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The quantum internet facilitates communication between quantum devices, making 
its development essential for advancing quantum technologies. However, realizing 
a fully functional quantum internet requires overcoming several challenges, 
including establishing efficient routing mechanisms to ensure effective 
communication. This study proposes a capacity allocation scheduling scheme based 
on a Genetic Algorithm (GA) to address the issue of non-uniform edge capacity 
utilization within a practical routing process. However, it is essential to note that the 
performance of the GA scheduling scheme is influenced by its control parameters, 
highlighting the need for parameter tuning. In this paper, we conducted simulations 
to examine how epochs and population sizes impact the GA scheduling 
performance, specifically in maximizing average capacity utilization 𝑈 and weighted 
throughput 𝐹. The configurations were simulated under six and ten communication 
requests across two topology structures to assess their response to variations in 
problem characteristics. The simulation results were then compared with an existing 
capacity allocation scheduling method, Progressive Filling (PF). Our findings reveal 
that GA outperforms PF in all scenarios and topology structures. Additionally, we 
deduce that 30 epochs and a population size of 50 are adequate for optimizing 
average capacity utilization 𝑈 and weighted throughput 𝐹. 
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1. Introduction 
 

The substitution of classical bits with quantum bits (qubits) in information processing 
revolutionizes the world by transforming computing and communication systems. The 
transformation is facilitated by the advancement of various quantum technologies, including 
quantum computing [1], quantum cryptography [2], and quantum communication [3]. The 
transformation would significantly impact various fields, such as optimization, cryptography, drug 
discovery, and higher precision clock synchronization. However, advancements in the engineering 
aspect of quantum technologies pose a significant challenge to the fundamental purpose of the 
classical internet, as quantum devices require the ability to transfer quantum information [4]. 
Therefore, a quantum internet is envisioned as a network facilitating communication primitives 
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between quantum devices [5]. However, significant challenges must be overcome before a fully 
functional quantum internet can be realized, including developing efficient routing mechanisms for 
effective data transmission. 

Given the constraints of limited and non-uniform edge capacity utilization resulting from a finite 
quantum memory [6], there is a need to design a routing algorithm that efficiently utilizes network 
capacity within each processing window. Therefore, in this study, we proposed a capacity allocation 
scheduling scheme based on a Genetic Algorithm (GA) [7], building upon our previous study 
presented in [8]. This scheme handles multiple communication requests simultaneously, effectively 
managing the limited network resources. To the best of our knowledge, the proposed GA scheduling 
scheme is the first quantum routing scheme incorporating a metaheuristic algorithm. A GA is an 
optimization algorithm inspired by natural selection and genetics principles. The effectiveness of GA 
in solving a particular optimization problem relies on the selection of its control parameters [9], 
including population size, epochs, selection mechanisms, crossover rate, and mutation rate. Slight 
adjustments to these parameters can significantly impact the performance of the GA. 

Therefore, parameter tuning is essential for identifying the optimal settings that ensure the 
proposed GA capacity allocation scheduling scheme operates at its best. This process involves 
configuring the algorithm to maximize performance for a specific problem instance. In this research, 
parameter tuning focuses on adjusting the GA’s epochs (E) and population sizes (PS) to optimize the 
capacity allocation scheduling scheme for maximizing average capacity utilization (U) and weighted 
throughput (F). By concentrating solely on these two parameters, the study adopts a targeted and 
efficient approach that balances simplicity with effectiveness. Both epochs and population size are 
critical to the algorithm’s performance: epochs directly influence the model’s convergence and 
generalization capabilities, while population size impacts the diversity and exploration efficiency of 
the GA. Concentrating on the most influential parameters ensures computational feasibility and 
clarity while effectively addressing critical aspects of the algorithm’s behavior. It avoids the 
complexities and overfitting risks of tuning a broader range of parameters. 

Given the sensitivity of GA performance to epochs and population sizes, determining their 
optimal settings is crucial for the proposed GA capacity allocation scheduling scheme. The objectives 
of this study are as follows: 
 

i. To investigate the effect of epochs and population sizes on the performance of the GA 
capacity allocation scheduling scheme. 

ii. To analyze the response of the GA capacity allocation scheduling scheme to variations in 
problem characteristics, such as the number of communication requests and topology 
structure. 

iii. To compare the optimized GA capacity allocation scheduling scheme with the existing 
capacity allocation scheduling, progressive filling (PF). 
 

