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In recent years, there has been an increasing interest in the study of path planning 
algorithms for autonomous robot systems. The current study aims to examine the 
simulation performance of path planning using the Successive Overrelaxation (SOR) 
method and the log-space Gauss-Seidel (LGS) method. The simulation addresses the 
numerical solution of a boundary value problem for Laplace's equation, utilising Log-
space mapping and adhering to Dirichlet boundary conditions within a closed region. 
The experiment done in both sparse and dense environments shows the benefits of 
the iterative methods. The paths generated by the SOR and LGS approach are 
compared using specific numerical examples in smooth trajectory planning. The 
comparative analysis suggests that the LGS iterative method effectively addresses 
the issue of achieving high precision in the numerical computation of the gradient 
of harmonic potentials for generating safe paths in dense environments with narrow 
corridors and difficult regions. The simulation results also indicate that the LGS 
employed in this study exhibits faster convergence. Although it has a slower 
execution time, it is successful in dense environments compared to the SOR method. 

Keywords: 
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1. Introduction 
 

The study of path planning for robots has been a critical focus in the field of robotics development 
over the years. A truly autonomous robot must possess the capability to navigate itself from its start 
location to a specified destination point. Mobile robots are frequently required to traverse their 
environment while averting obstacles to reach a predetermined destination from any given starting 
point. The task of path planning or navigation holds significant importance in autonomous mobile 
robotics as it directly impacts accuracy, productivity, and safety Dahalan et al., [1]. Numerous 
research studies have been conducted about path planning across various industries. Previous 
studies conducted by Li et al., [2] and Sheng [3] have focused on the exploration of path-planning 
techniques within the domain of computer animation. Several scholars, including Larsen et al., [4] 
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and Zhang et al., [5], have studied path planning for industrial robotics. In addition, Shamsudin et al., 
[6] researched the delivery industry, Shi et al., [7] focused on the automatic generation of ship 
navigation routes, and Song et al., [8] studied path planning for automated surveillance. 

Mobile robots have become essential components in a wide range of applications in the fast-
growing field of robotics, from autonomous automobiles and warehouse logistics to healthcare and 
agriculture. These robots are designed to navigate complex environments, often necessitating well-
calculated route planning to reach target locations efficiently. Path planning is a critical aspect of 
mobile robot navigation as it enables safe and quick transit between locations, even within unfamiliar 
and changing settings. The field of mobile robot navigation includes the study and implementation 
of algorithms, strategies, and techniques that optimise pathway selection, obstacle avoidance, and 
adaptation to dynamic environments. This process is essential for improving the usefulness of mobile 
robots in various settings, whether they are working indoors, outdoors, or in confined spaces.   

Harmonic functions have been said to be a good method in path planning as their properties align 
well with the demands of robust path planning, particularly in handling potential fields with 
smoothness and stability. As asserted by Connolly and Roderic [9], harmonic functions exhibit several 
properties, such as completeness, that are crucial for robotics applications. For instance, Kim and 
Pradeep [10] found that when employed, harmonic functions could effectively reduce local minima, 
even in the presence of a congested environment. In a similar vein, Motonaka et al., [11] integrated 
HPF with an invariant manifold to enhance motion planning for a two-wheeled drive mobile robot. 
Kazemi et al., [12] in their study demonstrated that the integration of the Harmonic Function-
based Probabilistic Roadmap (HFPRM) yields better outcomes compared to the use of each 
component separately, particularly in scenarios characterised by the presence of narrow passages. 
The work by Masoud [13] also illustrates the efficacy of the HPF planning approach in producing a 
properly constrained path for a robot with second-order dynamics in a cluttered environment. 

This study uses numerical potential functions inspired by the heat transfer theory to model the 
path planning process of a point robot in the configuration space. The environment generated 
through this heat conduction model is free of local minima and advantageous for the robot's 
navigation control. Solutions to Laplace's equation, commonly called harmonic functions, are applied 
to simulate temperature distribution inside the configuration space for path generation. Numerical 
approaches have been used to determine harmonic functions because they are easy to use on high-
speed computing machines and are good at finding solutions to problems. 

