

Journal of Advanced Research Design 123, Issue 1 (2024) 131-145

131

Journal of Advanced Research Design

Journal homepage:
https://akademiabaru.com/submit/index.php/ard

ISSN: 2289-7984

Design of Advanced Encryption System (AES) Algorithm Using ASIC
Implementation for Internet of Things (IoT) Devices

Nabihah Ahmad1,2,*, Muhammad Hafiz Zamri1, Salman Ahmed1,3, Ardhi Wijayanto1,4, Suhaila Isaak5

1 Faculty of Electrical and Electronics Engineering, Universiti Tun Hussein Onn Malysia, Parit Raja, 86400, Johor Malaysia
2 VLSI and Embedded Technology (VEST) Focus group, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor Malaysia
3 Department of Electrical Engineering, Sukkur IBA University, Sukkur, 65200, Sindh, Pakistan
4 Universitas Sebelas Maret, Indonesia
5 Faculty of Electrical Engineering Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia

ARTICLE INFO ABSTRACT

Article history:
Received 14 April 2024
Received in revised form 18 November 2024
Accepted 16 December 2024
Available online 31 December 2024

This paper presents an AES-128 configuration designed specifically for IoT
devices, utilizing 90nm CMOS technology. The architecture, developed in Verilog
HDL and executed through Synopsys tools, incorporates a modified S-Box aimed
at enhancing performance, area efficiency, and throughput. The motivation
stems from the increasing security requirements of IoT applications, highlighting
the need for robust data protection for resource-constrained devices. Versatile
for IoT applications, this design handles standard input data block sizes of 128
bits. It stands out as a purpose-built solution for securing digital communications
in the IoT, overcoming unique challenges such as limited resources and
fluctuating communication environments. The modified S-Box The altered S-Box
bolsters security, aids in space optimization, and enhances efficiency compared
to prevailing solutions. By using techniques to carefully modify replacement
boxes, these designs deliver optimized performance from both a safety and
space utilization perspective. Extensive validation work, including Synopsys tool
testing and simulation, ensures the reliability of the proposed AES-128 design. It
achieves a throughput of 14.54Mbps at a clock frequency of 100MHz while
maintaining a compact footprint of 0.4324mm2 to meet the constraints of IoT
devices. The practical implications of this design lie in the balance between
performance and resource utilization, making it suitable for real-world IoT
implementations. The utilization of a 128-bit key length augments security,
rendering the proposed AES-128 an ideal choice for safeguarding data across
diverse IoT applications.

Keywords:

AES-128; IoT; S-Box; CMOS technology

1. Introduction

The National Institute of Standards and Technology (NIST) published the Advanced Encryption
Standard (AES) proposal call in 1997. The Rijndael algorithm, which adjusts the number of rounds
required for each key size, was chosen as the AES algorithm.

* Corresponding author.
E-mail address: nabihah@uthm.edu.my

https://doi.org/10.37934/ard.123.1.131145

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

132

It was created by scientists John Daemen and Vincent Rijmen to replace the encryption standards
of the time, 3DES (Triple Data Encryption Standard), and IDES (International Data Encryption
Algorithm) [1]. Phil Zimmermann states that cryptography is the mathematical encrypting and
decrypting of data science. Cryptography is related to encryption, the change of information and data
into a structure that is unusable by a non-authorized individual to access the data. Today,
cryptography is more advanced than ever before. There are three types of cryptography; symmetric,
asymmetric, and HASH function [1]. Symmetric cryptography, known as secret-key cryptography or
conventional cryptography, is an encryption system in which the sender and receiver of a message
share a single, common key to encrypt and decrypt the message. Symmetric cryptography is fast and
efficient but requires the key to be shared securely between the sender and receiver [2].

Examples of symmetric-key cryptography is Advanced Encryption System (AES), Data Encryption
Standard (DES) and Fast Data Encipherment Algorithm (FEAL). Second is asymmetric cryptography,
also known as public-key cryptography. It refers to cryptography that requires two separate keys,
which is private and public keys. The public key is used to encrypt the message, and the private key
is used to decrypt the message. It is more secure than symmetric cryptographic; however, it is slower
and more computationally expensive [1]. An example of asymmetric cryptography is the RSA
algorithm (Rivest-Shamir-Adleman). Last, the HASH function is another type of cryptography used for
data integrity. It takes a message and produces fixed-size output, and its application is Secure Hash
Algorithm (SHA) [3].

