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This paper presents an AES-128 configuration designed specifically for IoT 
devices, utilizing 90nm CMOS technology. The architecture, developed in Verilog 
HDL and executed through Synopsys tools, incorporates a modified S-Box aimed 
at enhancing performance, area efficiency, and throughput. The motivation 
stems from the increasing security requirements of IoT applications, highlighting 
the need for robust data protection for resource-constrained devices. Versatile 
for IoT applications, this design handles standard input data block sizes of 128 
bits. It stands out as a purpose-built solution for securing digital communications 
in the IoT, overcoming unique challenges such as limited resources and 
fluctuating communication environments. The modified S-Box The altered S-Box 
bolsters security, aids in space optimization, and enhances efficiency compared 
to prevailing solutions. By using techniques to carefully modify replacement 
boxes, these designs deliver optimized performance from both a safety and 
space utilization perspective. Extensive validation work, including Synopsys tool 
testing and simulation, ensures the reliability of the proposed AES-128 design. It 
achieves a throughput of 14.54Mbps at a clock frequency of 100MHz while 
maintaining a compact footprint of 0.4324mm2 to meet the constraints of IoT 
devices. The practical implications of this design lie in the balance between 
performance and resource utilization, making it suitable for real-world IoT 
implementations. The utilization of a 128-bit key length augments security, 
rendering the proposed AES-128 an ideal choice for safeguarding data across 
diverse IoT applications.  
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1. Introduction 
 

The National Institute of Standards and Technology (NIST) published the Advanced Encryption 
Standard (AES) proposal call in 1997. The Rijndael algorithm, which adjusts the number of rounds 
required for each key size, was chosen as the AES algorithm.  
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It was created by scientists John Daemen and Vincent Rijmen to replace the encryption standards 
of the time, 3DES (Triple Data Encryption Standard), and IDES (International Data Encryption 
Algorithm) [1]. Phil Zimmermann states that cryptography is the mathematical encrypting and 
decrypting of data science. Cryptography is related to encryption, the change of information and data 
into a structure that is unusable by a non-authorized individual to access the data. Today, 
cryptography is more advanced than ever before. There are three types of cryptography; symmetric, 
asymmetric, and HASH function [1]. Symmetric cryptography, known as secret-key cryptography or 
conventional cryptography, is an encryption system in which the sender and receiver of a message 
share a single, common key to encrypt and decrypt the message. Symmetric cryptography is fast and 
efficient but requires the key to be shared securely between the sender and receiver [2].  

Examples of symmetric-key cryptography is Advanced Encryption System (AES), Data Encryption 
Standard (DES) and Fast Data Encipherment Algorithm (FEAL). Second is asymmetric cryptography, 
also known as public-key cryptography. It refers to cryptography that requires two separate keys, 
which is private and public keys. The public key is used to encrypt the message, and the private key 
is used to decrypt the message. It is more secure than symmetric cryptographic; however, it is slower 
and more computationally expensive [1]. An example of asymmetric cryptography is the RSA 
algorithm (Rivest-Shamir-Adleman). Last, the HASH function is another type of cryptography used for 
data integrity. It takes a message and produces fixed-size output, and its application is Secure Hash 
Algorithm (SHA) [3]. 

Advanced Encryption System (AES) is a widely used symmetric-key encryption for Internet of 
Things (IoT) applications due to its simplicity and low energy consumption [1]. IoT is mainly focused 
on low-power implementation of security algorithms because most are related to autonomous 
applications such as ultrathin sensory systems. These applications' power budgets are minimal to 
extend battery life [1]. For secure data transfer, the current IoT protocols IEEE 802.15.4, Low Power 
Wide Area Network (Lora WAN), and Sigfox use the AES algorithm. In the context of the IoT, machine-
to-machine (M2M), smart city, and industrial applications, Lora WAN is a Low Power Wide Area 
Network (LPWAN) protocol that enables affordable, mobile, and secure bi-directional 
communication [4]. Lora WAN stands out because it is one of the few IoT technologies that supports 
end-to-end encryption. The Lora WAN security primitives should meet the following requirements: 
high scalability, low power consumption, low cost, and low implementation complexity.  