According to Andrili and David [14], the iterative method such as the Jacobi Method, or the Gauss-
Seidel Method is used to find a solution to a linear system and is known to provide one of the fastest 
ways to obtain the actual solution. Furthermore, Mohammedali et al., [15] and Al-Jizani et al., [16] 
argue that its variants such as the variational iterative method are one of the well‐known semi‐
analytical methods for solving linear and nonlinear ordinary equations as well as partial differential 
equations. In robot path planning problems, the iterative method is commonly employed to obtain 
the HPF. In the current study, several experiments were conducted to determine the efficacy of the 
iterative method in the Log-space domain for obtaining the HPF required to generate a path for a 
mobile robot in an environment of varying sizes. Some of the simple geometries obstacles commonly 
applied in HPFs are elliptical static obstacles, which were done by Szulczynski et al., [17], rectangles, 
used in the research of Tsaryova et al., [18], and circular obstacles conducted in the study of Waydo 
and Richard [19] and Liu et al., [20]. In the current work, the rectangular obstacle was chosen due to 
its simplicity and efficiency in representing structured indoor environments, which enhances the 
applicability of the results for real-world scenarios. 

Despite the advancement in path planning methodologies, much uncertainty still exists about the 
efficient and precise methods for navigating sparse indoor environments. Most studies in the field of 
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path planning algorithms have only focused on traditional iterative approaches, such as Gauss-Seidel 
method, Jacobian method, and SOR. These methods, however, have limitations in convergence 
speed and scalability, particularly when working with complex large-scale configurations. In addition, 
very little attention has been paid to the use alternative methods such as the LGS in path planning, 
particularly when using harmonic potentials for structured indoor environments. As such, a 
systematic understanding of how LGS contributes to the development of safe paths for robot 
navigation is still lacking. To address this gap, this study examines the efficacy of LGS in the 
computation of harmonic potential fields for robot path planning. The current work makes an 
important contribution by comparing the performance of LGS and Gauss-Seidel across different mesh 
sizes and obstacle configurations, as well as the actual use of LGS for path planning in real-world 
indoor situations. These findings provide an important opportunity to advance the understanding 
mobile robot path planning and developing algorithms for collision-free avoidance in indoor 
environment. 

The subsequent sections of this paper are organized as follows: Section 2 provides a thorough 
overview of the research background, discussing the problems and algorithms of this study, and 
describes the algorithmic framework and methodology of Successive Over-Relaxation (SOR) and Log-
space Gauss-Seidel (LGS). Section 3 details various simulation environments, performance metrics, 
and the comparison process of the algorithms are comprehensively described and followed by a 
discussion in Section 4. Finally, concluding remarks are provided in Section 5.  

 
2. Methodology  
 

This study presents a simulation-based approach for implementing robot vehicle movement by 
applying a point that goes through a known location rather than using the actual physical robot 
vehicle itself. The robot path planning problem can be described as an analogy to the steady-state 
heat conduction problem. In the context of heat conduction, the aim is to examine the target as a 
heat sink that attracts heat energy. Physical barriers and constraints maintained at a constant 
temperature are referred to as heat sources. The temperature distribution is altered because of 
thermal conductivity, and the design space becomes saturated with thermal fluxes that flow into the 
sink. The target, robots, and obstacles could all potentially communicate with other objects through 
this structure. 

The temperature distribution throughout the field can serve as guidance for a mobile robot to 
navigate from the initial location to the desired destination. This can be achieved by monitoring the 
flow of heat from areas with higher temperatures to areas with the lowest point within the region. 
The harmonic function is applied to represent the environment's configuration to determine the 
temperature dispersion within the heat configuration region. Conolly et al., [21] stated that by solving 
the associated partial differential equation, one can obtain a flow that optimises obstacle avoidance 
while moving towards a designated goal. This generates a smooth path that promotes a natural 
movement with no local minima. Algorithm 1 illustrates the algorithm for the fundamental process 
that forms the path planning construction phase of this study (Table 1). Harmonic functions are the 
solutions to Laplace's equation and is expressed as in Eq. (1): 
 

∇2ϕ = ∑
∂2ϕ

∂xi
2

n
i=1 = 0                                (1) 