Advanced Encryption System (AES) is a widely used symmetric-key encryption for Internet of
Things (IoT) applications due to its simplicity and low energy consumption [1]. IoT is mainly focused
on low-power implementation of security algorithms because most are related to autonomous
applications such as ultrathin sensory systems. These applications' power budgets are minimal to
extend battery life [1]. For secure data transfer, the current IoT protocols IEEE 802.15.4, Low Power
Wide Area Network (Lora WAN), and Sigfox use the AES algorithm. In the context of the IoT, machine-
to-machine (M2M), smart city, and industrial applications, Lora WAN is a Low Power Wide Area
Network (LPWAN) protocol that enables affordable, mobile, and secure bi-directional
communication [4]. Lora WAN stands out because it is one of the few IoT technologies that supports
end-to-end encryption. The Lora WAN security primitives should meet the following requirements:
high scalability, low power consumption, low cost, and low implementation complexity.

In addition, the protocol provides mutual authentication, integrity protection, and confidentiality
as security services. The AES-128 algorithm, employed to provide these cryptographic services, is run
in The Counter (CTR) mode for encryption and Cipher-based message authentication (CMAC) mode
for integrity protection. The protocol’s key characteristics include a data rate between 0.3 to 50 kbps,
a maximum operating frequency of Ultrasonic Machining (USM) bands of 902 to 928 MHz and a
bandwidth of around 125 kHz [5]. AES is more powerful, safe, and secure than DES because it uses a
128, 192, or 256-bit key block cipher algorithm to convert a block of 128-bit message into ciphertext.
The number of rounds for encryption will depend on the key length. As an example, the 128-bit key
AES employs ten rounds of encryption. Plaintext is transformed into ciphertext throughout
encryption and decryption operations and vice versa during the latter. Four distinct processes had to
be taken for encryption and decryption [6]. Protection against unauthorized persons is the primary
goal of encryption and decryption. Encryption protects information stored on a server or transmitted
over the internet. Authorized users could access the data through decryption, which required the
right key to reverse the encryption and retrieve the original data [6].

Application-Specific Integrated Circuit (ASIC) and Field Programmable Gate Arrays (FPGA) are two
possible hardware platforms for the implementation of AES [7]. Numerous universal reconfigurable
logic blocks coupled by reconfigurable interconnects, and switches make up an FPGA. Additionally,

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

133

modern FPGA contains embedded higher-level components. The performance characteristics for
both ASIC and FPGA is almost identical and can make full use of parallel processing, pipelining, and
operating on arbitrary size words. The main performance attribute that sets FPGA apart from ASIC is
its slower speed, which is brought on by delays in the circuitry needed for reconfiguration. Both AES
and FPGA are very similar in their hardware implementation approaches. The main distinction
between the two is that FPGA does not require a physical layout, and the design cycle is quicker and
less expensive as compared to using ASIC [8].

The research article contributes in designing a modified AES-128 S-box architecture for resource
constraints IoT devices aimed at enhancing performance, area, throughput and efficiency. The
implementation in 90nm CMOS technology. The architecture is developed and executed through
Synopsys EDA tools. The safety of data is ensured using 128-bit key in addition to space utilization
perspective. The architecture maintains a foot print of 0.4324mm2 at 100MHz clock frequency and
14.54 Mbps throughput.

2. Methodology

The project was conducted in three phases: Phase 1 involved research on the proposed project,
defining suitable specifications for AES implementation in IoT, and developing a Verilog code for the
AES architecture design. Phase 2 included the design simulation using Synopsys Tools, synthesis of
the Verilog code, and static timing analysis. Phase 3 covered the layout design and design verification
of the AES implementation. The process is illustrated in Figure 1.

Fig. 1. Process of project

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

134

2.1 Architecture of S-Box

The Verilog Code for the S-Box design in / is crafted by transitioning from a full custom schematic
entry approach, wherein the original work employed meticulous manual placement and routing, to
a comprehensive implementation in Verilog HDL for this project. Using a circuit reduction technique,
the S-box design in Figure 2, which consists of Stage 1, inversion, and combination of multiplication
in GF(24), merges the sub-component of the standard multiplicative inverse. Figure 2 illustrates this
design. The hardware complexity of the circuit is optimized and reduced. Stage 1 comprises a single
circuit addition, squaring in GF(24), multiplication in GF(24), and multiplication with constant. After
multiplicative inversion, CombineXAXB is reduced for multiplication in GF(24). When compared to a
normal circuit using a typical composite field architecture, this novel architecture has fewer gates. In
this architecture it can perform both encryption and decryption. AND gates, multiplexer and XOR
gates are implement in this architecture to achieve a compact AES implementation. The

transformation of the composite field can be represented as 𝑏
𝐼𝑆𝑂
→ 𝑞

𝑀𝐼𝑁𝑉
→ 𝑞′

𝐼𝑁𝑉𝐼𝑆𝑂
→ 𝑏′

𝐴𝐹𝐹𝐼𝑁𝐸
→ 𝑏′′

where, b are byte elements form state matrix, q are multiplicate inverse from isomorphic state, b’
elements after inverse isomorphic mapping and b’’ are element after affine transformation. As for
the InvSubBytes is vice versa transformation can be represented as shown

𝑏′′
𝐼𝑆𝑂
→ 𝑞′′

𝑀𝐼𝑁𝑉
→ 𝑞′

𝐼𝑁𝑉𝐼𝑆𝑂
→ 𝑞

𝐴𝐹𝐹𝐼𝑁𝐸
→ 𝑏.

