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Pollen identification is a critical task across various scientific disciplines, including 
geology, ecology, evolutionary biology and botany. However, existing methods for 
pollen identification are often labour-intensive, time-consuming and dependent on 
highly skilled experts, highlighting the need for an automated and precise system. This 
study introduces an innovative approach that combines Gabor Filters (GF) with 
Convolutional Neural Networks (CNN) to enhance the accuracy of pollen classification. 
The Gabor filters are applied to high-resolution images of diverse pollen species, 
accentuating texture-specific details essential for differentiation. These pre-processed 
images are subsequently analysed using a CNN architecture with multiple layers 
designed to discern hierarchical features critical for precise classification. The 
proposed GF-CNN model demonstrates exceptional proficiency, achieving remarkable 
accuracy rates of 99.85% for the Malaysian Pollen Dataset (MPD) and 99.43% for the 
New Zealand Pollen Dataset (NPD). These results underscore the model's ability to 
balance precision and recall effectively. Additionally, the model exhibits high 
sensitivity, indicating an increased true-positive rate, which is essential for detailed 
ecological studies. Furthermore, the model's improved specificity scores highlight its 
success in minimizing false positives, emphasizing its relevance for precision-focused 
research. 
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1. Introduction 
 

Pollen identification and classification are indispensable techniques with applications spanning a 
wide range of fields, including ecology, agriculture, environment, paleoclimatology, paleoecology, 
archaeology, medicine, botany and forensics [1,2]. However, existing pollen analysis methods 
present considerable challenges due to their labour-intensive nature and the high level of expertise 
required for accurate classification. These techniques largely dependent on microscopy, involve 
meticulous processes and are often subject to human error, emphasizing the need for more efficient 
and reliable methods [3,4]. 
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The automation of the identification process through deep learning (DL) algorithms offers 
numerous advantages. These include the reduction of time and exertion required for identification, 
enhancement of accuracy and consistency and the capability to conduct significant analyses of pollen 
samples. Such approaches can lead to novel insights and discoveries across various fields [5,6]. In 
recent years, deep learning has been extensively employed to optimize efficiency and precision, 
reduce human labour and minimize potential artifacts [7]. Various fields of research that includes but 
not limited to Animal Identification [50], Herbal plants classifications [51] utilized the techniques. 
Among the various deep learning techniques, Convolutional Neural Networks (CNNs) have witnessed 
a surge in popularity over the last decade. They are renowned for their efficacy in tasks such as object 
detection, image classification and task recognition. This is due to their robust neural network 
architecture, which autonomously extracts mid- to high-level features from image datasets, 
contributing to their widespread utilization [8-10]. 

Nevertheless, CNNs have inherent limitations, most notably in capturing the fine-grained textural 
details necessary for differentiating visually similar pollen types. Pollen grains possess complex 
surface textures and patterns that vary greatly between species, making texture analysis critical for 
accurate classification. Furthermore, CNNs frequently require large amounts of labelled data for 
effective training, which can be difficult to obtain due to the labour-intensive nature of data 
annotation in the context of pollen classification [11,12]. To address these limitations, this study 
employs Gabor filters in addition to CNNs, as Gabor filters are specifically designed for texture 
analysis and excel at capturing fine textural details. By using Gabor filters to pre-process pollen 
images, the enhanced representations are rich in texture information, improving the ability to 
distinguish between visually similar pollen types. This integration also reduces the amount of data 
required for CNN training, allowing for more efficient model training and classification [13,14]. 

The combined approach leverages the strengths of both techniques, improving feature extraction 
and yielding more robust and accurate pollen classification results. Therefore, the purpose of this 
research is to investigate the efficacy of combining Gabor filters with Convolutional Neural Networks 
(GF-CNN) for efficient and accurate pollen classification. We also introduce a new set of pollen data 
as our contribution to the pollen recognition research.  

 
2. Literature Review  

 
The challenge of automating pollen recognition has been a subject of research for nearly five 

decades. With the recent advancements in machine learning algorithms for image processing and 
recognition, significant progress has been made towards resolving this challenge, yet it continues to 
be an area of considerable interest for researchers [15,48]. In the domain of machine learning, 
feature extraction is the initial and crucial step. Numerous researchers have focused on specific 
pollen features such as shape, size, brightness, texture and aperture characteristics [16-18,49]. While 
these features offer clear semantics, they are not universally applicable across all species. After 
feature extraction, various classification methods are employed and many studies have utilized 
standard machine learning techniques, achieving accuracy rates ranging from 77 to 99% [19-23]. 