 
Where xi is the ith Cartesian coordinates, and 𝑛 denotes the dimension of the region Ω ⊂ ℝn. The 
domain Ω comprises the inner and outer boundary walls, obstacles, start, and goal points. As 
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harmonic functions are bound by the min-max rule, it maintains that there cannot be any unexpected 
local minima in the solution domain. In this regard, Conolly and Roderic [9] mentioned that path 
planning is complete when it applies Laplace's equation with certain Dirichlet Boundary Conditions 
(BC). Therefore, the Dirichlet BC for the Laplace's Eq. (1) can be defined as in Eq. (2): 
 

(x, y) = {
1, if (x, y)is at obstacles

0, if (x, y)is at the goal point
                              (2) 

 
Table 1 
Algorithm 1. Process of path planning 
Begin 
     Step 1:     Create a map of the robot's region (known as grid space,  
                     obtaining the goal position, obstacles, and walls). 
     Step 2:     Initiate the formulation and modeling of the iterative schemes.   
     Step 3:     Formulate and execute the proposed iterative schemes. 
     Step 4:     Perform numerical simulations to obtain the solutions. 
     Step 5:     Evaluation of the performance and algorithms complexity   
                     analysis. 
End 

 
In this framework, a robot is denoted by a point in configuration space. The region is formed 

according to a grid pattern, whereby each node's coordinates and corresponding function values are 
computed iteratively by applying a numerical method. Different initial temperature values are 
assigned to the obstacles and boundaries, with the starting point given the highest potential value 
and the goal point assigned the lowest. The application of the Dirichlet constraint, ϕ| ∂Ω = c, where 
c is constant, has been utilised in the solution of Laplace's equation. Once the harmonic function has 
been established based on the given boundary conditions, the appropriate path can be determined 
by tracking the flow of heat using the gradient descent search (GDS) applied to the computed 
potential values [21]. The descending search reaches the goal point, which goes to the point with the 
lowest potential values. 
 
2.1 Finite Difference Approximation 
 

Suppose that the solution of u(x, y) of Laplace's equation in two dimensions, which has been set 
out in Eq. (1). The five-point approximation to the Laplacian can be derived by utilising the central 
differences approximation of Eq. (3) and (4), generally stated as:   
 

∇2u =
d2u

dx2 +
d2u

dy2 = 0                                (3) 

 
ui−1,j + ui+1,j + ui,j+1 + ui,j−1 − 4ui,j = 0                            (4) 

 
Eq. (5) represents the Gauss-Seidel iteration, which considers all nodes in the mesh points and is 

executed on a rectangular grid. Thus, the iterative algorithms for the standard five-point finite 
difference approach can be expressed as:  
 

ui,j
(k+1)

=
1

4
[ui−1,j

(k+1)
+ ui+1,j

(k)
+ ui,j+1

(k)
+ ui,j−1

(k+1)
]                           (5) 
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This study focuses on path planning performance between the Successive Overrelaxation (SOR) 
and log-space harmonic potential methods. Thus, the standard iterative scheme for corresponding 
methods is needed to implement the SOR and LGS. Therefore, by adding the weighted parameter ω 
from Eq. (4), the iterative scheme for SOR is expressed as in Eq. (6): 
 

ui,j
(k+1)

=
ω

4
[ui−1,j

(k+1)
+ ui+1,j

(k)
+ ui,j+1

(k)
+ ui,j−1

(k+1)
] + (1 − ω)ui,j

(k)
                         (6) 

 
Young [22] demonstrated that the value of the weighted parameter ω of the corresponding SOR 

is between 0 and 2, 0 < ω < 2. 
 