Fig. 2. Proposed multiplicative inverse in GF(28) architecture

The Affine transformation, AT operates on multiplicative inverse of GF(28) bytes on, b of the

State matrix represented by b’, while the inverse-affine transformation 𝐴𝑇−1 operates on isomorphic
affine transformed GF(28) multiplicate inverse of same bytes, b represented by q’’. The resultant
matrix operation of AT and 𝐴𝑇−1 is shown from Eq. (1) and (2) and can be translated into logical
implementations using 12 XOR gates for each transformation.

[𝐴𝑇(𝑏′)] =

[

𝑏′′0
𝑏′′1
𝑏′′2
𝑏′′3
𝑏′′4
𝑏′′5
𝑏′′6
𝑏′′7]

=

[

 𝑏′0 ⊕ 𝑏′4 ⊕ 𝑏′5 ⊕ 𝑏′6 ⊕ 𝑏′7̅̅ ̅̅

𝑏′0 ⊕ 𝑏′1 ⊕ 𝑏′5 ⊕ 𝑏′6 ⊕ 𝑏′7̅̅ ̅

𝑏′0 ⊕ 𝑏′1 ⊕ 𝑏′2 ⊕ 𝑏′6 ⊕ 𝑏′7
𝑏′0 ⊕ 𝑏′1 ⊕ 𝑏′2 ⊕ 𝑏′3 ⊕ 𝑏′7
𝑏′0 ⊕ 𝑏′1 ⊕ 𝑏′2 ⊕ 𝑏′3 ⊕ 𝑏′4

𝑏′1 ⊕ 𝑏′2 ⊕ 𝑏′3 ⊕ 𝑏′4 ⊕ 𝑏′5̅̅ ̅̅

𝑏′2 ⊕ 𝑏′3 ⊕ 𝑏′4 ⊕ 𝑏′5 ⊕ 𝑏′6̅̅ ̅̅

𝑏′3 ⊕ 𝑏′4 ⊕ 𝑏′5 ⊕ 𝑏′6 ⊕ 𝑏′7]

 (1)

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

135

[𝐴𝑇−1(𝑞′′)] =

[

𝑞′0

𝑞′1

𝑞′2

𝑞′3

𝑞′4

𝑞′5

𝑞′6

𝑞′7]

=

[

 𝑞′′2 ⊕ 𝑞′′5 ⊕ 𝑞′′7̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑞′′0 ⊕ 𝑞′′3⊕ 𝑞′′6

𝑞′′1 ⊕ 𝑞′′4 ⊕ 𝑞′′7̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑞′′0 ⊕ 𝑞′′2⊕ 𝑞′′5

𝑞′′1 ⊕ 𝑞′′3⊕ 𝑞′′6

𝑞′′2 ⊕ 𝑞′′4⊕ 𝑞′′7

𝑞′′0 ⊕ 𝑞′′3⊕ 𝑞′′5̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑞′′1 ⊕ 𝑞′′4⊕ 𝑞′′6]

 (2)

Next, a new SubBytes and InvSubBytes proposed merging the sub-components in order to reduce

the hardware complexity. In this architecture, it consists of Stage 1 and CombineXAXB circuit. Stage
1 is the inversion and combination of multiplication in GF(24) and the CombineXAXB represents two
multiplications in GF(24) after the Stage 1. Stage 1 is an optimizes block logic for transformation of
multiplication in GF(24), multiplication with constant lambda, squaring in GF(24), and module-
2addition merged in one circuit. Input for Stage 1 is 𝑤 = {𝑤3 𝑤2𝑤1, 𝑤0}2 and 𝑞 = {𝑞3𝑞2𝑞1𝑞0}2. The
output is 𝑦 = {𝑦3𝑦2𝑦1𝑦0}2 and implemented by 𝑦 = {→ multiplication in GF(24) →
multiplication with 𝜆 → squaring in GF(24) → modulo − 2 Addition. Low complexity logic
expression obtained for output; y of Stage 1 is in Eq. (3).