Several researchers have used scanning electron microscopes (SEM) to produce high-quality 
images, enabling the extraction of numerous features that streamline the classification task [21]. 
However, it is important to note that SEM equipment is substantially more expensive—at least 15 
times—than light microscopes, making it less accessible for many research facilities. Additionally, 
some studies have utilized z-stacks of multifocal images of individual pollen grains for classification 
[20,21]. While effective and leading to high recognition accuracy, this approach requires a substantial 
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number of pollen images, making it labour-intensive unless automated. As a result, automated 
recognition systems have increased the demand for manual pollen processing with microscopes. 

The ASTHMA project, as reported by [24-26] and Chudyk et al., [19], achieved success rates 
ranging from 77 to 100% when dealing with datasets containing 4 to 12 distinct pollen species. Other 
researchers, such as Khanzhina [27], Chen et al., [16] and Nguyen et al., [28], have experimented with 
adding features designed to represent specific pollen characteristics, resulting in improved 
recognition rates. Furthermore, Kaya et al., [29] relied solely on palynological characteristics, 
including the lengths of the polar axis, equatorial axis, colpus, exine and others. 

Ronneberger et al., [30] introduced a unique approach by utilizing 3D image features tailored for 
the classification of pollen obtained through confocal microscopy. Their work encompassed 26 
species and yielded a remarkable recognition rate of 99.2%. Daood et al., [31] leveraged CNNs 
combined with SEM pollen images to classify pollen, achieving a recognition rate of 95% across 30 
different pollen species. Sevillano et al., [32] presented an illustrative case of pollen classification 
using a deep convolutional neural network on the POLEN23E image dataset, which comprises 805 
high-quality bright-field microscope images representing 23 distinct pollen types found in the 
Brazilian grassland [33]. Impressively, their model achieved classification accuracy exceeding 97%. 
Achieving a 97% accuracy rate on a 23-class problem is a significant accomplishment, especially given 
the number of taxa involved. This stands as one of the most successful documented attempts at 
automating pollen analysis within the existing literature. 

Gabor filters have proven to be a successful method for feature extraction in the context of pollen 
classification, as demonstrated in studies by Chudyk et al., [19] and Daood et al., [31]. Recent efforts 
have been made to integrate Gabor harmonics into CNNs to reduce parameter numbers and equip 
CNNs with orientation and frequency selectivity. For instance, Hosseini et al., [34] incorporated 
supplementary Gabor features as inputs in CNN-based classification, resulting in improved outcomes. 
Yao et al., [35] reported elevated recognition rates through the pretraining of CNNs with Gabor 
features before fine-tuning. Comparable strategies have been documented in previous studies 
[36,37]. In the field of remote sensing, Chen et al., [38] introduced Gabor features obtained from the 
initial principal components into CNNs for hyperspectral imaging (HSI) classification, while Shi et al., 
[39] enhanced CNN features by integrating Gabor features for ship classification, illustrating the 
capability of Gabor features to augment CNN performance. 

Another emerging trend involves the manipulation of specific layers or kernels within CNNs 
employing Gabor filters. For instance, Jiang et al., [40] opted to replace the kernels in the initial layer 
of a CNN with a set of Gabor filters characterized by predefined orientation and spatial frequencies. 
These first-layer Gabor filters can be either static, as detailed in a prior study by Calderon et al., [41] 
or they can be adjusted individually at each kernel element, as demonstrated in another study by 
Chang et al., [42], where Gabor filters were utilized for the initialization process. To streamline the 
training process, Sarwar et al., [43] substituted some kernels in intermediate layers with fixed Gabor 
filters, resulting in notable enhancements in performance. However, in these tasks, Gabor filters are 
generally handcrafted with empirically set parameters that remain constant throughout the learning 
process, suggesting that Gabor computation does not have a substantial impact on CNN learning in 
existing Gabor-related CNNs. 