The rest of the paper is organized as follows: Section 2 explains the unique features of qubits and 
investigates the recent research effort in the quantum routing domain. Section 3 presents the 
proposed solution for the identified problem. Section 4 describes the method to evaluate the 
performance of the proposed GA capacity allocation scheduling scheme, including the experimental 
setup and performance measures. Section 5 compares and discusses the simulation results. Section 
6 concludes the paper. 
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2. Literature Review 
 

This section briefly explains the fundamental concept of qubits and investigates recent research 
efforts within the quantum routing domain. 
 
2.1 Overview of Quantum Information 
 

Qubits serve as the fundamental units of information in quantum technologies. The information 
encoded in qubits is called quantum information [10]. Some key features of qubits are superposition, 
quantum entanglement, quantum measurement, and no-cloning theorem. 

Superposition: A qubit is a two-state quantum system [11]. It exists simultaneously in two 
coherent quantum states, |0 > and |1 >. Contrary to the classical bit, which can only represent one 
of two binary digits, “0” or “1” at a time, superposition enables a qubit to use two quantum states 
simultaneously. Quantum Measurement: A measurement causes the two-state quantum system to 
collapse from coherent superposition states to a single, definite state. A measurement irreversibly 
perturbs the coherent superposition of the quantum system [12]. Quantum measurement is 
employed to extract numerical data from a quantum system. 

Quantum Entanglement: Entanglement is a phenomenon where two or more qubits are ideally 
linked [13]. Therefore, measuring one pair of the entangled qubits reveals the state of the other pair. 
No-Cloning Theorem: According to this theorem, a copy of an arbitrary quantum state is impossible 
to reproduce since the properties of a qubit cannot be measured without leaving its state unchanged 
[14-16]. The challenge of developing and designing quantum routing lies in effectively harnessing and 
manipulating these properties.  
 
2.2 Related Work 
 

Communication between nodes in the network can take place via various paths. A routing 
protocol determines the best path for forwarding data from a source to a destination. Quantum 
routing utilizes quantum mechanics for efficient information transfer. It plays a crucial role in the 
development of the quantum internet. Most quantum routing schemes proposed in the literature 
incorporate classical concepts, including multi-path routing, Dijkstra’s shortest path, and greedy 
routing. Quantum entanglement is a valuable element in quantum internet as it is used to 
interconnect quantum nodes, enabling information exchange. Therefore, quantum entanglement 
has been implemented as a routing metric in several works in [17-19]. However, due to qubits’ 
delicate nature and susceptibility to environmental decoherence [20,21], maintaining entanglement 
links for routing purposes poses several challenges that require further investigation. 

Moreover, Mina et al., [22] proposed a routing protocol to minimize the time required to 
regenerate entanglement links between sender and receiver nodes. Li et al., [6] suggested a routing 
approach facilitating automated responses to numerous entanglement establishment requests, 
thereby enhancing the efficient generation of entanglement between distant nodes. Furthermore, 
Gyongyosi et al., [23] presented a decentralized routing method to identify the shortest paths in 
multi-level entanglement scenarios. Besides that, Gyongyosi et al., [24] proposed an adaptive routing 
method that employs a base graph to select the shortest paths and determine alternative routes in 
the event of quantum memory failures. 

Pirker et al., [25] introduced the concept of region routing to streamline the process of 
establishing graph states. Le et al., [26] utilized deep learning techniques in the Deep Quantum 
Routing Agent (DQRA) to identify optimal routing paths for communication requests. Furthermore, 
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Li et al., [27] proposed an innovative routing technique tailored for single photons with varying 
frequencies. The technique involves a specific cavity configuration with embedded atoms and 
channel boundaries designed to manipulate the interaction between photons and atoms to control 
the routing process. The quantum routing domain is advancing with ongoing studies. Despite several 
proposed quantum routing schemes, a definitive standard has not yet been established as the field 
continues to evolve with ongoing studies. 
 
