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Mutation testing (MT) is a gold standard way to assess the efficacy of software test 
suites. However, the accuracy of mutation score is affected by the presence of trivial 
mutants which can be “killed” by even the simplest and most basic test suites. Since 
the existence of trivial mutants is due to the fixed set of mutation operators that 
constraints the complexity of code mutations, state-of-the-art recurrent neural 
network (RNN) model is used for sequence-to-sequence (seq2seq) code mutation 
without relying on mutation operators. However, the quality of the produced mutants 
is affected by the limitation of RNN in interpreting the relationships between far-apart 
tokens of the code to be mutated. Transformers that do not have this limitation, have 
superseded RNN in seq2seq machine translation domains such as natural language 
processing (NLP). However, to the best of our knowledge, there is still no research that 
investigates the performance of transformers in seq2seq code mutation. This paper 
presents a comparison study that involves different variants of the non-pre-trained 
transformers, the transformers pre-trained with source code, the transformers pre-
trained with natural language, and the state-of-the-art RNN model in seq2seq code 
mutation. The results show that transformers pre-trained with source code, especially 
CodeT5, demonstrated the best performance, achieving an average character n-gram 
F-score (CHRF) of 82.89 and superior code mutation complexity. Since the performance 
of transformers in seq2seq code mutation has not been previously investigated, the 
primary contribution of this paper is the best performing transformer for seq2seq code 
mutation. It establishes the foundation for the future research that proposes an 
integrated solution which addresses both the high-cost problem and the inaccurate 
mutation score problem of MT simultaneously, unlike existing solutions which only 
tackle one of the MT problems and give rise to other MT problems. 
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1. Introduction 
 

Software test suite quality in terms of sufficiency and fault-detection capability, needs to be 
emphasized because test suites play a crucial role in guiding the software testing process. To measure 
software test suite quality, mutation score is a better metric than code coverage because it verifies 
whether the program states of the software under test (SUT) are indeed reachable by propagating 
the injected faults to the observable output, while code coverage only verifies if a part of the SUT’s 
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code is executed by the test suite [1]. Mutation testing (MT) needs to be conducted to calculate 
mutation score. However, MT is affected by problems such as the presence of trivial mutants which 
affect the accuracy of mutation score [2, 3]. Trivial mutants are mutants that have injected faults 
which can be easily detected or “killed” by any test suites including the simple and lacking ones. This 
problem has caused the low adoption rate of MT in the industry and poses a threat to the validity of 
test suite quality improvement approaches proposed by the academia which use mutation score as 
a validation metric [4]. Ideally, the injected faults should resemble real faults made by software 
developers for effective assessment of software test suite efficacy during MT [5, 6]. It is difficult to 
produce mutants with realistic faults if the degree of code mutation is constrained by a fixed set of 
mutation operators [7]. Citing from natural language processing (NLP) and machine translation 
approaches by Tufano et at., [8] uses recurrent neural network (RNN) to mutate code in a sequence-
to-sequence (seq2seq) manner without relying on mutation operators. However, the quality of the 
mutants is affected by the limitation of RNN in capturing relationships between tokens that are far 
apart in the input code sequence [9].  

After the introduction of transformers, there are researchers in the NLP and machine translation 
field that adopt transformers instead of RNNs, as reported by Stefenon et al., [10] and Ghani et al., 
[11]. This is because transformers can capture complex relationships between tokens in the input 
sequence, even those that are far apart, by interpreting the sequence tokens simultaneously [10, 12]. 
In the case of code mutation for MT, there is an existing approach that uses transformer to produce 
mutants [13]. However, that transformer-based approach does not produce mutants with multiple 
code modifications with a single prediction in a seq2seq manner as the transformer only have 
encoder which only predicts a replacement token for the code sequence that have one removed 
token.  

To date, there are many researchers that use pre-trained transformers such as CodeT5 and 
PLBART for seq2seq source code-related tasks such as code summarization and programming 
language translation [14-16]. However, to the best of our knowledge, there is no research that 
investigates the performance of non-pre-trained transformers and pre-trained transformers in 
generating mutants with realistic faults in a seq2seq manner. Meanwhile, existing research shows 
that are transformer that is pre-trained using natural language corpora performs better than 
transformer that is pre-trained using source code corpora in some source code-related tasks [17]. 
Hence, in this paper, we will investigate and compare the performances of original non-pre-trained 
transformer, transformers pre-trained with source code corpora, and transformers pre-trained with 
natural language corpora, in translating input code sequences into mutated code sequence for MT. 
The research questions of this paper are as follows; 

 
RQ 1. Do the pre-trained transformers perform better than the non-pre-trained transformer 

and the state-of-the-art RNN in mutating code? 
RQ 2. Does the type of pre-training data and the pre-training method influence the transformers 

in the downstream task of seq2seq code mutation? 
RQ 3. What are the characteristics of the mutants produced by the non-pre-trained 

transformers, the transformers pre-trained with source code corpora, the transformers 
pre-trained with natural language, and the state-of-the-art RNN model? 
 