𝑦3 = 𝑞3𝑞0𝑚0𝑤3𝑚1𝜕𝑚2𝜒𝑚3𝑄
𝑦2 = 𝑘𝑞1𝑚0𝑤2𝑚1𝑤3𝑚2𝑣𝑚3𝜒
𝑦1 = 𝑘𝑚0𝑤1𝑚1𝑥𝑚2𝜕𝑚3𝑤2
𝑦0 = 𝑞2𝑚0𝑤0𝑚1𝑤1𝑚2𝑤3𝑚3𝜕 (3)

Where, 𝜒 = 𝑤3𝑤1, 𝑣 = 𝑤2𝑤0, 𝜕 = 𝑤3𝑤2, 𝑥 = 𝑤0𝑤1, 𝑄 = 𝜒𝑣 and 𝑘 = 𝑞3𝑞2, 𝑚3 = 𝑞3𝑤3, 𝑚2 =
𝑞2𝑤2, 𝑚1 = 𝑞1𝑤1 and 𝑚0 = 𝑞0𝑤0. For the X module between Stage 1 and CombineXAXB, the input
of the module is 𝑦 = {𝑦3 𝑦2 𝑦1 𝑦0}2 and the output is 𝜃 = {𝜃3 𝜃2 𝜃1 𝜃0}2. The formulation result is
shown in Eq. (4).

𝜃3 = 𝑦3�̅�0+𝑦2(𝑦3𝑦1̅̅ ̅̅ ̅̅)
𝜃2 = 𝑦3(𝑦0 ∪ 𝑦2) + 𝑦2𝑦1̅̅ ̅
𝜃1 = 𝑦1𝑦3𝑦2̅̅ ̅̅ ̅̅ + 𝑦3𝑦1𝑦0̅̅ ̅̅ ̅̅ + 𝑦2𝑦0̅̅ ̅
𝜃0 = (𝑦0 + 𝑦1)𝑦3𝑦2̅̅ ̅̅ ̅̅ + 𝑦2(𝑦0 ∪ 𝑦1̅̅ ̅) (4)

Where ∪ and + are OR gate and XOR gate implementation.

The architecture of CombineXAXB is the merging of two multiplications in GF(24). This
architecture helps to achieve low gate count for this architecture. The output is 𝐴 =
{𝐴7 𝐴6 𝐴5 𝐴4 𝐴3 𝐴2 𝐴1 𝐴0}2 and the input is 𝜃 = {𝜃3 𝜃2 𝜃1 𝜃0}2, 𝑚 = {𝑚3 𝑚2 𝑚1 𝑚0}2 and 𝑞 =
{𝑞3 𝑞2 𝑞1 𝑞0}2. The output equation for A is as follows in Eq. (5) to (7).

𝐴7 = 𝑞0𝜃3 + 𝑞1(𝜃3 + 𝜃2) + 𝑞2(𝜃3 + 𝜃2 + 𝜃1 + 𝜃0)
𝐴6 = 𝑞0𝜃2 + 𝑞1𝜃3 + 𝑞2(𝜃2 + 𝜃0) + 𝑞3(𝜃3 + 𝜃1)
𝐴5 = 𝑞0𝜃1 + 𝑞1(𝜃1 + 𝜃0) + 𝑞2(𝜃3 + 𝜃2) + 𝑞3𝜃2
𝐴4 = 𝑞0𝜃0 + 𝑞1𝜃1 + 𝑞2𝜃3 + 𝑞3(𝜃3 + 𝜃2)
𝐴3 = 𝑚0𝜃3 +𝑚1(𝜃3 + 𝜃2) + 𝑚2(𝜃3 + 𝜃1) + 𝑚3(𝜃3 + 𝜃2 + 𝜃1 + 𝜃0)
𝐴2 = 𝑚0𝜃2 +𝑚1𝜃3 +𝑚2(𝜃2 + 𝜃0) + 𝑚3(𝜃3 + 𝜃1)

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

136

𝐴1 = 𝑚0𝜃1 +𝑚1(𝜃1 + 𝜃0) + 𝑚2(𝜃3 + 𝜃2) + 𝑚3𝜃2
𝐴0 = 𝑚0𝜃0 +𝑚1𝜃1 +𝑚2𝜃3 +𝑚3(𝜃3 + 𝜃2) (5)

2.2 Architecture of AES

AES block diagrams are frequently utilized in symmetric encryption algorithms that work with
data blocks of a predetermined size. Many essential components, including ShiftRows, MixColumns,
AddRound keys, rounds with SubBytes, key expansion, and AES output, are usually included in the
block diagram for AES implementation [9]. AES offers several key lengths (128, 192, or 256 bits). In
order to be used in further encryption and decryption rounds, the key expands the original key into
a collection of round keys [10]. Depending on the key size, the AES consists of 10 rounds for 128-bit
keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. Figure 3 displays the architecture of
AES.

 Fig. 3. Architecture of AES

2.3 Designs Constraints

For the proposed AES design with 128-bit key length and 128-bit data path, certain design
constraints are paramount for successful implementation. Using 90nm CMOS technology and
Synopsys tools adds complexity and requires careful consideration of resource usage and
performance. As described in the Verilog code, the use of a modified S-Box introduces important
design constraints aimed at achieving area requirements of less than 1 mm2. This limitation highlights
the need to maintain the robustness of the modified S-Box and optimize the implementation for
space efficiency while preserving the security properties of the original AES algorithm. At the same
time, the 10 Mbps minimum throughput requirement sets a performance threshold, forcing
developers to strike a delicate balance between security and operational speed. Meeting these
limitations requires a careful approach that includes thorough analysis, synthesis, and simulation
using Synopsys tools to ensure that the proposed AES design strikes the desired balance between
security, space utilization, and throughput.

