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Modernizing electrical grids requires advanced metering infrastructure (AMI), which gives 
users and suppliers energy usage data and boosts grid efficiency. Utility smart meter 
operation centres monitor and analyse these benefits to maintain them. However, the 
massive data quantities make manual data management impractical. This paper discusses 
how data analytics and machine learning (ML) can automate and optimize this process to 
improve control centre decision-making. Our research examines global smart meter 
implementation and how ML helps operators with identifying problems, preventive 
maintenance, network selection and cybersecurity. These applications decrease manual 
labour, enhance accuracy and boost productivity. We also discuss recent AMI trends to 
help utilities, governments and regulators plan energy. This article shows ML's disruptive 
potential in smart meter management by focusing on network dependability, operational 
safety, maintenance optimization and cybersecurity. Our findings show how ML permits 
utilities to provide a seamless, robust and customer-centred experience, bolstering AMI 
as a modern electric grid basis. 
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1. Introduction 
 

The implementation of Advanced Metering Infrastructure (AMI) has helped to increase the 
efficiencies of electricity providers around the world. AMI as one of the key enablers of grid 
modernization has allowed utilities to understand better their consumers’ electricity consumption 
through the data collected via smart meter. The two-way communication between smart meter and 
data centres allows utilities to collect data and send commands such as on demand read (ODR) when 
required. As for the customer, they are now able to monitor their daily consumptions and send a 
request which will be processed on the same day by the utilities. This has greatly increased the 
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confidence of the customers to the utilities. In addition to that, consumers and prosumers are also 
able to enjoy other offerings with the implementation of AMI such as auto-billing, daily consumption 
data monitoring, net metering, energize and de-energization notification, power failure and storage 
notification, demand response [1] and also increase their awareness on the contributed carbon foot 
print from their daily electricity consumption. As for the utilities, the benefits gained from the 
implementation are lower metering and billing expenses, decreased outage costs and consumer 
discomfort, improved safety and fewer capital expenditures [2]. 

Since the early adoption of the technology, utilities and customers have benefited significantly 
from AMI. Consequently, more utilities worldwide are now supporting its use. This is demonstrated 
by the increasing number of AMI, where 1.06 billion smart meters consisting of electricity, gas and 
water smart meters are reported to be placed by the end of 2023 [3]. The most mature AMI 
implementation is available in North America [4] where 77% electricity meters are replaced with 
smart meters. Followed by Asia Pacific region with 60% smart meter installed in the area by 2023 [3]. 
Not falling far behind, with 80% penetration rate are the European countries such as Sweden [5], 
Denmark, Finland and Estonia [6], Spain [7], Norway and Luxembourg [8], Latvia and Italy [9], France 
[10], Malta [11], Slovenia and the Netherlands [12]. As for Portugal, Austria and Great Britain [13] 
and Ireland [14] have continued with the current roll outs and targeting to reach 80% by 2024 [15]. 
However, not all European countries are progressing well with the AMI technology, where Bulgaria, 
Cyprus, Czechia and Romania [16], Germany [17] and Greece [18] have very few smart meters. And 
as for Belgium, Croatia and Poland [19], Slovakia, Lithuania and Hungary are yet to start the AMI 
implementation [15]. Compared to the Asia Pacific region, China led the penetration as the country 
has completed their rollout in 2020 and will be followed closely by Japan and South Korea within the 
next few years. Other countries in Asia Pacific that have embark in AMI journey are such as Vietnam 
[20], Australia [21], Malaysia [22], Indonesia [23], Taiwan [24], Singapore [25], Philippines [26] and 
Thailand [27]. With almost 11 million smart meters installed in Saudi Arabia [28] by end of 2025 and 
1.6 million in the United Arab Emirates [29] which expected to complete by 2029, the Middle Eastern 
is not falling far behind in the race to modernize its grid. This can be seen with other Middle Eastern 
countries following the initiative such as Iran [30], Lebanon [31] and Kuwait [32]. In South American, 
Brazil [33] as  the region’s largest and most advanced market, is expected to increase the smart meter 
installation from 5.6% in 2023 to 18.8% in 2029. The number of increasing smart meter installed 
worldwide shows the grid modernization is inevitable. Despite due to the aging infrastructure, it is 
also to ensure the increasing demand of electricity will be distributed successfully. AMI is also the 
enabler to environment sustainability in reducing greenhouse gas emission. With the data collected 
from the smart meter, utilities, authorities and government agencies are able to plan better by 
optimizing energy usage, reduce losses and support decarbonization of energy sector. Total number 
of smart meters installed in selected country is summarize in Table 1. 
 

Table 1 
Number of smart meters installed in selected countries 
No. Country Number of smart meters deployed Updated Year Reference 