In addition, the protocol provides mutual authentication, integrity protection, and confidentiality 
as security services. The AES-128 algorithm, employed to provide these cryptographic services, is run 
in The Counter (CTR) mode for encryption and Cipher-based message authentication (CMAC) mode 
for integrity protection. The protocol’s key characteristics include a data rate between 0.3 to 50 kbps, 
a maximum operating frequency of Ultrasonic Machining (USM) bands of 902 to 928 MHz and a 
bandwidth of around 125 kHz [5]. AES is more powerful, safe, and secure than DES because it uses a 
128, 192, or 256-bit key block cipher algorithm to convert a block of 128-bit message into ciphertext. 
The number of rounds for encryption will depend on the key length. As an example, the 128-bit key 
AES employs ten rounds of encryption. Plaintext is transformed into ciphertext throughout 
encryption and decryption operations and vice versa during the latter. Four distinct processes had to 
be taken for encryption and decryption [6]. Protection against unauthorized persons is the primary 
goal of encryption and decryption. Encryption protects information stored on a server or transmitted 
over the internet. Authorized users could access the data through decryption, which required the 
right key to reverse the encryption and retrieve the original data [6]. 

Application-Specific Integrated Circuit (ASIC) and Field Programmable Gate Arrays (FPGA) are two 
possible hardware platforms for the implementation of AES [7]. Numerous universal reconfigurable 
logic blocks coupled by reconfigurable interconnects, and switches make up an FPGA. Additionally, 
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modern FPGA contains embedded higher-level components. The performance characteristics for 
both ASIC and FPGA is almost identical and can make full use of parallel processing, pipelining, and 
operating on arbitrary size words. The main performance attribute that sets FPGA apart from ASIC is 
its slower speed, which is brought on by delays in the circuitry needed for reconfiguration. Both AES 
and FPGA are very similar in their hardware implementation approaches. The main distinction 
between the two is that FPGA does not require a physical layout, and the design cycle is quicker and 
less expensive as compared to using ASIC [8].  

The research article contributes in designing a modified AES-128 S-box architecture for resource 
constraints IoT devices aimed at enhancing performance, area, throughput and efficiency. The 
implementation in 90nm CMOS technology. The architecture is developed and executed through 
Synopsys EDA tools. The safety of data is ensured using 128-bit key in addition to space utilization 
perspective. The architecture maintains a foot print of 0.4324mm2 at 100MHz clock frequency and 
14.54 Mbps throughput. 
 
2. Methodology 
  

The project was conducted in three phases: Phase 1 involved research on the proposed project, 
defining suitable specifications for AES implementation in IoT, and developing a Verilog code for the 
AES architecture design. Phase 2 included the design simulation using Synopsys Tools, synthesis of 
the Verilog code, and static timing analysis. Phase 3 covered the layout design and design verification 
of the AES implementation. The process is illustrated in Figure 1. 
 

 
Fig. 1. Process of project 
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2.1 Architecture of S-Box 
 

The Verilog Code for the S-Box design in / is crafted by transitioning from a full custom schematic 
entry approach, wherein the original work employed meticulous manual placement and routing, to 
a comprehensive implementation in Verilog HDL for this project. Using a circuit reduction technique, 
the S-box design in Figure 2, which consists of Stage 1, inversion, and combination of multiplication 
in GF(24), merges the sub-component of the standard multiplicative inverse. Figure 2 illustrates this 
design. The hardware complexity of the circuit is optimized and reduced. Stage 1 comprises a single 
circuit addition, squaring in GF(24), multiplication in GF(24), and multiplication with constant. After 
multiplicative inversion, CombineXAXB is reduced for multiplication in GF(24). When compared to a 
normal circuit using a typical composite field architecture, this novel architecture has fewer gates. In 
this architecture it can perform both encryption and decryption. AND gates, multiplexer and XOR 
gates are implement in this architecture to achieve a compact AES implementation. The 