2.2 Log Gauss-Seidel 
 

The drawback of past studies on potential fields with harmonic functions is due to numerical 
precision problems in arithmetic floating-point operations. The problem arises after several iteration 
cycles with the Dirichlet Boundary Conditions from Eq. (2). The u values of points in the free space 
are very close to 1. Therefore, Wray et al., [23] overcome the numerical precision problem by 
introducing the log-space HPF. The log-space mapping uses the features of logarithms and 
exponentiation, specifically the log-sum-exp algorithm, which is presented below as 𝑙𝑠𝑒 as in Eq. (7). 
This method is frequently used in the field of machine learning to do the multiplication of many 
probabilities that are close to zero. It is formally given for any values y = [y1, … , yk]T: 
 

𝑙𝑠𝑒(𝑦) = y∗ + log ∑ eyi−y∗k
i=1                               (7) 

 
Where generally y∗ = max  yi. To use this, it is necessary to alter the numerical relaxation into this 
specific format. First, in the log-space Gauss-Seidel algorithm, an additional variable v: ℝ𝑛 ⟶ ℝ is 
introduced for u as in Eq. (8): 
 

v(x, y) = log ((1 − δ)(1 − u(x, y)) + δ                             (8) 

 
Where δ > 0 is a relatively small positive value that stops the outflow of log 0. Therefore, in this case, 
u value is the opposite of Eq. (2), and is referred in Eq. (9), where:  
 

u(x, y) = {
0, if (x, y)is at obstacles

1, if (x, y)is at the goal point
                             (9) 

 
Therefore, u in the range [0,1] is mapped to v in the range [log δ , 0], which contains a significantly 

greater number of floating-point numbers. In addition to resolving the issue of numerical precision, 
the second benefit of employing log-space HPF is the ability to directly derive the harmonic potentials 
from the v(x, y) in log-space. This is possible because the gradient of v is parallel to that of u, but in 
the opposite direction. This can be seen by ∇v = −(1 − δ)exp(−v)∇u. Hence, the approach for 
robot navigation involves following the vector field −∇u derived from the streamline u. However, we 
aim to utilise the gradient ascent ∇v from v derived using the log-space method in this case. The 
updated log-space Gauss-Seidel for t iteration is defined as in Eq. (10):  
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𝑣𝑡+1(𝑥) = {

0, if xϵG
log 𝛿, if xϵO

𝑙𝑠𝑒(𝑣𝑡) − log 2𝑛, otherwise
                          (10) 

 
Next, by applying Gauss-Seidel iteration to Eq. (8), the log-space Gauss-Seidel (LGS) 

implementation for a 2-dimensional grid [23] is expressed as in Eq. (11):  
 

vi,j
(k+1)

= V∗ + log [
exp(vi−1,j

(k+1)
− V∗) + exp(vi+1,j

(k)
− V∗) +

exp(vi,j+1
(k)

− V∗) + exp(vi,j−1
(k+1)

− V∗)
] − log 2n                       (11) 

 
where, 
 

V∗ = max(vi−1,j
(k+1)

, vi+1,j
(k)

, vi,j+1
(k)

, vi,j−1
(k+1)

)                           (12) 

 
and n is the dimension. Therefore, Algorithm 2 (Table 2) can represent the execution of the log-space 
Gauss-Seidel to solve a two-dimensional problem, as denoted by Eq. (11).  
 

Table 2 
Algorithm 2: Log-space Gauss-Seidel 
1. Establish the start and goal points of the configuration space. 
2. Initialising starting point U, ε ⟵ MAXERROR, iteration ⟵ 0. 

3. Determine  V∗ ⟵ max(vi−1,j
(k+1)

, vi+1,j
(k)

, vi,j+1
(k)

, vi,j−1
(k+1)

) 

4. Compute the points close to the boundary using the direct method via Eq. (11), 

    vi,j
(k+1)

⟵ V∗ + log [
exp(vi−1,j

(k+1)
− V∗) + exp(vi+1,j

(k)
− V∗) +

exp(vi,j+1
(k)

− V∗) + exp(vi,j−1
(k+1)