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

137

2.4 RTL Description

In the register transfer level (RTL) description of the proposed AES design, Verilog code defines
the complex details of the system in detail. This architecture follows the Advanced Encryption
Standard (AES) with a 128-bit key length and 128-bit data path. The design flow performed by
Synopsys tools using 90nm CMOS technology is subject to certain design constraints. The key
expansion module is carefully designed to generate the round keys required for subsequent rounds
of encryption and decryption. Within a round, the algorithm implements the operations SubBytes,
ShiftRows, and MixColumns according to the number of rounds specified by the 128-bit key length.
The modified S-Box, which is structured in Verilog code and introduces innovative elements to
achieve area sizes of less than 1 mm. This design choice focuses on space optimization without
compromising the inherent security of the AES algorithm. Additionally, the system is designed to
meet a minimum throughput requirement of 10 Mbps, highlighting the need for a harmonious
balance between robust security and operational speed. The RTL description, synthesized and
simulated using Synopsys tools, summarizes the complex interplay of cryptographic operations,
technical considerations, and innovative changes within AES.

3. Results

This section provides an in-depth analysis of the proposed S-box architecture and its integration
into the AES-128 encryption scheme. We begin by examining simulation results of the S-box and its
sub-models, followed by an evaluation of the performance metrics specific to the proposed S-box.
Subsequently, we discuss the impact of this S-box within the AES-128 structure and present design
synthesis results to demonstrate feasibility. Finally, the section concludes with a comprehensive
performance assessment of the full AES encryption scheme using the proposed S-box.

3.1 Simulation Results of S-Box Architecture

In the Verilog code provided to implement the AES, the top module serves as the top-level
wrapper. It takes a clock signal ‘clk’ as input and produces a 128-bit ‘finalout’ output signal. Inside
this module, an instance of the encryption module, named ‘u1’, is instantiated. Initialization includes
specific constant values for the clock, 128-bit input data ‘datain’, and a 128-bit encryption key ‘key’.
The output of the encryption module is connected to an internal wire ‘tempout’, and the lower 128
bits of this wire are assigned to the final output. A test bench is provided to verify the functionality
of the AES top module by simulation. The test bench initiates the clock signal ‘clk’, monitors the final
output signal, and applies excitation to the system. The RTL design for proposed S-Box is shown in
Figure 4. It includes clock initialization, global reset, stimulus application, and a monitoring block to
observe behavior during the simulation. The simulation setup uses a time scale of 1 nanosecond per
unit of simulation time and 1 picosecond per unit of temporal precision. Although Verilog code
focuses on a simulation and functional verification environment, it does not explicitly specify
parameters such as voltage levels or frequencies, which are important considerations when
implementing real hardware implementation.

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

138

Fig. 4. RTL design for proposed S-Box

3.1.1 Isomorphic mapping

These submodules are constructed with relation of input and output to create the proposed S-
Box using their logical implementation for each submodule. Figure 5 shows the simulation result for
Map T (isomorphic mapping).

Fig. 5. Output waveform for Map T (isomorphic mapping)

3.1.2 Inverse isomorphic mapping

Inverse Map T brings the same function as the Map T submodules however operates vice versa.
Figures 6 show the simulation result for inverse Map T.

Fig. 6. Output waveform for inverse Map T (inverse isomorphic mapping)

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

139

3.1.3 Affine transformation

The Affine transformation operates on isomorphic affine transformed GF (28) multiplicate inverse
of the same bytes. Figure 7 shows the result output generated from Affine operation.

Fig. 7. Output waveform for affine transformation

3.1.4 Inverse Affine transformation

The inverse Affine transformation operates vice-versa with the Affine. Figure 8 shows the result
output generated from Inverse Affine operation.

Fig. 8. Output waveform for inverse Affine transformation

3.1.5 Stage 1

Stage 1 includes logic optimization, multiplication with constant, squaring and addition included
in one submodule. Figures 9 show simulation results for Stage 1.

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

140

Fig. 9. Output result for Stage 1 module

3.1.6 Combine XAXB

Combine XAXB is to minimize the multiplication in GF(24) after multiplicative inversion in GF(24).
Figure 10 shows the simulation result for CombineXAXB.

Fig. 10. Output waveform for combine XAXB module

3.1.7 Simplification of multiplicative inverse of nibble in GF (24)

The results obtained from the simulation of the X module, which operates as an intermediary
component between Stage 1 and the CombineXAXB module, are comprehensively illustrated in
Figure 11. This figure provides a detailed depiction of the module's behavior, showcasing how the X
module contributes to the overall processing flow between these stages.