transformation of the composite field can be represented as 𝑏
𝐼𝑆𝑂
→ 𝑞

𝑀𝐼𝑁𝑉
→   𝑞′

𝐼𝑁𝑉𝐼𝑆𝑂
→    𝑏′

𝐴𝐹𝐹𝐼𝑁𝐸
→     𝑏′′ 

where, b are byte elements form state matrix, q are multiplicate inverse from isomorphic state, b’ 
elements after inverse isomorphic mapping and b’’ are element after affine transformation. As for 
the InvSubBytes is vice versa transformation can be represented as shown 

𝑏′′
𝐼𝑆𝑂
→ 𝑞′′

𝑀𝐼𝑁𝑉
→   𝑞′

𝐼𝑁𝑉𝐼𝑆𝑂
→    𝑞

𝐴𝐹𝐹𝐼𝑁𝐸
→     𝑏.  

 

 
Fig. 2. Proposed multiplicative inverse in GF(28) architecture 

 
The Affine transformation, AT operates on multiplicative inverse of GF(28)  bytes on, b of the 

State matrix represented by b’, while the inverse-affine transformation 𝐴𝑇−1 operates on isomorphic 
affine transformed GF(28) multiplicate inverse of same bytes, b represented by q’’. The resultant 
matrix operation of AT and 𝐴𝑇−1 is shown from Eq. (1) and (2) and can be translated into logical 
implementations using 12 XOR gates for each transformation. 
 

[𝐴𝑇(𝑏′)] =

[
 
 
 
 
 
 
 
𝑏′′0
𝑏′′1
𝑏′′2
𝑏′′3
𝑏′′4
𝑏′′5
𝑏′′6
𝑏′′7]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 𝑏′0 ⊕  𝑏′4 ⊕  𝑏′5 ⊕  𝑏′6 ⊕  𝑏′7̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑏′0 ⊕  𝑏′1 ⊕  𝑏′5 ⊕  𝑏′6 ⊕  𝑏′7̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑏′0 ⊕  𝑏′1 ⊕  𝑏′2 ⊕  𝑏′6 ⊕  𝑏′7
𝑏′0 ⊕  𝑏′1 ⊕  𝑏′2 ⊕  𝑏′3 ⊕  𝑏′7
𝑏′0 ⊕  𝑏′1 ⊕  𝑏′2 ⊕  𝑏′3 ⊕  𝑏′4

𝑏′1 ⊕  𝑏′2 ⊕  𝑏′3 ⊕  𝑏′4 ⊕  𝑏′5̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑏′2 ⊕  𝑏′3 ⊕  𝑏′4 ⊕  𝑏′5 ⊕  𝑏′6̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑏′3 ⊕  𝑏′4 ⊕  𝑏′5 ⊕  𝑏′6 ⊕  𝑏′7]
 
 
 
 
 
 
 
 

        (1) 
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[𝐴𝑇−1(𝑞′′)] =

[
 
 
 
 
 
 
 
 
𝑞′0

𝑞′1

𝑞′2

𝑞′3

𝑞′4

𝑞′5

𝑞′6

𝑞′7]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 𝑞′′2 ⊕  𝑞′′5 ⊕  𝑞′′7̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑞′′0 ⊕ 𝑞′′3⊕ 𝑞′′6

𝑞′′1 ⊕  𝑞′′4 ⊕  𝑞′′7̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑞′′0 ⊕ 𝑞′′2⊕ 𝑞′′5

𝑞′′1 ⊕ 𝑞′′3⊕ 𝑞′′6

𝑞′′2 ⊕ 𝑞′′4⊕ 𝑞′′7

𝑞′′0 ⊕ 𝑞′′3⊕ 𝑞′′5̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑞′′1 ⊕ 𝑞′′4⊕ 𝑞′′6 ]
 