− V∗)
] − log 2n 

5. Verify the convergence test for ε ⟵ MAX_ERROR. If so, move to the next step. Else 
back to step (3). 

6. Execute log GDS to generate the path from start to goal point.  

 
3. Results  
 

The tests were performed on a 2.80 GHz 11th Gen Intel(R) Core (TM) i7 system with 8 GB of RAM. 
The iterative technique of quantitatively computing the HPF at all points continues until the stopping 
criterion is reached. The iteration would be terminated when the difference between all points of 
the current computed HPF values at kth iteration and the previous values at (k − 1)th iteration, where 

the tolerance error eSOR = 1 × 10−10 for SOR, while the tolerance error for LGS is set to be eLGS = 
1 × 10−3. The optimal parameter value ω in this simulation is set to 1.80, based on the preliminary 
result in the range of 1.70 to 1.90. In the case of the SOR method, the computation required a high 
degree of accuracy to avoid the occurrence of flat areas, commonly referred to as saddle points, 
which might stop the successful construction of the path. The LGS method required less accuracy 
since it is sufficient to overcome the numerical precision problem encountered by the SOR method. 
Tables 3 and 4 present the results of the experiment, specifically the number of iterations (denoted 
as k) and the execution time in seconds (denoted as t) for each numerical technique employed to 
compute the harmonic potentials across the entire region for sparse and dense environments, 
respectively.  
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Table 3 
Results of the methods evaluated based on the number of iterations 
and time of execution (in seconds) for the indoor environment (Sparse) 
Mesh size SOR, k  t LGS, k t 

330 x 270 3063 1.522 2459 9.044 
660 x 540 9388 20.877 5361 77.285 
990 x 810 21245 104.643 8241 293.052 
1320 x 1080 35867 421.546 13845 990.834 

 
Table 4 
Results of the methods evaluated based on the number of iterations and  
time of execution (in seconds) for the indoor environment (Dense) 
Mesh size SOR, k t LGS, k t 

802 x 242 Fail Fail 5598 41.098 
1604 x 484 Fail Fail 12253 505.804 
2406 x 726 Fail Fail 23787 1909.38 
3208 x 968 Fail Fail 32417 5628.72 

 
The graphs in Figure 1 represent the number of iterations, k, for sparse and dense indoor 

environments, while Figure 2 shows the execution time, t, for sparse and dense indoor environments, 
which indicate the output of the proposed method presented in Tables 3 and 4. 
 

    
(a) (b) 

Fig. 1. Number of iterations, k (a) Sparse (b) Dense environments 

 

    
(a)     (b) 

Fig. 2. Performance of execution time, t (in seconds) (a) Sparse (b) Dense environments 
 

It can be observed from Figures 1 and 2 that an increase in the number of iterations results in a 
corresponding increase in the duration of each execution. Both graphs for dense environments 
indicate that the LGS outperformed SOR in terms of iteration count and success in generating safe 
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paths in narrow corridors and difficult regions though it had a slower execution time. Tables 3 and 4 
also clearly illustrate this concept. A similar trend can be seen in Figures 1 and 2, as shown by the 
number of iterations and execution time The LGS iterative scheme appears to be more efficient in 
terms of iteration number when compared to SOR in a sparse environment, but the time required 
for SOR to converge is much faster. Only LGS had successfully computed the harmonic potentials for 
generating paths in dense environments. 
 
4. Discussion  
 

In this analysis, the environment setup involves two types of maps, which are sparse and dense. 
The sparse map involves four different sizes: 330 x 270, 660 x 540, 990 x 810, and 1320 x 1080. As for 
the dense map, it also involves four different sizes: 802 x 242, 1604 x 484, 2406 x 726, and 3208 x 
968. Different numbers and forms of obstacles were placed in the pathway of the sparse and dense 
environment. The initial setup applied the Dirichlet boundary condition, wherein the obstacles and 
walls were assigned high harmonic potential values, while the target point was assigned the lowest 
harmonic potential values. 

As shown in Figure 3, both pathways for SOR and LGS are complete and yield valid paths for all 
locations in a sparse environment. The pathway was established through the implementation of 
the gradient descent search (GDS), starting from the initial point, and stopping at the goal point after 
obtaining the harmonic potential values. The gradient search for SOR descends because of the 
condition from Eq. (2), while the gradient LGS ascends based on the condition from Eq. (8). The path 
is generated quickly, as the algorithm continuously selects the harmonic potential value with the 
lowest magnitude from the neighbouring points of the current position. The iterative process 
continues until the desired goal is achieved.  
 