While many approaches to pollen recognition have been explored, there remains a need for more 
efficient integration of Gabor filters within CNNs to address certain limitations. This research gap 
presents an opportunity to improve CNN performance and adaptability for pollen classification by 
developing a methodology such as GF-CNN, which optimally combines Gabor filters with deep 
learning and enables the network to learn Gabor features dynamically, potentially leading to superior 
pollen recognition results. 



Journal of Advanced Research Design 

Volume 127 Issue 1 (2025) 120-136  

123 

3. Methodology – Gabor Filters with Convolutional Neural Networks (GF-CNN) 
3.1 Datasets 

 
This study utilized two distinct datasets, namely the Malaysian Pollen Dataset (MPD) and the New 

Zealand Pollen Dataset (NPD), to validate the efficiency and accuracy of the proposed GF-CNN model 
in classifying pollen grains from diverse geographical and botanical contexts. The MPD was collected 
from various locations in Terengganu, Malaysia and comprises 40 classes. Each class within the MPD 
includes over 350 images, accounting for both original and augmented images. The NPD, on the other 
hand, was collected from 32 native plant species in New Zealand, consisting of a total of 12,516 
images representing these 32 pollen classes [44]. 

 

 
Fig. 1. Sample of Malaysian pollen dataset (MPD) 
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Fig. 2. Sample of New Zealand pollen dataset (NPD) 

 
3.2 Data Preparation and Preprocessing 

 
The acquired images underwent a series of pre-processing steps designed to standardize the 

input and optimize the feature extraction capabilities of the Gabor filters. These pre-processing steps 
included resizing, which ensured consistency and interoperability across pollen images and 
background noise reduction, aimed at minimizing the influence of extraneous elements such as 
background clutter, illumination variations and noise artifacts. Additionally, the images were 
converted to grayscale to reduce the impact of colour variations, thereby enhancing the subsequent 
texture analysis. Following these pre-processing steps, Gabor filters were applied to accentuate the 
texture-specific features inherent to each pollen type, resulting in feature-enhanced images that 
were then ready for classification via the CNN model. The overall research methodology is illustrated 
in Figure 3, while Figure 4 and 5 depict the distribution of images in the Malaysian Pollen Dataset and 
New Zealand Pollen Dataset, respectively. 

 

 
Fig. 3. Research methodology flowchart 
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Fig. 4. Distribution of Malaysian pollen dataset images 

 

 
Fig. 5. Distribution of New Zealand pollen dataset images 
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3.3 Feature Extraction 
 
The normalized images were subjected to filtering using a set of Gabor filters. Four different 

orientation settings and two distinct wavelength parameters were applied, resulting in a collection 
of distinct filtered images derived from each original image. Following this, the filtered images were 
down-sampled using bicubic interpolation to achieve pixel-level resolution. This process produced a 
feature vector for each original image, with the length of the vector corresponding to the number of 
pixels. 

To further enhance the representation, an additional feature related to the size of each pollen 
grain in a polar view was introduced. This feature was assigned a weight factor, which was 
determined by the frequency of occurrences of the same pollen size within the dataset. The weight 
factor was configured as a specified percentage of the feature vector’s dimension. The modified 
Gabor filter used for feature extraction in this research is represented in Eq. (1), while Figure 6 
illustrates the methodology for feature extraction using the Gabor filter. 

 
  (1) 

 
 

 
Fig. 6. Feature extraction by Gabor filter 

 
Where: x, y represents spatial coordinates, λ0 is the patterns characteristics scale, σ is standard 

deviation, ϒ represent spatial aspect ratio. Table 1 shows the parameters for the function to generate 
Gabor Filter from a pollen image.  
 

Table 1 
Parameters for Gabor filters 
Parameter Details  Values 

Frequency The spatial frequency of the cosine factor 0.4, 0.6, 0.8 
Sigma  The Gaussian envelope's standard deviation 1, 2, 3 
Theta  Orientation of the normal to the parallel stripes of a Gabor function 0, 45, 90, 135 degrees 
Phi The phase offset 0, 90 degrees 

 

𝐺𝑎𝑏𝑜𝑟 𝑥, 𝑦 = cos 2𝜋𝑥𝜆0  𝑒𝑥𝑝  −
𝑥2

2𝜎2
−

ϒ2𝑦2

2𝜎2
        (1) 
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Figure 7 illustrates a random pollen image and its corresponding Gabor Filters output image. 
 