1.  US 119,000,000  2022 [4] 
2.  Italy  36,700,000  2019 [9] 
3.  France  35,000,000  2022 [10]  
4.  United Kingdom  32,000,000  2023 [13]  
5.  Spain  12,600,000  2023 [7]  
6.  Saudi Arabia  10,000,000  2022 [28]  
7.  Sweden  5,400,000  2018 [5]  
8.  Vietnam  4,000,000  2020 [20]  
9.  Australia  3,300,000  2019 [21]  
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10.  Netherlands  3,000,000  2016 [34]  
11.  Malaysia  2,300,000  2022 [22]  
12.  Mexico  2,000,000  2018 [35]  
13.  United Arab Emirates  2,000,000  2021 [29]  
14.  Ireland  1,627,000  2024 [14]  
15.  Poland  1,300,000  2019 [19]  
16.  Indonesia  1,200,000  2023 [23]  
17.  Taiwan  1,170,000  2023 [24]  
18.  Iran  1,000,000  2022 [30]  
19.  Singapore  650,000  2022 [25]  
20.  Estonia  625,000  2017 [6]  
21.  Greece  500,000  2023 [18]  
22.  Brazil  500,000  2023 [33]  
23.  Romania  320,000  2020 [16]  
24.  Luxembourg  300,000  2020 [8]  
25.  Malta  270,000  2014 [11]  
26.  Lebanon  200,000  2019 [31] 
27.  Germany  160,000  2021 [17]  
28.  Philippines  140,000  2023 [26]  
29.  Kuwait  120,000  2022 [32]  
30.  Thailand  116,000  2021 [27]  

 
Frequently, consultancy firms with industry interests provide reports on the number of smart 

meters installed globally. However, accessing these reports can be challenging for researchers due 
to costly subscription fees. Compiling this information offers a clearer view of AMI adoption and 
market penetration in each region, enabling benchmarking, comparative analysis and insights into 
best practices, challenges and emerging technologies. To the best of the authors' knowledge, no 
article has yet reviewed the application of ML for the benefit of smart meter operators as shown in 
Table 2. This paper aims to address this gap by offering a comprehensive review of smart meter 
installations, focusing on operational challenges in AMI data management and the role of AI in 
enhancing decision-making for smart meter operation centre. 

The key contributions of this paper are: 
 

i. A comprehensive review of the current global status of smart meter deployment, highlighting 
associated challenges. 

ii. An analysis of ML applications in AMI and their potential to support operators in control 
centres with daily tasks. 

iii. Insights into the latest trends in AMI, aiding stakeholders like utility companies, governments 
and regulators in planning future energy roadmaps. 

iv. Identification of four critical areas for smart meter operators, where ML can enhance 
efficiency and decision-making. 

 
Despite its introduction in the early 2000s, AMI deployment is still expanding, especially in regions 

like the Middle East and Asia, demonstrating its benefits to utilities and consumers, while indicating 
room for further improvements. 

The rest of the paper is organized as follow: Section 2 discusses on the challenges in managing 
AMI data in a large-scale deployment. Section 3 talks about the application of ML in AMI focusing on 
the area of fault detection, preventive maintenance, network selection and detection of 
cybersecurity threats. Section 4 reviews on the challenges in the implementation of ML in AMI 
ecosystem. Followed by Section 5 that explains on the future works and lastly, discussion and 
conclusions in Section 6. 
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Table 2 
List of review paper on AMI 
Paper Title Author, Ref Summary Ref 

AMI Standard and 
Communication 
Technologies 

Garcia-
Hernandez 

Discussed on the most relevant communication technology 
strategies to implement AMI. 

[36]  

AMI Analytics-A Case Study Jha et al., Study on analytics developed based on smart meter data based 
on Puducherry Smart Grid Pilot Project.  

[37] 

A game Theory Model for 
Electricity Theft Detection 
and Privacy-Aware Control 
in AMI systems 

Cárdenas et 
al., 

The paper shares a model to address two main issues in AMI 
which are detection of electricity theft and preserving consumer 
privacy.  

[38] 

Analysis of AMI, Smart 
Metering Deployment and 
Big Data Management 
Challenges 

Saleh et al., Focusing in the Gulf Cooperation Council region, the author 
discussed on the challenges of cybersecurity, data management 
and consumer adoption in AMI. 

[39] 

Review of Cyber Physical 
Attacks and Counter 
Defence Mechanisms for 
AMI in Smart Grid 

Wei et al., The paper reviews on cyber-physical attacks involving smart 
meters such as False Data Injection Attacks (FDIA), Denial of 
Service (DoS) Attacks and Replay Attacks. The paper also 
discussed on the counter mechanisms for such attacks by 
enforcing encryption, authentication protocols and intrusion 
detection system (IDS). 

[40] 

Leveraging AI of Things for 
Anomaly Detection in AMI  

Ogu et al., 
 

The application of Artificial Intelligence to analyse data at the 
edge of the network of AMI systems.  

[41] 

AMI – Towards a Reliable 
Network 

Kornatka et 
al.,  

The importance of AMI in improving low-voltage power grids is 
discussed in the paper. The capability of AMI to monitor and 
detect faults, optimize investment and enhance energy 
efficiency is discussed in the paper. The author highlights the 
need for further development and integration with smart grid 
technologies. 

[42] 

 
2. Challenges in AMI 

 
Before the implementation of AMI, collection of energy consumption from electricity consumers 

requires electric meter, meter readers and an enterprise billing system. Meter readers have to be 
present physically at the customer premise to read the electric meter and once they have completed 
collecting meter reads at the assigned area, only then they will come back to their office to key in all 
the collected meter reads [43]. Among the limitations of the traditional approach is that it is prone 
to human error as data collection and data entry are being done manually. On top of that, if a meter 
failed to be read on scheduled date, it will be estimated and this will directly impact to the collection 
revenue to the utilities. And because the data collection is being done monthly, very limited products 
and services can be offered to the customers. With the conventional electric meter, it takes longer 
time to complete basic processes such as new connection and disconnection. Often, the customer 
will face with frustration when there is a spike or dispute in their electricity bills as it only provided 
to them once a month. The utilities also face difficulties in explaining to them on what is happening 
to their energy usage as limited data is available for analysis and scrutinization.  