 
 
 
 
 
 
 

         (2) 

 
Next, a new SubBytes and InvSubBytes proposed merging the sub-components in order to reduce 

the hardware complexity. In this architecture, it consists of Stage 1 and CombineXAXB circuit. Stage 
1 is the inversion and combination of multiplication in GF(24) and the CombineXAXB represents two 
multiplications in GF(24) after the Stage 1.  Stage 1 is an optimizes block logic for transformation of 
multiplication in GF(24), multiplication with constant lambda, squaring in GF(24), and module-
2addition merged in one circuit. Input for Stage 1 is 𝑤 = {𝑤3 𝑤2𝑤1, 𝑤0}2 and 𝑞 = {𝑞3𝑞2𝑞1𝑞0}2. The 
output is 𝑦 = {𝑦3𝑦2𝑦1𝑦0}2 and implemented by 𝑦 = {→ multiplication in GF(24) →
multiplication with 𝜆 → squaring in GF(24) → modulo − 2 Addition. Low complexity logic 
expression obtained for output; y of Stage 1 is in Eq. (3). 
 
𝑦3 = 𝑞3𝑞0𝑚0𝑤3𝑚1𝜕𝑚2𝜒𝑚3𝑄 
𝑦2 = 𝑘𝑞1𝑚0𝑤2𝑚1𝑤3𝑚2𝑣𝑚3𝜒 
𝑦1 = 𝑘𝑚0𝑤1𝑚1𝑥𝑚2𝜕𝑚3𝑤2 
𝑦0 = 𝑞2𝑚0𝑤0𝑚1𝑤1𝑚2𝑤3𝑚3𝜕           (3) 
 
Where, 𝜒 = 𝑤3𝑤1, 𝑣 = 𝑤2𝑤0, 𝜕 = 𝑤3𝑤2, 𝑥 = 𝑤0𝑤1, 𝑄 = 𝜒𝑣 and 𝑘 = 𝑞3𝑞2, 𝑚3 = 𝑞3𝑤3, 𝑚2 =
𝑞2𝑤2, 𝑚1 = 𝑞1𝑤1 and 𝑚0 = 𝑞0𝑤0. For the X module between Stage 1 and CombineXAXB, the input 
of the module is 𝑦 = {𝑦3 𝑦2 𝑦1 𝑦0}2 and the output is 𝜃 = {𝜃3 𝜃2 𝜃1 𝜃0}2. The formulation result is 
shown in Eq. (4). 
 
𝜃3 = 𝑦3�̅�0+𝑦2(𝑦3𝑦1̅̅ ̅̅ ̅̅ )  
𝜃2 = 𝑦3(𝑦0 ∪ 𝑦2) + 𝑦2𝑦1̅̅ ̅ 
𝜃1 = 𝑦1𝑦3𝑦2̅̅ ̅̅ ̅̅ + 𝑦3𝑦1𝑦0̅̅ ̅̅ ̅̅ + 𝑦2𝑦0̅̅ ̅ 
𝜃0 = (𝑦0 + 𝑦1)𝑦3𝑦2̅̅ ̅̅ ̅̅ + 𝑦2(𝑦0 ∪ 𝑦1̅̅ ̅)            (4) 
 
Where ∪ and + are OR gate and XOR gate implementation. 
 

The architecture of CombineXAXB is the merging of two multiplications in GF(24). This 
architecture helps to achieve low gate count for this architecture. The output is 𝐴 =
{𝐴7 𝐴6 𝐴5 𝐴4 𝐴3 𝐴2 𝐴1 𝐴0}2 and the input is 𝜃 = {𝜃3 𝜃2 𝜃1 𝜃0}2, 𝑚 = {𝑚3 𝑚2 𝑚1 𝑚0}2 and 𝑞 =
{𝑞3 𝑞2 𝑞1 𝑞0}2. The output equation for A is as follows in Eq. (5) to (7). 
 