Since the performance of transformers in seq2seq code mutation has not been previously 
investigated, the primary contribution of this paper is the best performing transformer for seq2seq 
code mutation. It establishes the foundation for the future research that proposes an integrated 
solution which addresses both the high-cost problem and the inaccurate mutation score problem of 
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MT simultaneously, unlike existing solutions which only tackle one of the MT problems and give rise 
to other MT problems. In other words, the research contribution can help to address the research 
gap identified in our previously published systematic literature review paper [18]. 

 
2. Background and Related Work 
2.1 Mutation Testing (MT) 

 
MT is a gold standard technique for verifying the efficacy of a software test suite in terms of 

sufficiency and fault-finding capability [19]. During conventional MT, the code of the SUT is modified 
to produce mutants, which are faulty versions of the SUT [19]. The nature of the code modification 
depends on the type of mutation operator that is applied. For example, applying the relational 
operator replacement (ROR) operator changes “<” token in the code to “<=”, as shown in Figure 1. 
Then, the mutants are executed against the test suite and compared with the test execution results 
of the original SUT. If the test suite can differentiate between the original SUT and a mutant by 
producing different test outputs, then the mutant is considered killed [20]. Ideally, the injected faults 
should resemble real faults made by software developers for effective assessment of software test 
suite efficacy [5, 6]. 

After all mutants have been executed and compared with the original SUT, the mutation score, 
which measures the test suite’s efficacy, is calculated [21]. The mutation score is the proportion of 
killed mutants among the non-equivalent mutants as shown in Eq. (1). Equivalent mutants are 
mutants which are impossible to be killed because they tend to produce the same output as the 
original unmutated SUT [22]. They need to be identified manually among the alive mutants and be 
discarded so that the mutation score will not become inaccurate. As for the mutants that remains 
alive after mutant execution, they can be used as a guideline to improve the test suite coverage. 
 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑢𝑡𝑎𝑛𝑡𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
 (1) 

 
2.2 Mutation Testing (MT) Problems 
 

One of the problems that causes low adoption of MT in the software industry is the presence of 
unproductive trivial mutants. The case study by Petrovic et al., [4] found out that software developers 
are reluctant to adopt MT because there are too many unproductive trivial mutants that cannot lead 
to test suite improvements. Trivial mutants are mutants that can be killed by any test suites including 
the ones that are simple and lacking [2, 3]. Killing a large number of trivial mutants can lead to high 
but misleading mutation score. The high mutation score does not really reflect that the test suite has 
high fault detection capability. Figure 1 shows an example of trivial mutants, if “<” in line 6 is mutated 
to become “<=”, any test suites that involve with the execution of this code scope will encounter an 
out-of-bounds exception and causes an increase in mutation score. If many of such mutants exist in 
the mutant population, the mutation score accuracy will be undermined. 
 

 
Fig. 1. Example of trivial mutants 

 



Journal of Advanced Research Design 

Volume 123, Issue 1 (2024) 45-65 

48 
 

The factors that cause the trivial mutant problem (TMP) includes the usage of first order mutants 
(FOM) which only have one code modification in each mutant. FOMs may not be able to simulate 
real faults that are usually complex. The empirical analysis by Gopinath et al., [6] shows that typical 
software faults involve more than 3 tokens. Besides, the fixed set of mutation operators that don’t 
have enough expressiveness to create realistic artificial faults will also cause TMP [7]. Another factor 
that causes TMP is the code mutation process that blindly choose the code parts to be mutated 
without considering the full context of the code that will be mutated [23]. 

Even for small sized SUT, it is possible to generate a large number of mutants and many of them 
are trivial mutants [24]. The large number of mutants which caused the MT process to become time 
consuming have led companies such as the large international safety critical system company 
interviewed by Vercacmmen et al., [25] to refuse the adoption of MT. Even though the empirical 
analysis results show that MT will not be costly if only the productive non-trivial mutants are involved 
[4], however, it is difficult to find the useful subset of mutants among the large mutant population.  