 
Fig. 7. Output of original pollen image (left) and corresponding Gabor filter image (right) 

 
3.4 Pollen Classification 

 
CNNs, also known as ConvNets, were first introduced in the 1990s, with a significant contribution 

made by LeCun et al., [45] in 1998. However, CNNs gained widespread popularity and recognition 
following the groundbreaking success of AlexNet in the 2012 ImageNet competition [46]. Since then, 
numerous modifications and variations of CNNs have been developed, though many of these 
adaptations have not been extensively applied to the classification of scattered images of airborne 
particles of biological origin. 

In the proposed GF-CNN architecture, the extracted Gabor features serve as the input for the 
CNN model, which comprises multiple layers specifically designed for the hierarchical extraction of 
high-level features from the input images. The network is trained using a subset of the labelled 
dataset, with performance validated through cross-validation techniques. The architecture is 
optimized for grayscale images with a default resolution of 48 x 48 pixels. The architecture begins 
with an input layer, followed by a convolutional layer containing 6 filters, each with a size of 5 × 5. 
This layer employs same padding, ensuring that the output spatial dimensions remain unchanged 
after convolution. Subsequently, a MaxPooling layer with a 2 × 2 pool size is applied, effectively 
halving the spatial dimensions. 

This pattern continues with subsequent layers. The model incorporates a second convolutional 
layer with 16 filters of size 5 × 5, followed by another MaxPooling operation. A third convolutional 
layer is then introduced, equipped with 64 filters of size 3 × 3, accompanied by an additional 
MaxPooling layer. After the convolutional operations, the architecture flattens the resulting 3D 
tensor into a 1D vector, which is then processed by a fully connected layer comprising 128 neurons, 
activated by a Rectified Linear Unit (ReLU) function. To mitigate the risk of overfitting, a dropout layer 
is included, randomly setting 50% of its input data units to zero during training. The final layer is a 
dense layer with 32 neurons, utilizing a SoftMax activation function, which categorizes the input 
images into one of 32 and 40 possible classes for the NPD and MPD datasets, respectively. The 
model's working procedure is detailed in Algorithm 1, as shown in Table 2, while Figure 8 and Figure 
9 illustrate the architecture employed for both the MPD and NPD datasets. 
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Table 2 
Algorithm 1: Pollen image classification using CNN 
1: Procedure CreatePollenModel (input_shape) 

2:   if input_shape is None then 
3:     input_shape ← (48, 48, 1) 
4:   end if  
5:   Initialize model as Sequential () 
6:   Add Input layer of shape = input_shape ← Convolutional Blocks 
7:   for filters, kernel_size in [(6, (5,5)), (16, (5,5)), (64, (3,3))] do 
8:     model.add (Conv2D (filters, kernel_size, activation = ‘ReLU’)) 
9:     model.add (MaxPool2D(2, 2)) 
10:  end for 
11:  Flatten the output 
12:  model.add(Dense(128, activation='ReLU')) 
13:  model.add(Dropout(0.5)) 
14:  model.add(Dense(40, activation='softmax')) ← Dataset 1 
15:  model.add(Dense(32, activation='softmax')) ← Dataset 2 
16:  return model 
17: end procedure 

 
3.5 Performance Evaluation 

 
The performance of the proposed method was assessed using precision, as described in Eq. (2), 

recall, as outlined in Eq. (3) and the F1-score, according to Eq. (4). In these equations, TP represents 
true positives, TN denotes true negatives, FP corresponds to false positives and FN indicates false 
negatives. High precision and recall values, as demonstrated by the F1-score in Eq. (4), reflect the 
model's effectiveness in minimizing both false positives and false negatives, thereby enhancing its 
overall reliability and accuracy [47]. 