Utilities are driven to improve their customer experience and among of the early initiative 
adopted by them is the introduction of Advanced Meter Reading or AMR. AMR was first introduced 
in 1985, but the official roll out of AMR was in 2011 [44]. AMR technology allows utilities to retrieve 
meter readings by physically approaching the meters with a portable device or by driving past them 
in a vehicle to remotely capture the consumption data gathered by the meter [45]. This has enabled 
utilities to introduced customized tariff structured and more advanced billing structures to the 
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customers. While AMR has increased the frequency of meter data collection, the dependency on 
meter readers is still very high. Hence issues such as missed or incorrect reading still occurs. Then 
AMR-Plus technology was introduced [46]. With AMR-plus, meter reader is no longer required to 
collect meter data. Instead, a one-way communication network is installed in the meter which allows 
utilities to perform weekly, monthly or on demand data collection from the meter to the data centre. 
Nevertheless, this still unable to improve the customer experience as limited applications and 
analytics can be performed. Therefore, the development of AMI surface to the industry in the early 
2000s where United States and some European countries start with small scale pilot project in 2011 
[47]. 

As the technology of network communication evolved, the advancement of electric meter also 
changed. A common architecture of smart meter may consist of smart meter, communication 
network [48], a head-end system [49], meter data management systems (MDMS) [50] and 
enterprises systems [48]. The enterprises system may include data mining [51], data analytics [52], 
customer systems [53] for billing as well as mobile apps for customer to remotely communicate with 
the service provider. With smart meters, additional information is made available to the utilities as 
well as for the consumer such as daily interval energy consumption, meter health, potential of 
tampered events and alarm [54]. Since smart meters are integrated with bidirectional 
communication technology, allowing all meter-recorded information to be sent to utilities in near 
real-time. Having a near real-time information has increase the quality of utilities to communicate 
with their customers. Among of the features that now available to the utilities are remote connect 
or disconnection, outage reporting, voltage monitoring, tamper detection, over-the-air firmware 
upgrade, ODR and smart meter last gasp.  

With the large-scale deployment of smart meters across the country, utilities are now facing new 
challenges in managing the massive volumes of data generated by these devices. Typically, register 
reads, load profiles, events and alarms are collected from the meters and these data types may vary 
from one utility to another depending on their specific requirements [55]. According to industry 
estimates, the data generated by smart meters is expected to grow exponentially, with some utilities 
projecting an increase in data volumes within the next five years [56]. Prior to meter installation, 
utilities must carefully consider data growth projections and ensure that their data storage solutions 
are scalable to accommodate the anticipated surge in data. Since smart meter installations can 
happen rapidly, it is critical that data storage capacity can be swiftly expanded to avoid potential 
bottlenecks or data loss [57]. Data storage is a costly and growing need, making proper planning and 
investment in scalable solutions crucial for utilities. 

Another significant challenge in managing smart meter data is the integration across various 
applications within the AMI ecosystem. Naturally, the AMI architecture consists of smart meters, 
communication protocols and equipment, a head-end system, a meter data management system and 
utility enterprise systems such as customer billing, asset management, workforce management and 
mobile applications. Seamless integration between all these systems needs to be established, 
thoroughly tested and verified to ensure the accuracy and consistency of information shared across 
the ecosystem [58]. Data integrity across all systems and applications is paramount, as it ensures 
interoperability across the entire AMI ecosystem [4]. A lack of integration can severely impact future 
analysis, new feature development and the operations and maintenance teams, potentially leading 
to customer complaints and dissatisfaction. 

Furthermore, the other main concern regarding smart meter data is the heightened risk of 
cybersecurity threats [59]. With customer data now available online and smart meters serving as 
potential entry points for unauthorized individuals, utilities must exercise utmost vigilance to protect 
their databases and infrastructure. Cybersecurity breaches can result in severe consequences, 
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including data theft, service disruptions, financial losses [60] and reputational damage. To mitigate 
these risks, utilities must impose robust security measures throughout their end-to-end AMI 
architecture, such as quarterly cybersecurity assessments, controlled access, threat monitoring and 
data encryption for all data transfers when using third-party networks. 

Once all these challenges are adequately addressed, utilities can confidently plan and implement 
new features and applications that leverage the rich data provided by smart meters, ultimately 
benefiting both customers and the utilities themselves. 

 
2.1 Smart Meter Operation Centre 

 
One of the key areas in ensuring the success of AMI implementation is the establishment of Smart 

Meter Operation Centre (SMOC). SMOC is a centralized facility that manages and monitors the 
communication networks and data flow between smart meters and utility companies. SMOCs are 
crucial for utilities because they facilitate efficient operation and management of smart grid systems. 
Their importance lies in operational efficiency by automating meter reading and enabling remote 
disconnections, data analytics that provide insights into energy consumption patterns, grid reliability 
through monitoring communication networks and customer engagement by providing detailed 
energy usage information [3]. Many utilities globally have implemented SMOCs, such as Pacific Gas 
and Electric Company (PG&E) in California with over 9 million smart meters [61], Enel SpA's centre in 
Rome for its European smart meter rollout [62] and Hydro One Networks Inc.'s centre in Ontario 
managing over 1.3 million smart meters [63]. 