3. Proposed Scheme: Capacity Allocation Scheduling Based on a Genetic Algorithm (GA) 
 

This section explains the proposed capacity allocation scheduling based on a Genetic Algorithm 
(GA). The GA scheduling processes multiple connection requests concurrently to ensure the network 
capacity within each processing window is utilized efficiently. It identifies and establishes ten 
connection paths for each communication request 𝑟 = [𝑆𝑟 , 𝐷𝑟], where 𝑆𝑟 is the source node and 𝐷𝑟 
is the destination node. The overall process of the routing scheme is summarized in Figure 1. 

In the Initialization Phase of each processing window, the network topology 𝐺 = (𝑉, 𝐸) is 
reinitialized, where 𝑉 and 𝐸 represent vertices and edges, respectively. This initialization involves 
setting the maximal edge capacity, 𝐶𝑂 = 100 for each edge in the network. Entanglement is then 
attempted between adjacent nodes. Due to the probabilistic nature of quantum entanglement, the 
actual capacity realized on any edge may be lower than 𝐶𝑂. The distribution of fidelity values among 
edges follows a normal pattern with mean 𝐹𝑎𝑣𝑔 = 0.8 and standard deviation 𝐹𝑠𝑡𝑑 = 0.1. 

 

 
Fig. 1. Summary of the routing scheme: Capacity allocation scheduling scheme  
based on a genetic algorithm 

 
In the entanglement purification phase, on every edge (𝑖, 𝑗) ∈ 𝐸  with fidelity below the threshold 

𝐹𝑡ℎ = 0.8 and a realized edge capacity 𝐶𝑖,𝑗 ≤  𝐶𝑂, entanglement purification is performed. 

Additionally, all edges (𝑖, 𝑗) with a residual capacity less than the maximum number of paths 𝑙𝑚𝑎𝑥 = 
10 are terminated and removed from the topology. As a result of entanglement purification and 
termination of edges, the overall number of edges in the network topology decreases. 
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In the path determination phase, routes for all communication requests are determined based 
on the revised network topology, 𝐺′. Once this revised topology is prepared, paths are identified for 
each communication request  𝑟 = [𝑆𝑟 , 𝐷𝑟] using 𝑘 shortest paths. Instead of relying on a single 
shortest path for each connection request, the algorithm identifies ten paths, 𝑘, between each source, 

𝑆𝑟 , and destination, 𝐷𝑟 , node pair while considering factors like path length and network conditions to 
enhance the network’s robustness. The choice of paths, 𝑘 is influenced by specific network conditions 
as follows: the number of communication requests |𝑟| that must be handled within a time window; 
the size of the network, precisely the number of edges |𝐸|, which determines the network’s 
complexity and capacity for multiple paths; and the maximum network capacity 𝐶𝑂, ensuring that the 
paths identified can handle the traffic demand without exceeding network resources. 

The paths identified are stored in a path information set 𝐻, which records details for each edge 
(𝑖, 𝑗) forming part of a path 𝑙 associated with a request 𝑟. Each entry in 𝐻 is represented as a tuple 
[𝑟, 𝑙, 𝑑, 𝑜], where 𝑟 denotes the connection request linked to the path, 𝑙 is the specific path identified 
for that request, 𝑑  is the length (total cost) of the path, and 𝑜 indicates the order or position of edge 
(𝑖, 𝑗) within the path 𝑙, showing its sequence in the route. This structure allows efficient referencing 
and management of paths, enabling the network to adapt to failures or changes in conditions 
dynamically. 

The primary contribution of this study lies in the capacity allocation phase, which is divided into 
five essential steps. Step 1 generates an initial population of random individuals (flow on edge). In 
Step 2, two parents are selected from this population to produce a new flow on edge generation. 
These selected parents are then paired, and information is exchanged through random crossover 
points via a crossover operation (Step 3), thereby establishing a new population. Finally, in Step 4, 
the mutation is applied to the flow on edge of the child to enhance the diversity of the population. 