 
  (2) 

 
 

  (3) 
 
 
  (4) 

 
 

The F1-score provides a comprehensive evaluation by combining precision and recall into a single 
metric. A high F1 score indicates that the model has effectively minimized both false positives and 
false negatives, thereby demonstrating the model's reliability and consistency across these metrics. 
In our experiments, precision, recall and F1 scores were calculated using weighted averages, which 
account for the number of true instances in each class. Additionally, the classification model's 
accuracy was determined by dividing the number of correct predictions by the total number of 
samples. The effectiveness of the proposed GF-CNN model was then compared with other machine 
learning methods, including Random Forest (RF), Support Vector Machine (SVM), AlexNet, Multi-
Layer Perceptron (MLP) and Vision Transformer (ViT). 
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Fig. 8. Architecture for Malaysian pollen Fig. 9. Architecture for New Zealand pollen 

 
4. Results and Discussion  
4.1 Precision Results 

 
According to Table 3, RF is the most accurate method, with a precision of 0.9304 for MPD and an 

even greater precision of 0.9889 for NPD. With 0.8920 for MPD and 0.9316 for NPD, SVM has decent 
precision, slightly lower than RF. Deep learning models, like AlexNet, exhibit outstanding accuracy, 
particularly in NPD. The proposed GF-CNN beats all others, reaching 0.9907 precision for MPD and 
0.9930 precision for NPD. These findings highlight the ability of deep learning models, notably GF-
CNN, to achieve high-precision pollen classification results across heterogeneous datasets, providing 
insights for a variety of scientific applications 
 

   
Fig. 8. Architecture for Malaysian Pollen.   Fig. 9. Architecture for New Zealand Pollen. 

   
Fig. 8. Architecture for Malaysian Pollen.   Fig. 9. Architecture for New Zealand Pollen. 
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Table 3 
Precision results comparison with other algorithms 
Algorithms  Precision results for 

MPD 
Precision results for NPD  

RF  0.9304 0.9889 
SVM 0.8920 0.9316 
AlexNet 0.9510 0.9824 
ViT 0.9302 0.9214 
MLP 0.9611 0.8901 
Proposed GF-CNN  0.9907 0.9930 

 
4.2 Recall Results 

 
According to Table 4, RF has a recall of 0.9824 for MPD and 0.9822 for NPD, demonstrating its 

robustness in both datasets. SVM produces consistent recall outcomes, behind RF by 0.9263 for MPD 
and 0.9402 for NPD. AlexNet excels in NPD, with a recall of 0.9846, but struggles in MPD, with a recall 
of 0.8940. The Vision Transformer (ViT) provides consistent recall performance, but the MLP gets a 
great 0.9723 in MPD but varies with 0.9564 in NPD. The proposed GF-CNN outperforms all others in 
terms of recall, obtaining 0.9909 for MPD and 0.9889 for NPD, demonstrating its ability to properly 
detect positive cases across varied datasets. These recall results highlight the ability of deep learning 
models, notably the proposed GF-CNN, to achieve high-accuracy results for pollen categorization, 
which has implications in a variety of scientific domains. 
 

Table 4 
Recall results comparison with other algorithms 
Algorithms  Precision results for MPD Precision results for NPD 

SVM 0.9263 0.9402 
AlexNet 0.8940 0.9846 
ViT 0.9703 0.9756 
MLP 0.9723 0.9564 
Proposed GF-CNN  0.9909 0.9889 

 
4.3 F1-Score Results 

 
The F1-Score scores for pollen categorization algorithms on the MPD and the NPD provide 

important information about their overall accuracy, as shown in Table 5. RF has excellent F1-Scores, 
with 0.9912 for MPD and 0.9350 for NPD, demonstrating its ability to strike a compromise between 
precision and recall. SVM performs consistently in both datasets, with F1-scores of 0.9835 for MPD 
and 0.9862 for NPD. AlexNet's capacity to balance precision and recall varies, with a greater F1-Score 
of 0.9532 for NPD and a lower 0.9201 for MPD. The Vision Transformer (ViT) maintains a solid 
equilibrium with F1-scores of 0.9842 for MPD and 0.9830 for NPD, whereas the MLP succeeds in MPD 
with a score of 0.9771 but struggles in NPD with a score of 0.8924. The proposed GF-CNN has the 
greatest F1 scores, showing its excellent ability to attain a balance of precision and recall in both 
datasets, emphasizing its promise for high-accuracy pollen categorization. 
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Table 5 
F1-Score results comparison with other algorithms 
Algorithms  Precision results for  

MPD 
Precision results for NPD 

RF  0.9912 0.9350 
SVM 0.9835 0.9862 
AlexNet 0.9201 0.9532 
ViT 0.9842 0.9830 
MLP 0.9771 0.8924 
Proposed GF-CNN  0.9999 0.9823 