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

141

Fig. 11. Output waveform for multiplicative inverse of nibble

3.1.8 S-Box

Throughput for an S-box refers to how quickly it can process data, typically measured in bits per
second (bps). Higher throughput means the S-box can handle more data efficiently, impacting the
speed and responsiveness of cryptographic operations in a system. Achieving optimal throughput
often involves trade-offs with factors like power consumption and implementation size. Figure 12 is
the simulation result, and Eq. (6) is the throughput for the modified S-Box.

Fig. 12. Output waveform for S-Box

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
128𝑏𝑖𝑡

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
=

128𝑏𝑖𝑡

5000 𝑝𝑠
= 3.2 𝑀𝑏𝑝𝑠 (6)

3.2 Performance of Proposed S-Box

In comparing various S-box implementations in Table 1, the proposed design on a 90nm process
supports decryption with an operating frequency of 100MHz, a latency of 5ns, and a throughput of
0.0256Gbps. Among the existing works, [11] in 2021 on a 40nm process stands out with the highest
throughput of 26.667Gbps, but it does not support decryption. Jagata et al., [12] achieves a high
throughput of 61.863Gbps but at a relatively low operating frequency of 25MHz. Works Lin et al.,
[13], Ahmad and Rezaul [7], and Teng et al., [11] strike a balance between throughput, power
consumption, and area, with notable variations in operating frequency, latency, and supported
features. Work Teng et al., [11] in 2021 on a 90 nm process achieves a high throughput of 9.639 Gbps
but lacks decryption support. Ultimately, the choice between these designs should be made
considering specific application requirements, including power constraints, area considerations, and
the need for decryption functionality.

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

142

Table 1
Performance of S-Box
 Proposed S-box [13] [7] [11] [11] [11] [11] [12]

Year 2023 2023 2021 2021 2021 2021 2021 2020

Technology (nm) 90 40 130 90 90 40 40 -
Voltage (V) - - 0.8 - - - - -
Decryption yes yes yes no yes no yes yes
Latency (ns) 5 0.8 - - - - - 80
Frequency (MHz) 100 800 100 1024.82 1075.27 3333.33 3125 25
Power (uW) - 299.6 7.33 - - - - 2.69
Throughput (Gbps) 0.0256 6.4 0.8 9.639 8.602 26.667 25 61.863
Area (um2) - 462.45 39.44 2769.84 3067.95 528.44 593.31 566.6

3.3 AES-128

In this section, the simulation of AES-128 encryption was successfully completed. In Figure 13,
the result of AES-128 encryption with the following input is shown below. AES encryption will
complete the encryption in 1100000 ps obtained from Figure 14. The performance of AES is analyzed
based on equation on Eq. (7). The time to complete the encryption is 1100000 ps, thus the
throughput is 11.63 Mbps.

Fig. 13. Simulation results of AES-128

Fig. 14. AES-128 complete encryption

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

143

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
128𝑏𝑖𝑡

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
=

128𝑏𝑖𝑡

1100000 𝑝𝑠
= 14.54 𝑀𝐵𝑝𝑠 (7)

3.4 Design Synthesis

The error-free top-level module is loaded into Synopsys Design Compiler to undergo compilation
along with design constraints, resulting in the generation of a gate-level netlist. This netlist is then
exported in the .ddc file format named AES1.ddc. To assess the performance of the design, timing,
area, and power analyses were conducted. The outcomes of these analyses are summarized in Table
2, which presents the performance results of the design system. The results indicate that no timing
violations were reported, as the timing slack exhibited a positive value. This indicates that the data
required time exceeds the data arrival time, ensuring proper functionality. The latency depends on
the design of AES-128. The result of latency obtained is 110000 ps. The throughput achieved from
proposed design is 14.54 MBps, utilized 432490.54 um2. The proposed work is 78.21% slower than
the reference work.

Table 2
Results summaries of timing analysis
Design matrix Logical synthesis

Timing slack (ns) 0
Total area (um2) 432490.54

3.5 Performance of Proposed AES

The designed system, implemented in Verilog HDL, has been subjected to simulation and
synthesis using Synopsys. Distinguishing itself with a 128-bit key length in comparison to prior efforts,
Table 3 presents a comprehensive performance evaluation, encompassing throughput, frequency,
key length, and area utilization for both the proposed design and preceding works. The proposed
work, based on 90nm technology with a key length of 128-bit, exhibits a promising performance
metric compared to various references in the field. It achieves a throughput of 0.01163Gbps with an
area of 0.4324 mm2.