𝐴7 = 𝑞0𝜃3 + 𝑞1(𝜃3 + 𝜃2) + 𝑞2(𝜃3 + 𝜃2 + 𝜃1 + 𝜃0) 
𝐴6 = 𝑞0𝜃2 + 𝑞1𝜃3 + 𝑞2(𝜃2 + 𝜃0) + 𝑞3(𝜃3 + 𝜃1) 
𝐴5 = 𝑞0𝜃1 + 𝑞1(𝜃1 + 𝜃0) + 𝑞2(𝜃3 + 𝜃2) + 𝑞3𝜃2 
𝐴4 = 𝑞0𝜃0 + 𝑞1𝜃1 + 𝑞2𝜃3 + 𝑞3(𝜃3 + 𝜃2) 
𝐴3 = 𝑚0𝜃3 +𝑚1(𝜃3 + 𝜃2) + 𝑚2(𝜃3 + 𝜃1) + 𝑚3(𝜃3 + 𝜃2 + 𝜃1 + 𝜃0) 
𝐴2 = 𝑚0𝜃2 +𝑚1𝜃3 +𝑚2(𝜃2 + 𝜃0) + 𝑚3(𝜃3 + 𝜃1) 



Journal of Advanced Research Design 

Volume 123, Issue 1 (2024) 131-145 

136 
 

𝐴1 = 𝑚0𝜃1 +𝑚1(𝜃1 + 𝜃0) + 𝑚2(𝜃3 + 𝜃2) + 𝑚3𝜃2 
𝐴0 = 𝑚0𝜃0 +𝑚1𝜃1 +𝑚2𝜃3 +𝑚3(𝜃3 + 𝜃2)          (5) 
 
2.2 Architecture of AES 
 

AES block diagrams are frequently utilized in symmetric encryption algorithms that work with 
data blocks of a predetermined size. Many essential components, including ShiftRows, MixColumns, 
AddRound keys, rounds with SubBytes, key expansion, and AES output, are usually included in the 
block diagram for AES implementation [9]. AES offers several key lengths (128, 192, or 256 bits). In 
order to be used in further encryption and decryption rounds, the key expands the original key into 
a collection of round keys [10]. Depending on the key size, the AES consists of 10 rounds for 128-bit 
keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. Figure 3 displays the architecture of 
AES. 

 
 Fig. 3. Architecture of AES 

 
2.3 Designs Constraints 
 

For the proposed AES design with 128-bit key length and 128-bit data path, certain design 
constraints are paramount for successful implementation. Using 90nm CMOS technology and 
Synopsys tools adds complexity and requires careful consideration of resource usage and 
performance. As described in the Verilog code, the use of a modified S-Box introduces important 
design constraints aimed at achieving area requirements of less than 1 mm2. This limitation highlights 
the need to maintain the robustness of the modified S-Box and optimize the implementation for 
space efficiency while preserving the security properties of the original AES algorithm. At the same 
time, the 10 Mbps minimum throughput requirement sets a performance threshold, forcing 
developers to strike a delicate balance between security and operational speed. Meeting these 
limitations requires a careful approach that includes thorough analysis, synthesis, and simulation 
using Synopsys tools to ensure that the proposed AES design strikes the desired balance between 
security, space utilization, and throughput. 
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2.4 RTL Description  
 

In the register transfer level (RTL) description of the proposed AES design, Verilog code defines 
the complex details of the system in detail. This architecture follows the Advanced Encryption 
Standard (AES) with a 128-bit key length and 128-bit data path. The design flow performed by 
Synopsys tools using 90nm CMOS technology is subject to certain design constraints. The key 
expansion module is carefully designed to generate the round keys required for subsequent rounds 
of encryption and decryption. Within a round, the algorithm implements the operations SubBytes, 
ShiftRows, and MixColumns according to the number of rounds specified by the 128-bit key length. 
The modified S-Box, which is structured in Verilog code and introduces innovative elements to 
achieve area sizes of less than 1 mm. This design choice focuses on space optimization without 
compromising the inherent security of the AES algorithm. Additionally, the system is designed to 
meet a minimum throughput requirement of 10 Mbps, highlighting the need for a harmonious 
balance between robust security and operational speed. The RTL description, synthesized and 
simulated using Synopsys tools, summarizes the complex interplay of cryptographic operations, 
technical considerations, and innovative changes within AES. 
 