The mutant individuals of the flow fij
r,l on each passing edge are evaluated by calculating their fitness 

function, Ft  (see Eq. (3)). The fitness function is the sum of average capacity utilization, U, and 
weighted throughput, F. The edge capacity of mutant individuals should not exceed the maximum 
allowed edge capacity 𝐶𝑖,𝑗 ≤  𝐶𝑂. Mutant individuals that meet the constraint are retained in the 

population; otherwise, they are replaced by parent individuals that meet the criteria.  
In the flow determination and performance evaluation phase, the capacity constraints imposed 

by the network’s topology are evaluated, and the final allocated flow is determined. The final 
allocated capacity flow refers to the actual amount of flow transmitted over a specific path for a given 
request. When managing network paths, each path associated with a request is subject to certain 
constraints, particularly regarding the maximum capacity it can handle. Effective capacity allocation 
ensures data can traverse a network efficiently without bottlenecks in network flow optimization. A 
vital aspect of this allocation process is the short-board constraint, which dictates that the flow 
allocated to a path cannot exceed the capacity of its weakest link—meaning the edge within that 
path that has the minimum capacity. The short-board constraint ensures that the allocated flow 
remains feasible; if one edge cannot support a certain level of traffic, it limits the overall flow of the 
entire path. This rule is essential in maintaining the stability and reliability of data transmission across 
the network. 

In the end-to-end entanglement establishment phase, entanglement swapping is executed to 
establish remote entanglement between the specified communication requests. Entanglement 
swapping involves intermediate quantum nodes acting as repeaters to connect entangled pairs over 
longer distances. When two adjacent nodes in the network become entangled, the network performs 
a Bell state measurement on qubits from each pair at an intermediate node. This measurement 
effectively “swaps” the entanglement, creating a new entangled state between the non-adjacent 
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nodes extending the network’s reach. This method is repeated across multiple intermediate nodes 
until the two remote nodes specified in the connection request are entangled. 
 
4. Methodology  
 

This section describes the method used to evaluate the performance of the GA scheduling 
scheme.  
 
4.1 Simulation Setup  
 

Simulations were conducted to validate the performance of the proposed GA scheduling scheme. 
The response of the GA capacity allocation scheduling to variations in problem characteristics was 
investigated through simulations conducted in four distinct scenarios. Scenario 1 simulates six 
communication requests (denoted as 6 = [𝑆6, 𝐷6]). While Scenario 2 simulates ten communication 
requests (denoted as 10 = [𝑆10, 𝐷10]). These scenarios were simulated in two different topological 
structures, namely Topology 1 (𝑇1) and Topology 2 (𝑇2). Figure 2 shows a sample topology featuring 
the coordinates of six communication requests (Scenario 1) with corresponding sender and 
destination nodes–depicted in red and blue, respectively. The illustration captures the topology’s 
structure before and after entanglement purification. Initially, the topology comprises 64 nodes and 
112 edges. Following entanglement purification, Topology 1 has a revised total of 99 edges, while 
Topology 2 has 103 edges. The number of nodes remains constant. 
 

           
(a)                                 (b)             

Fig. 2. A topology sample of six communication requests (a) Topology 1: Initial 
topology structure (b) Topology 2: Revised topology structure after purification  

 
4.2 Performance Parameters 
 

Just as conventional data routing is assessed, the performance of GA scheduling is evaluated by 
calculating its average capacity utilization, 𝑈 and weighted throughput, 𝐹. Table 1 lists the notations 
adopted for computing the performance parameters. 

Average Capacity Utilization, 𝑈: The amount of routed traffic in the network is evaluated by 
calculating capacity utilization on every edge (𝑖, 𝑗). It is computed using the following Eq. (1): 
 

𝑈 =
1

𝑛
𝛴𝑖=0,   𝑗=0

𝑛−1,   𝑚−1𝑥𝑖,𝑗             (1) 

where 𝑚 = length of edge request, 𝑛 = number of edges, and 𝑥𝑖,𝑗 =
𝛴𝑟,𝑙𝑓𝑖,𝑗

𝑟,𝑙

𝑐𝑖,𝑗
∈ (0,1]. 
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Table 1 
Adopted notations 
Symbol Explanation 

𝒍 Path 
𝒅𝒓,𝒍 Path length 
𝑷𝒊𝒏 Probability of success 

𝒇𝒓,𝒍 Flow 

𝒇𝒊𝒋
𝒓,𝒍 Flow on passing edge (𝑖, 𝑗) 

𝑪𝒊𝒋 Edge capacity on passing edge (𝑖, 𝑗) 

𝑾𝒓 Weight of request  𝑟 

 
Weighted throughput, F: Besides capacity utilization, system throughput is another critical 

parameter to measure the performance of the routing algorithm. In routing terminology, system 
throughput is equivalent to the entanglement generation rate. The entanglement generation rate 
represents the number of successfully established entangled pairs in the network within a fixed time 
window. Considering the weights 𝑊𝑟 of each flow, we defined the system throughput associated with 
different connection requests as the cumulative total of weighted flow across all paths and requests, 
computed using the following Eq. (2): 
 