Existing solutions of TMP include the usage of higher order mutants (HOM) which have more than 
one code modification in each mutant [26]. HOM is said to be better at simulating the real software 
faults that are usually complex [26]. However, search strategies [27, 28] to find the useful subset of 
HOMs is required because the number of FOM combinations that can form HOMs is exponential 
while some HOMs can be as trivial as FOMs [29]. Useful HOMs are those that have artificial faults 
which cannot be simulated by any individual FOMs [29]. Moreover, the degree of code mutation 
found in HOMs is still limited by the fixed set of mutation operators [7]. Meanwhile, the approach 
proposed in this paper uses transformer to produce mutants in a seq2seq manner and does not 
require the usage of mutation operators. 

To reduce the reliance on mutation operators, some researchers propose to mutate code by 
applying bug patterns extracted from bug reports [23]. In contrast to our approach proposed in this 
paper, this method does not involve deep learning to learn bug patterns or to decide the mutation 
location in the code. There are also ML-based approaches that can mutate code without involving 
mutation operators. For instance, Tufano et al., [8] uses RNN which is trained using pairs of buggy 
code and related fixed code to mutate code in a seq2seq manner. However, RNNs are not very 
proficient at capturing relationships between tokens that are far apart in the code sequence [9], and 
as a result, they may produce mutants with syntax errors. Different from that RNN-based approach, 
our approach proposed in this paper uses transformers which can capture complex relationships 
between tokens in the input sequence, even those that are far apart, by interpreting the sequence 
tokens simultaneously. Degiovanni and Papadakis [13] adopt an encoder-only transformer to avoid 
the drawbacks of RNN. However, the encoder-only transformer only predicts a replacement token 
for the code sequence that have one removed token. In other words, the encoder-only transformer 
does not produce mutants with multiple mutated code parts in a seq2seq manner like the RNN. In 
contrary, the transformer-based approach proposed in this paper possess both encoder and decoder 
to mutate code in a seq2seq manner. The input is the code to be mutated while the output is the 
mutated code. Table 1 shows the comparison between the transformer-based approach proposed in 
this paper and the existing solutions of TMP. 
 
2.3 Sequence to Sequence (seq2seq) 
 

Sequence-to-sequence (seq2seq) is a machine learning (ML) field that involves the generation of 
an output sequence from an input sequence. It is widely implemented in NLP and time series data 
forecasting [11, 10]. Many researchers adopt RNN that can handle sequential data of varying lengths 
are used. However, since RNN is poor at handling the dependency between tokens that are located 
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far apart from each other in the sequence, researchers opt to use RNN variants such as long short-
term memory (LSTM) or gated recurrent unit (GRU) that have memory mechanisms so that it can 
perform better in interpreting the dependencies between far-apart tokens [30].  

LSTM and GRU may not be able to achieve optimal accuracy if the prediction requires parallel 
interpretations of the tokens in the sequence because LSTM and GRU process tokens in a sequential 
manner. This has been caused by Chen et al., [30] to adopt a dense network of simple recurrent units 
to address the parallelism problem. Meanwhile, there are also researchers who form RNN ensembles 
with other ML models such as graph convolutional network to increase accuracy [31]. 

Since the introduction of transformers by Vaswani et al., [12], researchers began to adopt 
transformers for seq2seq learning tasks. Transformers have self-attention mechanism that allows 
them to interpret the tokens in the input sequence simultaneously. As a result, transformers can 
perform better than RNN in interpreting far-apart tokens in the input sequence while producing 
output. 
 
2.4 Transformer 
 

Similar to RNN, transformers also have encoder and decoder that allow it to perform seq2seq 
task. One notable application of Seq2seq transformer is ChatGPT which is a popular artificial 
intelligence-powered chatbot. Meanwhile, encoder-only transformers are used for non-seq2seq 
tasks, such as making decisions from time series input data [32]. The popularity of transformers has 
given rise to the existence of many pre-trained transformer models. Examples of pre-trained 
transformer models with both encoder and decoder, suitable for seq2seq learning, include CodeT5, 
PLBART, Pegasus, and Prophetnet [14, 15, 33, 34]. The pre-trained transformers have readily 
initialized weights that result from the pre-training process. The pre-trained transformer needs to be 
fine-tuned using domain specific dataset before they can be utilized for downstream tasks. 