3. Results  
 

This section provides an in-depth analysis of the proposed S-box architecture and its integration 
into the AES-128 encryption scheme. We begin by examining simulation results of the S-box and its 
sub-models, followed by an evaluation of the performance metrics specific to the proposed S-box. 
Subsequently, we discuss the impact of this S-box within the AES-128 structure and present design 
synthesis results to demonstrate feasibility. Finally, the section concludes with a comprehensive 
performance assessment of the full AES encryption scheme using the proposed S-box. 
 
3.1 Simulation Results of S-Box Architecture 
 

In the Verilog code provided to implement the AES, the top module serves as the top-level 
wrapper. It takes a clock signal ‘clk’ as input and produces a 128-bit ‘finalout’ output signal. Inside 
this module, an instance of the encryption module, named ‘u1’, is instantiated. Initialization includes 
specific constant values for the clock, 128-bit input data ‘datain’, and a 128-bit encryption key ‘key’. 
The output of the encryption module is connected to an internal wire ‘tempout’, and the lower 128 
bits of this wire are assigned to the final output. A test bench is provided to verify the functionality 
of the AES top module by simulation. The test bench initiates the clock signal ‘clk’, monitors the final 
output signal, and applies excitation to the system. The RTL design for proposed S-Box is shown in 
Figure 4. It includes clock initialization, global reset, stimulus application, and a monitoring block to 
observe behavior during the simulation. The simulation setup uses a time scale of 1 nanosecond per 
unit of simulation time and 1 picosecond per unit of temporal precision. Although Verilog code 
focuses on a simulation and functional verification environment, it does not explicitly specify 
parameters such as voltage levels or frequencies, which are important considerations when 
implementing real hardware implementation.  
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Fig. 4. RTL design for proposed S-Box 

 
3.1.1 Isomorphic mapping 
 

These submodules are constructed with relation of input and output to create the proposed S-
Box using their logical implementation for each submodule. Figure 5 shows the simulation result for 
Map T (isomorphic mapping). 
 

 
Fig. 5. Output waveform for Map T (isomorphic mapping) 

 
3.1.2 Inverse isomorphic mapping 
 

Inverse Map T brings the same function as the Map T submodules however operates vice versa. 
Figures 6 show the simulation result for inverse Map T. 
 

 
Fig. 6. Output waveform for inverse Map T (inverse isomorphic mapping) 
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3.1.3 Affine transformation 
 

The Affine transformation operates on isomorphic affine transformed GF (28) multiplicate inverse 
of the same bytes. Figure 7 shows the result output generated from Affine operation. 
 

 
Fig. 7. Output waveform for affine transformation 

 
3.1.4 Inverse Affine transformation 
 

The inverse Affine transformation operates vice-versa with the Affine. Figure 8 shows the result 
output generated from Inverse Affine operation. 
 

 
Fig. 8. Output waveform for inverse Affine transformation 

 
3.1.5 Stage 1 
 

Stage 1 includes logic optimization, multiplication with constant, squaring and addition included 
in one submodule. Figures 9 show simulation results for Stage 1. 
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Fig. 9. Output result for Stage 1 module 

 
3.1.6 Combine XAXB 
 

Combine XAXB is to minimize the multiplication in GF(24) after multiplicative inversion in GF(24). 
Figure 10 shows the simulation result for CombineXAXB. 
 