𝐹 =  ∑ 𝑊𝑟𝑟  ∑ 𝑓𝑟,𝑙𝑃
𝑖𝑛

𝑑
𝑟,𝑙−1

𝑙
            (2) 

 
Fitness function, 𝐹𝑡: Each individual (flow on edge) in the population is evaluated by a defined 

fitness function. The quality of each flow is indicated by its fitness score. A higher-quality flow returns 
a higher fitness score. Eq. (3) is used to compute the fitness score, which is the sum of average 
capacity utilization, 𝑈 and weighted throughput, 𝐹. 
 
𝐹𝑡 = 𝑈 + 𝐹              (3) 
 
4.3 Parameter Settings of GA Capacity Allocation Scheduling Scheme 
 

Several epochs (30, 40, 50, 60) and population sizes (50, 70, 90, 110) are used in the simulations 
to investigate their effect on the GA capacity allocation scheduling performance. The parameter 
settings used in the simulation scenarios are presented in Tables 2 and 3. A total of 320 simulation 
runs were conducted. Ten simulation runs are performed for each set of parameters to get the mean 
value of the average capacity utilization, 𝑈 and weighted throughput 𝐹. The results are averaged to 
account for the stochastic nature of the quantum system.  
 

Table 2 
The parameter settings used to investigate the 
effect of epochs on GA scheduling 

 Table 3 
The parameter settings used to investigate the 
effect of population sizes on GA scheduling 

Parameter Value  Parameter Value 

Epochs (E) 30, 40, 50, 60  Population size (𝑃𝑆) 50, 70, 90, 110 
Tournament size (𝑇𝑆) 5  Tournament size (𝑇𝑆) 5, 7, 9, 11 
Population size (𝑃𝑆) 50  Epochs (E) 30 
Number of crossovers  10  Number of crossovers 10 
Mutation rate (𝑀𝑅) 0.02  Mutation rate (𝑀𝑅) 0.02 

*The tournament size (TS) is 10% of the population        *The tournament size (TS) is 10% of the population 
size (PS)              size (PS) 
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5. Results and Discussion  
 

The performance of the proposed GA capacity allocation scheduling scheme is assessed by 
comparing its average capacity utilization, 𝑈 and weighted throughput, 𝐹 with Progressive Filling (PF) 
[6]. The primary objective of conducting the simulations is to investigate the impact of epochs (𝐸) 
and population sizes (𝑃𝑆) on the scheduling performance of the GA. Figures 3 to 6 illustrate the 
results of Scenario 1 and Scenario 2, which involve 6 and 10 communication requests simulated in 
Topology 1 (𝑇1) and Topology 2 (𝑇2). The GA scheduling employed parameter settings as presented 
in Tables 2 and 3. 

Figures 3 and 4 illustrate the average capacity utilization, 𝑈 and weighted throughput, 𝐹, 
respectively, under several epochs (E). Based on the results shown in Figure 3, GA consistently 
outperforms PF across all epochs. Additionally, the variations in average capacity utilization, 𝑈 among 
several epochs, are insignificant. Therefore, we conclude that 30 epochs are sufficient to optimize 
the average capacity utilization, 𝑈.  
 

       
(a) (b) 

Fig. 3. The average capacity utilization, 𝑈 of GA under several epochs (𝐸), compared with the PF. GA (E: x) 
denotes the simulation result under x epochs, where x varies as 30, 40, 50, and 60 (a) 6 communication 
requests (b) 10 communication requests 
 

         
(a) (b) 

Fig. 4. The weighted throughput, 𝐹 of GA under several epochs (𝐸), compared with the PF. GA (E: x) denotes 
the simulation result under x epochs, where x varies as 30, 40, 50, and 60 (a) 6 communication requests (b) 
10 communication requests 
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Figure 4 compares the weighted throughput, 𝐹 results of PF and GA under various epochs. Similar 
to average capacity utilization, 𝑈, the weighted throughput, 𝐹 results of GA consistently surpass PF 
throughout all epochs. Since the variations in weighted throughput, 𝐹, among several epochs are 
insignificant, we conclude that 30 epochs are sufficient to optimize the weighted throughput, 𝐹. 

