quality and quantity of training data. 
Inadequate or biased data can lead to 
poor handover decisions, impacting 
network reliability and user experience. 
Training Time: Training deep learning 
models can be time-consuming, especially 
for large datasets. This can delay 
deployment and updates, making it 
challenging to keep up with rapidly 
changing network conditions. 
Vulnerability to Adversarial Attacks: 
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Deep learning models can be susceptible 
to adversarial attacks, where manipulated 
inputs lead to incorrect handover 
decisions. Ensuring robustness against 
such attacks adds another layer of 
complexity to the system. 
 

 
5. Challenges and Opportunity 
 
       The methodologies and techniques presented for handover decision-making in UAV systems 
offer various challenges and opportunities. Fuzzy Logic-Based Techniques, as showcased by Haghrah 
et al. [14] and Singh et al., [15] demonstrated the challenge of balancing multiple factors like signal 
strength, user mobility, and network load to make nuanced handover decisions. The opportunity lied 
in reducing unnecessary handovers and improving network performance by adapting to dynamic 
network conditions. Machine Learning techniques, such as those proposed by Zhao et al. [16] and 
Wang et al., [17] faced the challenge of predicting future coverage holes and optimizing handover 
decisions based on evolving preferences.  
       There is an opportunity to maximize network coverage and reliability by proactively handing over 
to base stations with better coverage. Reinforcement Learning techniques, exemplified by studies 
from Yun Chen et al. [21] and Tanveer et al., [22] faced the challenge of ensuring reliable wireless 
connectivity for drones in cellular networks. The opportunity was to dynamically optimize handover 
decisions, minimize handover costs, and maintain robust connectivity, especially in time-sensitive 
applications. Optimization-based techniques, like those introduced by Cheung et al. [31] and Haider 
et al., [32] faced the challenge of reducing the age of information (AoI) for UAVs and ensuring 
seamless connectivity during vertical handovers. The opportunity was to minimize AoI in network 
access and handover, enhance handover success rates, and reduce end-to-end delay. Handover 
Count (HOC)- Based Techniques, as investigated by Chowdhury et al., [38] aim to estimate UAV 
velocity and speed to improve mobility management and service quality, facing the challenge of 
detecting UAV mobility states based on HOC statistics. The opportunity lied in developing reliable 
methods for detecting UAV mobility states and estimating speed based on HOC. Other techniques, 
such as those proposed by Teeluck et al. [39] and Queiroz et al., [40] faced the challenge of providing 
seamless handover mechanisms for UAVs acting as base stations and improving handover procedures 
for ground users assisted by a network of UAVs acting as base stations in 5G and beyond systems. 
The opportunity was to develop intelligent handover strategies using Deep Learning algorithms, 
cooperative game theory, and software-defined network (SDN) design principles to improve QoS 
metrics for ground users and optimize handover among UAVs. 
       The research in handover decision techniques for UAV communication systems revealed several 
key challenges and opportunities for future research. One of the primary challenges identified was 
the reliance on extensive training data for Machine Learning algorithms, such as Q-learning and Deep 
Reinforcement Learning (DRL), to make accurate handover decisions. This reliance introduces 
complexities and challenges for real-time implementation, as large datasets may not always be 
readily available or practical to use. Future research should focus on developing algorithms that 
require less data or employ more data-efficient training techniques to enhance real-time applicability 
and efficiency. 
       There is a need for a more comprehensive analysis and consideration of practical implementation 
challenges, such as network congestion, environmental factors, and scalability issues. Many studies 
have shown promising results in simulation environments, but their effectiveness in real-world 
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scenarios remains unclear. Future research should conduct field trials or real-world simulations to 
validate the proposed techniques' performance and address practical deployment challenges. 
Furthermore, there is a need for algorithms that can dynamically adjust to handle dynamic network 
conditions and ensure consistent performance. By addressing these challenges, researchers can 
unlock opportunities to improve UAV communication systems' efficiency, reliability, and overall 
performance in various operational scenarios. 
 
6. Conclusions 
 
      This review, based on 29 research works, explores handover decision techniques in UAV 
communication systems. It critically reviews the methodology, categorizes handover approaches, 
discusses the findings and research gaps critically, and analyses them in terms of publication year, 
tools, techniques, and performance metrics.  collected papers are categorized into approaches such 
as reinforcement-based techniques, Machine Learning-based techniques, optimization-based 
techniques, Fuzzy Logic-based techniques, handover count-based techniques, deep learning, 
cooperative game theory, model-based, and received signal strength-based techniques. All research 
articles are accessed from platforms, such as Scopus, Web of Science, and IEEE. This survey suggests 
potential extensions for the handover decision mechanisms in drone communication systems by 
addressing the gaps and issues from the articles reviewed. The analysis and discussion are organized 
by classification approaches, toolsets used, and performance metrics. The analysis reveals that the 
Reinforcement Learning-based approach which is Machine Learning-based technique was the most 
used technique in research papers. Moreover, delay, handover number, handover success rate, and 
signal strength were the most frequently used performance metrics. To further advance this field, 
future research should focus on developing groundbreaking handover techniques for drone 
communication systems using a variety of algorithms to optimize long-term communication stability 
and efficiency. 
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