SMOCs collect and process large volumes of meter data, store it and analyse it to optimize energy 
distribution, implement demand management strategies and improve customer service. They 
monitor the communication networks connecting smart meters to ensure reliable, secure data 
transmission and faster outage detection and response [64]. By reducing operational costs through 
automation and providing customer consumption data, SMOCs play a vital role in utilities' smart grid 
initiatives aimed at enhancing efficiency, reliability and customer engagement [48]. 

Currently, most operators working in SMOC uses data analytics [65] to help them in monitoring 
and decision making. While it has reduced time tremendously as compared to by using excel for their 
analysis, the action taken are reactive. SMOC operators will act as and when the events or alarm has 
triggered. Due to the this, the time taken to solve an issue is longer and customer experience is 
disrupted. Therefore, SMOC operators are in dire need for and automation and intelligence in 
assisting them in early detection and decision making. With more countries implementing AMI, the 
trend and interest towards having ML as part of the monitoring tool and decision assistance has 
increased. The addition of these tool as part of the operator’s assistance is crucial in ensuring AMI is 
working at optimum level. Therefore, in this paper, a comprehensive review on the academic 
proposals and engineering practice in ML application in the area of fault detection, preventive 
maintenance, network selection and detection of cyber security threats in AMI is conducted. 
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Fig. 1. Smart meter operation centre scope of work 

 
3. ML in Advanced Metering Infrastructure 

 
As AMI deployment always involved with large number of smart meters, dwelling with big data is 

expected. These large data are impossible for human to process without the help of a tool. Currently, 
many utilities and AMI control centres are implementing data analytics [38] to assists their operators 
in monitoring and decision making. However, as the number of data are growing and customers are 
demanding for better service quality, it is insufficient to rely on data analytics only. This is because 
data analytics only analyse information that has already occurred and due to the large volume, report 
generation may take time [54]. Which given the operators to act reactively to the incident or 
problem. Due to that, utilities are now exploring on the ML technology in assisting their operators 
for a faster and intervene the incident before it occurs.  

ML and deep learning have shown encouraging advances in various areas such as data mining 
[55], medical imaging [56], communication, multimedia [57], aviation [58], geoscience [59], remote 
sensing classification, preventive maintenance [60], real-time object tracking and computer vision-
based fault detection. In the context of smart grid, research and application on ML and deep learning 
are focusing on the comprehensive perception of the underlying systems, intelligent decision making 
and real-time or near real-time operations [61]. Some examples of the research and applications are 
on the predictions of load and price [66], cascading failure prediction [67], power generation, life 
cycle analysis [68], fault detection and diagnosis, demand side management and detection of 
cyberspace attacks. However, for the paper, the focus is on the ML and deep learning application for 
AMI. The area of interest will be on preventive maintenance, network selection and cyber security 
threats detection. 

 
3.1 ML in Fault/Anomaly Detection 

 
In general, anomaly is when something unusual from what is considered standard. Anomaly 

detection is a process of finding pattern that depart from typical behaviour [69]. This process can be 
achieved by using data analysis. In data analysis, outliers or irregular patterns that deviates from the 
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normal behaviour of a dataset is identified. By using smart meter data, anomalies in energy usage 
can be detected where it can indicate issued with measurement errors, equipment malfunction, 
potential of theft and changes in customer behaviour [70]. The ability to detect anomalies within the 
smart meter infrastructure give the advantage to the utilities in reducing equipment failures, 
enhances operational efficiency and subsequently increase customer satisfaction through accurate 
billing.  

With the implementation of AMI, utilities can identify anomaly remotely. Previously with 
conventional meters, faulty meters were only identified when the field crew or meter reader visited 
the premises. Now, with smart meter, data is collected and analysis is performed. Using ML, complex 
patterns are learned and presented to the operators in clearer picture for a better decision making. 
In Erfani et al., [71], a hybrid model of unsupervised deep belief networks (DBNs) and one-class 
support vector machine (SVM) is used for high dimensional and large-scale anomaly detection. The 
method despite taking a longer time to complete, has overcome the challenge of classifying large 
dataset with multiple features. Power outages are also considered as unusual pattern that need 
monitoring and early detection. On the other hand, Moghaddass and Wang utilize Expectation-
Maximization Algorithm [72] to analyse smart meter data to find unusual patterns that could mean 
there is a problem in the power grid. This helps the operators to predict power outages before it 
happened. Distributed anomaly in energy consumption was detected using deep learning method to 
increase accuracy and optimized computing process. Stacked sparse autoencoder is used to reduce 
the high-level representation from high volumes of smart meter data. Once the data is compress, 
SoftMax classifier is employed for data categorization for anomaly detection. The combination of 
stacked sparse autoencoder and SoftMax is deemed suitable for a real-world application with large 
datasets [73]. Using deep learning Convolution Neural Network, location of faults can also be 
identified and it has higher accuracy compared to using SVM method [74]. The study by Aligholian et 
al., [75] compares with four different unsupervised ML models to identify unusual electricity 
consumption using smart meter data. From the analysis, it is observed that projection-based 
methods perform better for abnormalities with very high or very low magnitude.  