 
Fig. 10. Output waveform for combine XAXB module 

 
3.1.7 Simplification of multiplicative inverse of nibble in GF (24) 
 

The results obtained from the simulation of the X module, which operates as an intermediary 
component between Stage 1 and the CombineXAXB module, are comprehensively illustrated in 
Figure 11. This figure provides a detailed depiction of the module's behavior, showcasing how the X 
module contributes to the overall processing flow between these stages. 
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Fig. 11. Output waveform for multiplicative inverse of nibble 

 
3.1.8 S-Box 
 

Throughput for an S-box refers to how quickly it can process data, typically measured in bits per 
second (bps). Higher throughput means the S-box can handle more data efficiently, impacting the 
speed and responsiveness of cryptographic operations in a system. Achieving optimal throughput 
often involves trade-offs with factors like power consumption and implementation size. Figure 12 is 
the simulation result, and Eq. (6) is the throughput for the modified S-Box.  
 

 
Fig. 12. Output waveform for S-Box 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
128𝑏𝑖𝑡

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
=

128𝑏𝑖𝑡

5000 𝑝𝑠
= 3.2 𝑀𝑏𝑝𝑠         (6) 

 
3.2 Performance of Proposed S-Box 
 

In comparing various S-box implementations in Table 1, the proposed design on a 90nm process 
supports decryption with an operating frequency of 100MHz, a latency of 5ns, and a throughput of 
0.0256Gbps. Among the existing works, [11] in 2021 on a 40nm process stands out with the highest 
throughput of 26.667Gbps, but it does not support decryption. Jagata et al., [12] achieves a high 
throughput of 61.863Gbps but at a relatively low operating frequency of 25MHz. Works Lin et al., 
[13], Ahmad and Rezaul [7], and Teng et al., [11] strike a balance between throughput, power 
consumption, and area, with notable variations in operating frequency, latency, and supported 
features. Work Teng et al., [11] in 2021 on a 90 nm process achieves a high throughput of 9.639 Gbps 
but lacks decryption support. Ultimately, the choice between these designs should be made 
considering specific application requirements, including power constraints, area considerations, and 
the need for decryption functionality. 
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Table 1  
Performance of S-Box 
 Proposed S-box [13] [7] [11] [11] [11] [11] [12] 

Year 2023 2023 2021 2021 2021 2021 2021 2020 

Technology (nm) 90 40 130 90 90 40 40 - 
Voltage (V) - - 0.8 - - - - - 
Decryption yes yes yes no yes no yes yes 
Latency (ns) 5 0.8 - - - - - 80 
Frequency (MHz) 100 800 100 1024.82 1075.27 3333.33 3125 25 
Power (uW) - 299.6 7.33 - - - - 2.69 
Throughput (Gbps) 0.0256 6.4 0.8 9.639 8.602 26.667 25 61.863 
Area (um2) - 462.45 39.44 2769.84 3067.95 528.44 593.31 566.6 

 
3.3 AES-128  
 

In this section, the simulation of AES-128 encryption was successfully completed. In Figure 13, 
the result of AES-128 encryption with the following input is shown below. AES encryption will 
complete the encryption in 1100000 ps obtained from Figure 14. The performance of AES is analyzed 
based on equation on Eq. (7). The time to complete the encryption is 1100000 ps, thus the 
throughput is 11.63 Mbps. 
 