Table 3
Performance of proposed AES
Design Tech (nm) Key Frequency (MHz) Area (mm2) Throughput (Gbps)

Proposed work 90 128 100 0.4324 0.01163
[14] 90 128 100 22.724 0.0256
[15] 45 128 870 0.13 111.3
[16] 28 128 50 0.0028 0.03
[17] 28 128 10 - 0.028
[18] 65 128 130.9 0.014 -
[18] 65 128 127.2 0.013 -
[18] 65 128 10 0.0037 0.0165
[19] 130 128 10 0.148 -
[20] 45 128 100 6.32 128

When compared to work Ali et al., [18], which shares the same technology node, key length and

frequency, the proposed work lags behind in throughput but showcases efficiency in the terms of
area utilization. Furthermore, against work [11], despite larger area utilization with 45 nm technology
node, the proposed work demonstrated a superior throughput. In comparison to work [12],

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

144

Bahnasawi et al., [19] and Shanthi and Saravanan [5], the proposed work excels in throughput while
maintaining competitive or smaller area utilization. However, consideration of trade-offs is necessary
especially when assessing alternatives such as work [12], where technology nodes and areas present
a nuanced comparison in terms of throughput and area efficiency, offering competitive edge in the
domain of design tech. In conclusion, the proposed work holds promise in terms of throughput and
area efficiency, though careful consideration of specific application requirements is advisable.

5. Conclusions

In conclusion, this study successfully achieved the objectives of designing, optimizing, and
verifying AES algorithm using ASIC implementation. The AES was designed in 90 nm CMOS
technology, utilizing the Synopsys Design Tool as a platform and Verilog HDL for system design. In
AES encryption and decryption process, the standard length of input and output block is 128-bit, and
the length of the key is proposed for 128-bit. The AES contains modified S-Box employs combinational
logic using composite field arithmetic. The proposed S-Box in the AES managed to achieve a balance
between low area, high performance and maintaining the requisite level of security. This optimization
contributes to the overall efficiency of the AES architecture, ensuring the operations are performed
with minimal resources utilization.

However, the throughput achieved from proposed design is 11.63 Mbps, utilized 432490.54 um2.
The proposed work is 78.21% slower than the reference work. The verification process for AES
architecture encompassed functionality, timing, area, and performance. Rigorous testing using NIST
sample vectors validated the accuracy of the output results, demonstrating flawless performance
with minimal delays. It ensures that the ASIC implementation meets the requirement and provides a
reliable and efficient cryptography operations.

Acknowledgement
This research was supported by Ministry of Higher Education (MOHE) through Fundamental Research
Grant Scheme (FRGS/1/2022/TK07/UTHM/02/20).

References
[1] Liu, Shilin, Yongzhen Li, and Zhexue Jin. "Research on Enhanced AES Algorithm Based on Key Operations." In 2023

IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), p. 318-322. IEEE,
2023. https://doi.org/10.1109/ICCASIT58768.2023.10351719

[2] Sandhya Rani, M., R. Rekha, and K. V. N. Sunitha. "Secure Group Key Exchange and Encryption Mechanism in
MANETs." In Innovations in Computer Science and Engineering: Proceedings of the Fifth ICICSE 2017, p. 383-390.
Springer Singapore, 2019. https://doi.org/10.1007/978-981-10-8201-6_43

[3] Cobb, Michael. “RSA algorithm (Rivest-Shamir-Adleman).” TechTarget and Informa, 2021.
[4] Rajasekar, P., and H. Mangalam. "Design and implementation of power and area optimized AES architecture on

FPGA for IoT application." Circuit World 47, no. 2 (2020): 153-163. https://doi.org/10.1108/CW-04-2019-0039
[5] Shanthi Rekha, S., and P. Saravanan. "Low-cost AES-128 implementation for edge devices in IoT

applications." Journal of Circuits, Systems and Computers 28, no. 04 (2019): 1950062.
https://doi.org/10.1142/S0218126619500622

[6] Sousi, Ahmad-Loay, Dalia Yehya, and Mohamad Joudi. "Aes encryption: Study & evaluation." CCEE552:
Cryptography and Network Security (2020).

[7] Ahmad, Nabihah, and SM Rezaul Hasan. "A new ASIC implementation of an advanced encryption standard (AES)
crypto-hardware accelerator." Microelectronics Journal 117 (2021): 105255.
https://doi.org/10.1016/j.mejo.2021.105255

[8] Nabil, Mohamed, Ashraf AM Khalaf, and Sara M. Hassan. "Design and implementation of pipelined and parallel
AES encryption systems using FPGA." Indonesian Journal of Electrical Engineering and Computer Science 20, no. 1

(2020): 287-299. https://doi.org/10.11591/ijeecs.v20.i1.pp287-299

https://doi.org/10.1109/ICCASIT58768.2023.10351719
https://doi.org/10.1007/978-981-10-8201-6_43
https://doi.org/10.1108/CW-04-2019-0039
https://doi.org/10.1142/S0218126619500622
https://doi.org/10.1016/j.mejo.2021.105255
https://doi.org/10.11591/ijeecs.v20.i1.pp287-299

Journal of Advanced Research Design

Volume 123, Issue 1 (2024) 131-145

145

[9] Hamzah, Hidayarni, Nabihah Ahmad, and Siti Hawa Ruslan. "The 128-bit AES design by using FPGA." In Journal of
Physics: Conference Series, vol. 1529, no. 2, p. 022059. IOP Publishing, 2020. https://doi.org/10.1088/1742-
6596/1529/2/022059

[10] Hamzah, Hidayarni, Nabihah Ahmad, M. Hairol Jabbar, and Chin Fhong Soon. "AES S-Box/Inv S-Box Optimization
Using FPGA Implementation." Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 9, no. 3-
8 (2017): 133-136.