Another research that also compares two unsupervised learning which are nested dynamic time 
warping (DTW) distances and Mahalanobis distance in detecting abnormal inactivity within a 
household is conducted [76]. Based on the comparisons, Mahalanobis distance-based model is more 
reliable when the lag time is longer. A combination of two models – Autoregressive Integrated 
Moving Average (ARIMA) and Long Short-Term Memory (LSTM) was used by Hollingsworth et al., [77] 
for anomaly detection in smart meter energy consumption data. From the research it shows 
combining both models give high accuracy and able to detect specifically true anomalies compared 
by using ARIMA or LSTM separately. Detection anomaly in energy patterns also allows utilities to 
prevent potential theft. Using unsupervised method, Park et al., [78] uses normal energy 
consumption and build an outlier detection model using k-means clustering. Consumption trend 
changes in home electrical appliances is being studied using time series data [79]. From the study, 
Prophet and LightGBM models perform better compared to the WAR models in detecting anomalies. 
Current trends for anomaly detection in AMI is to use federated learning instead of centralized 
learning. For example, Zafar et al., [80] a Federated Learning-Convolutional Gated Recurrent Unit 
model is developed and it shows high efficacy in detecting electricity theft.  

A fundamental approach in anomaly detection is by using statistical method equation, Z-score: 
 
𝑍 = (𝑋 −  𝜇)/𝜎              (1) 
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Where: 
X = is the observed value  
μ = is the mean of the sample 
σ = is the standard deviation of the sample. 

 
Using this equation, the baseline is established. For example, if the detection of anomaly is based 

on daily electric consumption, as we replace X with the electricity consumption of the day, μ with the 
normal or average amount and σ as the standard deviation of the daily electricity consumption 
sample, from there the baseline is establish. Using the baseline, a rule is established that is anything 
above or below than the baseline is considered as unusual. An example of algorithm to clustering 
load patterns in to groups is used by Jiang  et al., [81] as in Figure 2. 

 

 

Fig. 2. Example of Z-score algorithm used in anomaly detection [81] 
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3.2 ML Application in Predictive Maintenance 
 
Machines, equipment, structures, software and appliances require maintenance in order to have 

the best experience while also ensuring the safety of the user. Four types of maintenance exist: 
 

i. Regular and timely maintenance  
ii. Corrective maintenance  

iii. Predictive maintenance (PdM)  
iv. Prescriptive maintenance.  

 
Regular and timely maintenance also helps to expand the longevity of the items or systems. 

Often, maintenance of an equipment can be categorized into four categories based on occurrence 
which are corrective, preventive, predictive and prescriptive [82]. Corrective maintenance is 
performed when fault is detected or there is assign of failures. Preventive maintenance is an activity 
performed in interval following a specific schedule. As for predictive maintenance (PdM) uses time-
based information and knowledge to report possible failure avoiding downtime. And lastly, 
prescriptive maintenance is to improve and optimized the existing performance. Among all these 
four maintenances, preventive maintenance and PdM are the maintenance that frequently 
performed by organization to ensure continuity of service. The difference between preventive 
maintenance and PdM is preventive maintenance involves monitoring the actual condition of the 
equipment using sensors and other data collection method to assess the current states of 
components [83]. As compared to the PdM, the approach is proactive as it forecast equipment 
failures before the occurrence with the help of IoT network, AI and data analytics. With PdM, repairs 
and maintenance are performed when prompt [84]. This section discussed on ML model used in PdM.  

Prior to the implementation of AMI, operations rely field crew to detect faults at site and followed 
with fault isolation or clearing the faults [85]. With the implementation of AMI, large energy data 
type can be collected by utilities. The availability of large energy data allows the application of ML to 
take in place to advance utilities to a better state. By research, ML has shown promising output where 
it can reduce maintenance cost, stop of work reduction, machine fault reduction, machine life-span 
increases, inventory optimization [86], optimized resourced allocation and many more. A survey of 
conducted on predictive maintenance method and types of faults in distribution network was 
conducted [85]. The author described methods of predictive method that is currently being used by 
the distribution network operations team which are conventional and using ML. In the paper, there 
are four types of ML models identified used for predictive maintenance which are SVM, Artificial 
Neural Network (ANN), Random Forest and Recurrent Neural Network. It is important to design a 
highly available and reliable predictive maintenance system as poor equipment maintenance may 
lead to service degradation and unavailability [87]. Predictive maintenance is an important strategy 
to increase efficiency and gain continuous customer trust. Compared to the conventional 
maintenance approach, predictive maintenance is more proactive by anticipating possible 
equipment failures and irregularities. Omol et al., [88], four prominent ML techniques are identified 
that commonly used for anomaly detection in smart grid and the similarities between these four ML 
models are they are capable to handle high dimensional data and three out of four models are 
unsupervised learning techniques. Unsupervised learning technique is used for unlabelled data which 
suitable for anomaly detection. Predictive maintenance in smart grid does not only cover low voltage, 
but also medium voltage. One use case of ML is predictive maintenance for medium voltage 
switchgear. However, the challenge in this is finding a robust and accurate sensor to measure 
switchgear faults and anomalies [89]. 
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3.3 ML Application in Network Selection 
 