 
Fig. 13. Simulation results of AES-128 

 

 
Fig. 14. AES-128 complete encryption 
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𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
128𝑏𝑖𝑡

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
=

128𝑏𝑖𝑡

1100000 𝑝𝑠
= 14.54 𝑀𝐵𝑝𝑠        (7) 

 
3.4 Design Synthesis 
 

The error-free top-level module is loaded into Synopsys Design Compiler to undergo compilation 
along with design constraints, resulting in the generation of a gate-level netlist. This netlist is then 
exported in the .ddc file format named AES1.ddc. To assess the performance of the design, timing, 
area, and power analyses were conducted. The outcomes of these analyses are summarized in Table 
2, which presents the performance results of the design system. The results indicate that no timing 
violations were reported, as the timing slack exhibited a positive value. This indicates that the data 
required time exceeds the data arrival time, ensuring proper functionality. The latency depends on 
the design of AES-128. The result of latency obtained is 110000 ps. The throughput achieved from 
proposed design is 14.54 MBps, utilized 432490.54 um2. The proposed work is 78.21% slower than 
the reference work. 
 

Table 2  
Results summaries of timing analysis 
Design matrix Logical synthesis 

Timing slack (ns) 0 
Total area (um2) 432490.54 

 
3.5 Performance of Proposed AES 
 

The designed system, implemented in Verilog HDL, has been subjected to simulation and 
synthesis using Synopsys. Distinguishing itself with a 128-bit key length in comparison to prior efforts, 
Table 3 presents a comprehensive performance evaluation, encompassing throughput, frequency, 
key length, and area utilization for both the proposed design and preceding works. The proposed 
work, based on 90nm technology with a key length of 128-bit, exhibits a promising performance 
metric compared to various references in the field. It achieves a throughput of 0.01163Gbps with an 
area of 0.4324 mm2.  
 

Table 3  
Performance of proposed AES 
Design Tech (nm) Key  Frequency (MHz) Area (mm2) Throughput (Gbps) 

Proposed work 90 128 100 0.4324 0.01163 
[14] 90 128 100 22.724 0.0256 
[15] 45 128 870 0.13 111.3 
[16] 28 128 50 0.0028 0.03 
[17] 28 128 10 - 0.028 
[18] 65 128 130.9 0.014 - 
[18] 65 128 127.2 0.013 - 
[18] 65 128 10 0.0037 0.0165 
[19] 130 128 10 0.148 - 
[20] 45 128 100 6.32 128 

 
When compared to work Ali et al., [18], which shares the same technology node, key length and 

frequency, the proposed work lags behind in throughput but showcases efficiency in the terms of 
area utilization. Furthermore, against work [11], despite larger area utilization with 45 nm technology 
node, the proposed work demonstrated a superior throughput. In comparison to work [12], 
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Bahnasawi et al., [19] and Shanthi and Saravanan [5], the proposed work excels in throughput while 
maintaining competitive or smaller area utilization. However, consideration of trade-offs is necessary 
especially when assessing alternatives such as work [12], where technology nodes and areas present 
a nuanced comparison in terms of throughput and area efficiency, offering competitive edge in the 
domain of design tech. In conclusion, the proposed work holds promise in terms of throughput and 
area efficiency, though careful consideration of specific application requirements is advisable.  
 
5. Conclusions 
 

In conclusion, this study successfully achieved the objectives of designing, optimizing, and 
verifying AES algorithm using ASIC implementation. The AES was designed in 90 nm CMOS 
technology, utilizing the Synopsys Design Tool as a platform and Verilog HDL for system design. In 
AES encryption and decryption process, the standard length of input and output block is 128-bit, and 
the length of the key is proposed for 128-bit. The AES contains modified S-Box employs combinational 
logic using composite field arithmetic. The proposed S-Box in the AES managed to achieve a balance 
between low area, high performance and maintaining the requisite level of security. This optimization 
contributes to the overall efficiency of the AES architecture, ensuring the operations are performed 
with minimal resources utilization.   

However, the throughput achieved from proposed design is 11.63 Mbps, utilized 432490.54 um2. 
The proposed work is 78.21% slower than the reference work. The verification process for AES 
architecture encompassed functionality, timing, area, and performance. Rigorous testing using NIST 
sample vectors validated the accuracy of the output results, demonstrating flawless performance 
with minimal delays. It ensures that the ASIC implementation meets the requirement and provides a 
reliable and efficient cryptography operations. 
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