[11] Teng, You-Tun, Wen-Long Chin, Deng-Kai Chang, Pei-Yin Chen, and Pin-Wei Chen. "VLSI architecture of S-box with
high area efficiency based on composite field arithmetic." IEEE Access 10 (2021): 2721-2728.
https://doi.org/10.1109/ACCESS.2021.3139040

[12] Jagata, Sridevi, Ganapathi Hegde, and N. S. Murty. "High Throughput Pipelined S-Boxes for Encryption and
Watermarking Applications." In 2020 International Conference on Smart Electronics and Communication (ICOSEC),
p. 710-715. IEEE, 2020. https://doi.org/10.1109/ICOSEC49089.2020.9215252

[13] Lin, Shih-Hsiang, Jun-Yi Lee, Chia-Chou Chuang, Narn-Yih Lee, Pei-Yin Chen, and Wen-Long Chin. "Hardware
Implementation of High-Throughput S-Box in AES for Information Security." IEEE Access 11 (2023): 59049-59058.
https://doi.org/10.1109/ACCESS.2023.3284142

[14] Noor, Safwat Mostafa, and Eugene B. John. "Resource shared galois field computation for energy efficient AES/CRC
in IoT applications." IEEE Transactions on Sustainable Computing 4, no. 4 (2019): 340-348.
https://doi.org/10.1109/TSUSC.2019.2943878

[15] Dong, Pham-Khoi, Hung K. Nguyen, and Xuan-Tu Tran. "A 45nm high-throughput and low latency aes encryption
for real-time applications." In 2019 19th International Symposium on Communications and Information
Technologies (ISCIT), pp. 196-200. IEEE, 2019. https://doi.org/10.1109/ISCIT.2019.8905235

[16] Lu, Minyi, Ao Fan, Jiaming Xu, and Weiwei Shan. "A compact, lightweight and low-cost 8-bit datapath AES circuit
for IOT applications in 28nm CMOS." In 2018 17th IEEE International Conference On Trust, Security And Privacy In
Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE), pp. 1464-1469. IEEE, 2018. https://doi.org/10.1109/TrustCom/BigDataSE.2018.00204

[17] Bui, Duy-Hieu, Diego Puschini, Simone Bacles-Min, Edith Beigné, and Xuan-Tu Tran. "AES datapath optimization
strategies for low-power low-energy multisecurity-level internet-of-things applications." IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 25, no. 12 (2017): 3281-3290. https://doi.org/10.1109/TVLSI.2017.2716386

[18] Ali, Liakot, Ishak Aris, Fakir Sharif Hossain, and Niranjan Roy. "Design of an ultra high speed AES processor for next
generation IT security." Computers & Electrical Engineering 37, no. 6 (2011): 1160-1170.
https://doi.org/10.1016/j.compeleceng.2011.06.003

[19] Bahnasawi, Mohamed A., Khalid Ibrahim, Ahmed Mohamed, Mohamed Khalifa Mohamed, Ahmed Moustafa,
Kareem Abdelmonem, Yehea Ismail, and Hassan Mostafa. "ASIC-oriented comparative review of hardware security
algorithms for internet of things applications." In 2016 28th International Conference on Microelectronics (ICM), p.
285-288. IEEE, 2016. https://doi.org/10.1109/ICM.2016.7847871

[20] Rashidi, Bahram. "High-throughput and lightweight hardware structures of HIGHT and PRESENT block
ciphers." Microelectronics Journal 90 (2019): 232-252. https://doi.org/10.1016/j.mejo.2019.06.012

https://doi.org/10.1088/1742-6596/1529/2/022059
https://doi.org/10.1088/1742-6596/1529/2/022059
https://doi.org/10.1109/ACCESS.2021.3139040
https://doi.org/10.1109/ICOSEC49089.2020.9215252
https://doi.org/10.1109/ACCESS.2023.3284142
https://doi.org/10.1109/TSUSC.2019.2943878
https://doi.org/10.1109/ISCIT.2019.8905235
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00204
https://doi.org/10.1109/TVLSI.2017.2716386
https://doi.org/10.1016/j.compeleceng.2011.06.003
https://doi.org/10.1109/ICM.2016.7847871
https://doi.org/10.1016/j.mejo.2019.06.012