A typical infrastructure of AMI usually consists of three main components which are meter, 

communication network technology and system applications [49]. While each of the components 
have its own challenges, choosing the right communication network is the most vital decision when 
implementing AMI. The decision must take into consideration on the availability of the present 
infrastructure, impact on system equipment and functional requirement and economic consideration 
[90]. After considering all that factors, the selected communication network must be able to have 
the best coverage area, best data rate , power consumption and security level [91]. To assists decision 
makers in making the best selection, ML is employed. A comprehensive dataset that covers criteria 
such as frequency, data rate, distance, bandwidth, line of sight (LoS), stability, interference, topology 
and terrain is used to train with five difference ML models [92]. One of the critical components in 
communication network for AMI is data aggregation points (DAPs). Depending on the type of chosen 
technology, these DAPs could be a gateway for extender bridge for radio frequency solutions (RF) or 
data concentrator for Power Line Carrier (PLC). Using a clustering algorithm, the maximum and 
minimum distance from DAPs to SM is proposed considering three different neighbourhoods which 
are urban, suburban and rural premises [93]. Besides distance, number of DAPs and the installation 
location also plays a big role in ensuring AMI communication network able to transmit data to the 
control centre with minimum data loss. Using unsupervised K-means clustering algorithm, placement 
and the best number of DAPs within Neighbourhood Area Network (NAN) is determined [94]. 
However, the paper does not discuss if there is an overlapping of neighbourhood area and how it will 
affect the number of DAPs to be installed. The position of network nodes also may be influenced by 
severe weather, winds or vandalism [95]. One of the preferred communication network technologies 
chosen for the implementation of AMI is G3-PLC. Countries like Spain, France, Italy, United Kingdom 
and Germany implemented G3-PLC for their smart meter installation as it allows utilities to leverage 
on their existing power line infrastructure. Despite having the advantage of using existing 
infrastructure, PLC may have it limitations such as noise interference and signal attenuation from 
electrical equipment. Using ML, prediction model of determining data link quality is developed and 
it provides better accuracy for decision makers in modulation selection [96].  

 
3.4 ML Application Cybersecurity Threats 

 
The two-way communication in AMI offers numerous benefits to utilities. However, it also opens 

opportunity to the attackers as more access points and devices are now accessible to them. 
Therefore, the enforcement of cybersecurity in AMI is critical to safeguard the integrity, 
confidentiality and availability of the infrastructure, energy and customer data. Some of the common 
cyber-attacks in IoT are Distributed Denial of Service (DDoS), Data Type Probing (DTP), Malicious 
Control (MC), Scan, Spying, and Wrong Setup (WS) [97]. Other common cyber-attack in the Smart 
Grid architecture are Malware infections, Man-in-the-Middle (MitM) attacks [59], False data 
injections attacks, De-pseudonymization Attacks, Meter Spoofing and Energy Fraud Attacks and 
disaggregation attacks [38,98-101]. Advanced Persistent Threats (APTs), Unauthorized access and 
control and cyber physical attacks. Some of the known cyber-attack on smart grid happened back in 
March 2018 where hackers have infiltrated power control system in the United States smart grid and 
causing black out in several areas [102]. Another attack, in 2015, causing Ukraine control centres not 
fully operational even after two hours [103]. This attacked impacted roughly 230,00 consumers in 
Ukraine lasted for at least 6 hours of unplanned power outages [104]. These incidents show the 
importance of comprehensive cybersecurity strategies in protecting AMI and Smart Grid Systems.  
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AMI relies heavily on the communication network that ensures all smart meter data successfully 
transferred to the utilities data centre. However, like any IoT technology, the automation, integration 
and architecture of AMI is also exposed to the potential cyber threats. It is advisable as according to 
U.S Energy Department’s National Electric Sector Cybersecurity Organization Resource (NESCOR) for 
utilities to invest in enhancing their security measures against cyber-attacks [105]. Annual 
penetration tests need to be conducted in order to discover and enhance any weak spots, 
guaranteeing the installation of the newest software versions and firmware and implementing 
continuous monitoring to mitigate any cyber-attacks are among of the mitigation action to reduce 
the cyber security threats. Today, with the emerging of ML technology, potential cyber threats can 
be reduced. One of the most widely used ML techniques for addressing cybersecurity threats ML in 
AMI is anomaly detection. Often, operators are unable to differentiate between actual disturbance 
or an actual cyber-attack. However, using ML based anomaly detection, the actual fault due to 
disturbance is able to be differentiated from intelligent cyber-attack [106]. Furthermore, using a two-
layered hierarchical with random forest classifier as a base model has proven distinguishing between 
natural and attack event is possible with 99% accuracy in detecting natural event [107]. This method 
is suitable for data with limited attack event.  

 
4. Challenges of ML in AMI 

 
Even though research on ML has been around for more than a decade, the implementation of ML 

in Smart Grid is still at entry level. This is due to the challenges of implementing ML such as reliable 
data for testing and training. The volume and variety of data also plays a role in ensure the accuracy 
of the desired outcome for implementing ML. However, managing large volume of data may become 
a challenge for organizations as several aspects need to be considered such as data storage, data 
management, data quality, resources for data monitoring and data integrity across all organization 
system integration. Utilities need to consider the capacity of their data storage for offline and online 
data. Scalability of smart grid system infrastructure need to be considered as smart grid usually 
consists a lot of equipment’s such as millions of smart meters, sensors, network communication 
equipment and external data such as weather, geospatial information and customer background. 
Storing these data can be costly if not properly plan. As ML is considered new among organizational, 
ethical concerns regarding on ML application may arise during the development and application of 
ML in daily operations [108]. If there are hidden biases in the data, ML models will unavoidably reflect 
these biases because they learn directly from the data provided, including any biases present in it. 
These biases if not detected and corrected may impact the organization future decision as it provide 
in accurate data.  