 
4.4 Models Accuracy 

 
The accuracy of the algorithms, a fundamental metric, is detailed in Table 6 and highlights their 

ability to correctly classify pollen samples. RF stands out with an impressive accuracy of 96.57% for 
the MPD and an exceptional 99.20% for the NPD. SVM also demonstrates consistent accuracy, though 
it slightly lags behind RF, achieving 89.56% for MPD and 98.43% for NPD. AlexNet, while showing a 
lower accuracy of 74.64% for MPD, excels in NPD with an outstanding 99.12% accuracy. The Vision 
Transformer (ViT) maintains consistent performance, with 94.73% accuracy for MPD and 98.20% for 
NPD. The MLP performs well across both datasets, recording 94.73% for MPD and 98.54% for NPD. 
Notably, the proposed GF-CNN achieves the highest accuracy in both datasets, with 99.85% for MPD 
and 99.43% for NPD, showcasing its robustness in reliably classifying pollen samples across diverse 
datasets. These findings underscore the potential of deep learning models, particularly the proposed 
GF-CNN, for achieving high-accuracy pollen categorization, with significant implications for a broad 
range of scientific applications. 
 

Table 6 
Recall results comparison with other algorithms 
Algorithms  Precision results  

for MPD (%) 
Precision results  
for NPD (%) 

SVM 89.56 98.43 
AlexNet 74.64 99.12 
ViT 94.73 98.20 
MLP 94.73 98.54 
Proposed GF-CNN  99.85 99.43 

 
4.5 Confusion Matrix 

 
The confusion matrix for the MPD, as shown in Figure 10, provides a detailed illustration of the 

classification accuracy across different categories. The heatmap of classification results for the MPD 
dataset is represented, with darker squares indicating higher frequencies of correct predictions. In 
the MPD confusion matrix, the diagonal line represents the number of correct predictions, while the 
off-diagonal elements highlight instances of misclassification. The numbers 0-39 correspond to the 
indices of pollen classes, with sample images of each class available in Figure 1. The vertical axis 
represents the true values, while the horizontal axis denotes the predicted values. 
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Fig. 10. Confusion matrix with Malaysian pollen dataset 

 
Similarly, Figure 11 presents the confusion matrix for the NPD as classified by the proposed GF-

CNN method. This visualization of classification outcomes for the NPD dataset also uses a heatmap, 
where darker squares indicate a higher frequency of correct predictions. In the NPD confusion matrix, 
the diagonal line shows the number of correct predictions, with off-diagonal elements representing 
misclassifications. The numbers 0-31 correspond to the indices of pollen classes, with sample images 
available in Figure 2. As with the MPD, the vertical axis represents the true values and the horizontal 
axis indicates the predicted values. 
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Fig: 11. Confusion matrix with New Zealand pollen dataset 

 
5. Conclusions 

 
The inherent complexity and critical importance of pollen grain classification underscore the 

necessity for accurate and efficient techniques. Traditionally, the reliance on manual methods has 
presented numerous challenges, ranging from labour-intensive processes to the inherent subjectivity 
involved in the analysis. This research demonstrates that integrating Gabor filters with CNNs offers a 
transformative solution, marking a significant shift from conventional methods to a modern, 
automated and highly effective approach. The analysis conducted on two distinct pollen datasets 
validated the efficacy of the integrated GF-CNN model, which not only demonstrated superior 
classification accuracy but also effectively captured the nuanced, texture-based distinctions inherent 
to diverse pollen species. This advancement in precision has substantial implications across various 
scientific disciplines, including botany, ecology, environmental monitoring and climate change 
analysis. 

Furthermore, the successful fusion of Gabor filters for feature extraction with CNNs for deep 
learning introduces a methodology with potential applications far beyond pollen analysis. Areas such 
as medical diagnostics, agricultural bioengineering and forensic science could benefit from this 
approach, highlighting the broad-reaching ramifications of this research. As technological 
advancements continue to reshape the landscape of scientific inquiry, the adoption of integrated 
models like GF-CNN exemplifies the future of research—a blend of domain-specific knowledge with 
computational prowess, driving us toward profound and impactful discoveries. 
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