    
(a)              (b) 
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(c)                       (d)  

Fig. 3. Construction of paths from several starting points (round/red point) and goal points (round/green 
point) for sparse environments (a) 330-by-270, (b) 660-by-540, (c) 990-by-810 and (d) 1320-by-1080  

 
As for Figure 4, which is the dense environment, all the pathways for LGS return valid paths for 

all locations. However, the SOR pathway is only valid within the small blue area and fails to converge 
properly outside this region due to numerical precision issues. This finding indicates the capability of 
LGS to compute harmonic potentials for a dense environment that contains challenging and narrow 
corridors without the occurrence of saddle points. 
 

 
(a) 

 

 
(b) 

 



Journal of Advanced Research Design 

Volume 123, Issue 1 (2024) 186-197 

195 
 

 
(c) 

 

 
(d) 

Fig. 4. Construction of paths from several starting points (round/ red point) and goal points (round/green 
point) for dense environment (a) 802-by-242 (b) 1604-by-484 (c) 2406-by-726 (d) 3208-by-968 

 

The LGS iterative method demonstrates better performance in achieving the solution with less 
iterations compared to SOR, as evidenced by the results. The SOR method has better computation 
time in sparse environments but fails to maintain the same performance in dense environments. This 
occurs because SOR fails to find valid gradients for larger grids and can only be used in smaller ones 
such as 256 x 256, due to a numerical precision problem. As such, LGS is more superior than SOR in 
generating a valid pathway for a dense environment as its performance remains unaffected by the 
increasing number of obstacles. Likewise, increasing obstacles reduces computational requirements 
since all cells that are present with the obstacles are disregarded during the iteration. Since the LGS 
algorithm is free of local minima, the harmonic potentials are obtained across all regions so that the 
path can be generated successfully even in dense environments. This ensures a safe and smooth path 
from the beginning to the end goal, even in the presence of challenging obstacles. 
 
4.1 Computational Complexity 
 

This section analyses the computational complexity of the two iterative approaches used in this 
research. One unit of computational time is expected to be required for each arithmetic operation, 
including addition and multiplication. The computational costs for the path tracing procedure of the 
GDS algorithm are excluded since it requires the same amount of computation for both SOR and LGS 
methods. Table 5 presents the total number of arithmetic operations required by both algorithms.  
Theoretically, as the algorithm's computational complexity drops, the number of iterations 
decreases, reducing CPU time. LGS requires less iteration since the tolerance error is greater than 

SOR (eLGS > eSOR). However, it took a longer execution time compared to SOR due to higher number 
of arithmetic operations per iteration, as can be seen in Table 5. 
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Table 5 
Number of arithmetic operations per iteration for SOR and LGS 
Methods ADD/SUB MUL/DIV 

SOR 4M 2M 
LGS 9M 5M 

 
Where M = (H × W) − P;  P is the number of points occupied by obstacles, while the terms H and 
W are the height and width of the map. 
 
5. Conclusions  
 

This paper shows that the simulations using harmonic potentials based on the gradient of LGS 
can generate nearly smooth paths, optimal, and free from local minima. This method utilises the 
numerical solution of a boundary value problem for Laplace's equation with Dirichlet boundary 
conditions. It makes it practical and highly adaptable to domains with irregular boundaries, consisting 
of obstacles of any shape. With regard to the aim of this study, which is to overcome the high 
precision issue in the numerical calculation of harmonic potentials, it was discovered that the 
iterative method for the LGS is efficient in path planning for complex indoor environments. This 
finding is consistent with Wray et al., [23], which stated that LGS improves scalability vastly. Although 
it exhibited a longer execution time relative to alternative methods such as SOR, the LGS method 
proved to be more effective in producing safe paths within dense environments, especially in narrow 
corridors. Hence LGS method is deemed superior in precision and safety for high-complexity indoor 
environments. Moreover, the adaptability of the method indicates its potential relevance to higher-
dimensional path planning, thereby broadening its application in advanced robotics and autonomous 
systems. Future researchers should explore mobile robot navigation enhancements by refining 
numerical methods, such as block iteration, to reduce computational costs. These could expedite the 
convergence rate and reduce the computational costs of the iterative process. In addition, assessing 
the scalability and adaptability of the method in denser and more dynamic environments may 
enhance its applicability in real-time robotics and other fields requiring precise navigation solutions. 
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