Furthermore, ensuring a unified and working system integration can be time consuming and 
costly but is essential in making ML available to the organization. ML models require a clean, accurate 
and complete data in order to function effectively. Lack of good quality data may lead to inaccurate 
decision and eventually reduce the trusts to the organization due to the bad outcome. On top of that, 
the cyber security aspects also need to be considered and emphasized. Hacker is looking at AMI and 
considered it as a new path to try and manipulate smart meter switches in order to generate load 
fluctuations [109]. By controlling the smart meter switches, hackers will made-up as if there is a load 
oscillating incident happening, triggering equipment “trip” or “shut down” and eventually causing 
the whole grid to blackout. Additionally, smart meter may become entrance point for hackers to 
access customer data available in utilities database. Leakage of customer information is also a 
concern as this may exposed consumers usage patterns and behaviour. To overcome this issue, 
utilities may need to comply with certain regulatory and standardization. The effort to comply to the 
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standard is costly and requires sources with specific technical expertise. Which is also an issue in this 
industry. Many may have claimed to have the knowledge, but not all have the experience for 
implementation especially in a large-scale environment.  

 
Table 3 
Summary of research conducted in fault/anomaly detection, predictive maintenance, network selection and 
cybersecurity threats in AMI 
Method ML Techniques Author, Year Achievements Ref 

Anomaly/ 
Fault 
Detection 

 DBN 

 One-Class SVM 

Erfani et al.,  The hybrid approach of combining DBN and 
One-Class SVM managed to address the 
complexity and scalability issues.  

 Up to 20% improvements are achieved. 
Performed 3 times faster in training and 
1000 times faster in testing. 

[71] 

 SVM Moghaddass 
et al., 

 Issues of missing point and regularization is 
address by introducing dynamic indicator 
and focusing only in important predictors 
into the model. 

[72] 

 kNN 
classification 

Jiang et al.,   A 3-phase model including load pattern 
extraction, consumer grouping and 
consumer classification is proposed in the 
paper.  

 The 3-phase method used in the proposed 
model shows higher accuracy of 
classification and provides more sufficient 
electricity consumer characteristics. 

[81] 

 Prediction-
based 
regression 

 Prediction-
based neural 
network 

 Clustered 
based 

 Projection-
based 
methods. 

Aligholian et 
al.,  

 Various techniques have varied capacity to 
identify diverse forms of abnormalities. 

 The performance of each model depends on 
the collection of attributes used for training.  

[75] 

 ARIMA 

 LSTM 

Hollingsworth 
et al., 

 Proposed model detected all true anomalies 
with no false detections. 

 Combination method has highest accuracy 
and specificity with lowest False Positive 
Rate.  

  

[77] 

 Anomaly 
Pattern 
Detection 

 Unsupervised 
Learning 

Park et al.,  The model has no dependency on historical 
data of the customer as it compares with 
other legal customer. Hence, the challenge 
of obtaining customer history data is 
eliminated.  

[78] 

 Prophet 

 LightGBM 

Malki et al.,  Prophet and LightGBM is superior than 
vector autoregressive (VAR) model for 
anomaly detection.  

 Using weather and time, future energy 
consumption is predicted using the model  

[79] 



Journal of Advanced Research Design 

Volume 136 Issue 1 (2025) 44-65  

57 

 CNN 

 SVM 

Kurup et al.,  CNN have an accuracy of 96.06% when 
compared to the linear SVM method.  

 The research also proposed to install a fault 
detector before a three-class SVM as is lower 
the overall test error.  

[74] 

 DTW 

 Mahalanobis 
distances 

Zhou et al.,  With minimal data, the research able to 
achieve satisfactory performance.  

 Both methods are practical to install in smart 
meter as it does not require offline training 
as well as parameter tuning. Thus, making 
non-intrusive household anomaly monitoring 
possible.  

[76] 

 FL- ConvGRU  Zafar et al.,  While maintaining data privacy, electricity 
theft is accurately detected using this 
method.  

[80] 

 Recurrent 
Neural network 

 Convolutional 
Neural 
Network 

 Random Forest 

 Decision tree 

Hernández et 
al., 

 Recurrent network shows highest precision 
in detecting peculiar activities within a 
household based on their daily activities 
such as sleeping, breakfast and lunch. 

 This achievement may contribute towards 
the development of home of assisted living.  

[70] 

Predictive 
Maintenance 

 Support-
Vector-
Machine-Based 
Proactive 
Cascade 
Prediction in 
Smart Grid 
Using 
Probabilistic 
Framework 

Gupta et al.,  Proactive blackout prediction model that can 
predict as early as possible before unplanned 
power failure occurs which tailored to the 
smart grids. 

 The research successfully combines 
probabilistic framework for cascading 
failures and SVM to predict power failures.  

[110] 

 Isolation Forest 

 One-Class SVM 

 Autoencoders 

 Random Forest 

Omol et al.,  Using a qualitative research approach this 
research able to shows the importance of 
predictive maintenance in enhancing 
reliability, efficiency and resilience of smart 
grid infrastructure. 

[88] 

Network 
Selection 

 K-Medoids Gallardo et al.,  The proposed framework has better 
coverage areas as it is based on the real DAP 
and smart meters placement. 

 Furthermore, the algorithm also tested on 
urban, suburban and rural scenarios for AMI 
network planning.  

[93] 

 Unsupervised 
K-means 
clustering 

Molokomme 
et al., 

 The proposed model assists in minimizing 
number of DAPs deployed without 
compromising the network coverage for 
smart meters.  