The average capacity utilization, 𝑈 and weighted throughput, 𝐹 results of GA under different 
population sizes are presented in Figures 5 and 6, respectively. These results are also compared with 
the PF outcomes. The results shown in Figure 5 depict that GA performance is always better than PF 
across all population sizes. Compared to PF, GA best exploits edge capacities. Notable, the variations 
in average capacity utilization, 𝑈 among several population sizes, are insignificant. Therefore, we 
conclude that 50 population sizes are sufficient to optimize capacity utilization, as we aim to avoid 
PF surpassing GA in computation time. It is important to note that a larger population size 
necessitates more computation search time. 
 

          
(a) (b) 

Fig. 5. The average capacity utilization, 𝑈 of GA under different population sizes (𝑃𝑆), compared with the PF. 
GA (PS: y) denotes the simulation result under y population sizes, where y varies as 50, 70, 90, and 110 (a) 6 
communication requests (b) 10 communication requests 

 

          
(a) (b) 

Fig. 6. The weighted throughput, 𝐹 of GA under different population sizes (𝑃𝑆), compared with the PF. GA 
(PS: y) denotes the simulation result under y population sizes, where y varies as 50, 70, 90, and 110 (a) 6 
communication requests (b) 10 communication requests 
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In Figure 6, the weighted throughput, 𝐹 results of PF and GA are compared. The results 
demonstrate that across population sizes, the performance of GA consistently surpasses that of PF. 
Given the insignificance of variations in weighted throughput, 𝐹 results across multiple population 
sizes, we deduce that 50 population sizes are sufficient for optimizing the system’s throughput. 
 
5.1 Applications of the Proposed Genetic Algorithm Scheduling Scheme in the Relevant Domain 
 

This sub-section discusses the potential applications of the proposed GA scheduling scheme. The 
optimization capabilities of the GA scheduling scheme can be implemented across diverse domains, 
offering solutions that enhance efficiency, reduce costs, and improve overall system performance. 
The GA scheduling scheme can optimize schedules in project management timelines that involve 
numerous interdependent tasks and deadlines. It analyses various task sequences and duration 
combinations to identify the most efficient schedule. By considering dependencies, task priorities, 
and resource constraints, the scheme proposes schedules that minimize project duration, maximize 
resource utilization, and ensure timely task completion. Furthermore, in the investment sector, it can 
be used for portfolio optimization, guiding the allocation of investment resources based on market 
conditions. 

Next, the scheme optimizes vehicle routing and scheduling in transportation and logistics, 
ensuring efficient organization of deliveries. By considering critical parameters such as delivery time 
windows, urgency of deliveries, and the availability of vehicles, the proposed GA scheduling scheme 
can generate schedules that minimize waiting times, prevent delays, and make optimal use of 
available resources. It enhances the efficiency of the delivery process, contributing to cost savings 
and customer satisfaction. 

Subsequently, in the network communication domain, the scheme aids in identifying various 
resource allocation strategies by considering factors such as network traffic patterns, quality of 
service (QoS) requirements, and data priorities. In network communication, the timing and 
sequencing of data transmission are crucial to prevent bottlenecks and ensure smooth data flow. The 
scheduling scheme optimizes resource allocation and schedules data transmission to minimize 
congestion, improve network performance, and enhance efficiency in delivering diverse 
communication services. 
 
6. Conclusions 
 

The quantum internet has been proposed to proliferate the advancement of quantum 
technologies as it facilitates the transmission of quantum information between quantum devices. 
Numerous challenges must be overcome before a fully functional quantum internet can be realized. 
This paper addresses the limited and non-uniform edge capacity utilization through a proposed 
capacity allocation scheduling based on a Genetic Algorithm (GA). As the performance of the GA 
capacity allocation scheduling scheme is influenced by its parameter settings, parameter tuning is 
crucial. Therefore, we conducted parameter tuning to investigate the effect of epochs and population 
sizes on the performance of the proposed GA scheduling scheme. Based on the simulation results, 
we conclude that utilizing 30 epochs and a population size of 50 is sufficient to optimize the average 
capacity utilization, 𝑈 and weighted throughput, 𝐹 in each scenario.  
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