 The model helps to reduce implementation 
and maintenance cost as fewer equipment is 
deployed at the field but with maximum 
coverage.  

[94] 
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 Naïve Bayes, 

 Decision Tree 

 Random Tree 
Forest 

 Gradient 
Boosted Tree 

 K-Nearest 
Neighbor 

Azhar et al.,  Based on seven technical criteria, Naïve 
Bayes ranked as the highest performing ML 
model in term of accuracy and execution 
time.  

 This helps to do selection of communication 
technology for electrical distribution 
substation. 

[92] 

 K-Nearest 
Neighbors 

 SVR 

 Extra Trees 

 KNN  

 MLP 

Marquez et 
al., 

 K-Nearest Neighbors model is concluded to 
be the most useful in determining the 
location of nodes for LoRaWAN network as it 
can detect position change within 100 
meters within areas of interest.  

[95] 

 LR 

 SVM 

 RFC 

 ANN 

Razazian et 
al.,  

 Using channel quality classifier, RFC model 
achieves 89% success rate compared to the 
conventional ROBO Modulation with 64% 
accuracy rate.  

 Random Forest Classifier (RFC) possesses the 
capability to formulate more intricate 
decision boundaries derived from nonlinear 
datasets. 

[96] 

CyberSecurity  Bayesian 
Classifier 

 HMM  

McLaughlin et 
al., 

 The proposed systems, AMI Intrusion 
Detection System (AMIDS) provide the 
capability of high accuracy in detecting 
energy theft. 

 The method used in AMIDS is Naïve Bayes 
model. 

[100] 

 PCA 

 DBSCAN 

Badrinath 
Krishna et al., 

 The combination of PCA and DBSCAN is 
reliable in identifying integrity attacks on 
smart meter data. 

[101] 

 RBM 

 SDF 

 DBNs 

Karimipour et 
al., 

 The proposed system in the research, which 
is anomaly detection tool for smart gird, 
achieves 99% accuracy, TPR of 98% and FPR 
of Less than 2%.  

  

[106] 

 Two-layer 
hierarchical 
random forest 
model 

Farrukh et al.,  The proposed two-layer ML model achieved 
95.44% accuracy in cyberattack detection. 

 Outperformed deep learning models in 
detecting cyberattacks on smart power 
systems.  

[107] 

 Logistic 
Regression 

 Decision Tree 

 Random Forest 

 ANN 

 Naïve Bayes 

Mukherjee et 
al.,  

 Achieved 99.4% accuracy in when 
considering whole dataset and 99.99% when 
binary values are removed.  

 Using the model, certain threats and 
anomalies occurring in smart devices and IoT 
solution can be prevented.  

[97] 

 
5. Future Work 

 
Despite the challenges in implementing ML for enterprises, ML has shown promising role in AMI 

towards the development of smart grid. This is also inclusive of the development of smart cities, 
energy efficiency and energy transition: 
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i. Smart Cities: By using ML predictive analytics algorithms, forecasted traffic congestion, energy 
demand and consumption is made possible. With this information available, city authorities 
may have ample time to address any issues arise [111].  

ii. Energy Efficiency: Real time monitoring can help to reduce and provide overview trend of 
energy usage through demand response [112]. Customers may enjoy incentives by 
participating in the demand respond programmed. 

iii. Sustainability and Reliability: The reliability of microgrid in transmitting and distributing 
energy can be enhanced by using ML algorithms. For example, a hybrid model of SVM and 
Artificial Neural Network (ANN) was able to enhance the reliability of a microgrids [113]. 

 
6. Conclusions 

 
The paper aims to address the knowledge gap by offering a thorough analysis of global smart 

meter implementations, operational problems in Advanced Metering Infrastructure (AMI) data 
handling and the revolutionary impact of artificial intelligence, specifically machine learning (ML), on 
improving decision-making in smart meter operation centres. 

A review of smart meter installations in different countries uncovers advancements as well as 
ongoing difficulties. Although numerous industrialized regions have attained maturity in deployment, 
others like the Middle East and Asia continue in strengthening their infrastructure. These trends 
demonstrate the increasing significance of AMI and the variable rate of adoption, influenced by 
factors such as expense, regulatory preparedness and consumer receptivity. 

Secondly, the article analysed the incorporation of machine learning into advanced metering 
infrastructure systems. Machine learning has exhibited significant potential to enhance daily 
operational functions in smart meter control centres, particularly in anomaly detection, predictive 
maintenance, network optimization and cybersecurity. These technologies enable utilities to monitor 
systems in real time, anticipate breakdowns, safeguard infrastructure and make proactive, data-
informed decisions. 

This report offers helpful recommendations for stakeholders, including utility companies, 
government agencies and regulators, by providing insights into recent advancements in AMI and 
trends in machine learning. Comprehending the transformation of data into actionable intelligence 
enables these companies to devise more efficient, customer-oriented and sustainable energy plans. 

Ultimately, four essential operational domains were recognized in which machine learning may 
directly improve decision-making: anomaly detection, predictive maintenance, network selection 
and cyber threat mitigation. These sectors are anticipated to experience increased machine learning 
usage, particularly as utilities strive to navigate the scope and intricacy of contemporary Advanced 
Metering Infrastructure systems. 

In conclusion, AMI and ML are transforming utility operations and customer service. As smart 
meter technology expands and machine learning technologies advance, utilities are increasingly 
equipped to migrate to smarter grids, enhance customer interaction and develop more resilient, 
future-ready energy systems. 
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