The pre-trained transformers differ with each other in terms of the type of data used for pre-
training, pre-training methods and the way they process tokens in the input sequence. For instance, 
CodeT5 and PLBART are pre-trained with source code corpora while Pegasus and Prophetnet are pre-
trained with natural language corpora. Unlike PLBART which treats the source code corpora similarly 
to how NLP pre-trained transformers treat the natural language corpora, CodeT5 labels the code 
tokens in the dataset as identifiers and non-identifiers during pre-training. Meanwhile, Prophetnet 
predicts n future tokens for the output and uses the information from these future tokens to predict 
additional future tokens for the output sequence. 
 

Table 1 
Comparison between the proposed transformer-based approach and the existing TMP solutions 
Difference  Proposed Transformer-

based Approach 
RNN-based Approach by 
Tufano et al., [8] 

Masked token 
prediction using 
encoder-only 
transformer by 
Degiovanni and 
Papadakis [13] 

Higher Order 
Mutation [26-
29] 

Way to generate 
mutants.  

Generate mutants in 
seq2seq manner after 
learning from bug-fix 
dataset. 

Generate mutants in 
seq2seq manner after 
learning from bug-fix 
dataset. 

Randomly remove a 
code token and use 
an encoder-only 
transformer to 
predict the 
replacement. 
 

Apply multiple 
mutation 
operators to 
the code 
randomly. 
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Complexity of 
code mutations. 

Not limited. Not limited. Limited by the 
number or location of 
randomly removed 
code tokens. 

Limited by the 
fixed set of 
mutation 
operators. 

Consideration of 
code context 
during code 
mutations. 

Good at interpreting 
far-apart code tokens 
relationships to 
determine the code 
statements to be 
mutated and the nature 
of code mutations. 

Poor in interpreting the 
far-apart code tokens 
relationship to carry out 
code mutations. 

Can interpret far-
apart code token 
relationships but not 
mutating code in 
seq2seq manner. 

Not 
considered. 

Choice of 
mutation 
location in the 
code. 

Determined by the 
transformer model 
based on the structure 
of the code that will be 
mutated. 

Determined by the RNN 
model based on the 
structure of the code that 
will be mutated but 
limited by RNN weakness 
in interpreting far-apart 
code token relationships. 

Random. Code token 
is removed randomly 
for the encoder-only 
transformer to 
predict a 
replacement token. 

Mutation 
operators are 
randomly 
applied to the 
code. 

Structure of 
machine learning 
model (if any). 

Non-pre-trained or pre-
trained transformers 
with encoder and 
decoder layers. 

RNN with encoder and 
decoder layers. 

Encoder-only 
transformers. 

No machine 
learning model. 

 
3. Methodology 
 

After studied the background of MT and current situation of TMP, as well as the existing related 
works about TMP solutions, the three research questions (RQs) listed in section 1 above are 
formulated to guide this research. To provide the answers to the three RQs, the non-pre-trained 
transformer variants, and the pre-trained transformer variants are developed, trained, and fine-
tuned using the bug-fix dataset by Tufano et al., [8]. Then, the CHRF scores of the mutants that are 
produced by the transformer variants and the mutants produced by the state-of-the-art RNN, will be 
compared. Lastly, the generated mutants will be manually analysed to assess the nature of code 
mutations. The following subsections explain the development and training of the transformer model 
variants, as well as the steps to compare the performance of the machine learning models in 
generating mutants in seq2seq manner. Figure 2 shows the methodology flow of this study. 
 
3.1 Development of Transformers Training, Fine-tuning, and Inference Code 
 

The transformer models that will be involved in the experiment are non-pre-trained transformers 
with different number of encoder and decoder layers, transformers pre-trained with source code 
corpora which are CodeT5 and PLBART, as well as transformers pre-trained with natural language 
corpora which are Pegasus and Prophetnet. For all ML models, the training and testing dataset will 
use the same dataset as the state-of-the-art RNN. This is to ensure proper performance comparisons. 
The training dataset and testing dataset consist of pairs of fixed code and corresponding buggy code. 
All the code sequences in the dataset have been abstracted to ease the model training. For example, 
the variable, “studentNumber” is abstracted into “var_1” while the string, “operation completed 
successfully” is abstracted into “string_1”. Figure 3 shows the structure of transformer model. The 
input of the transformers is the code that will be mutated while the output is the mutated code. 

By utilizing the PyTorch neural network module, the training code for non-pre-trained 
transformers is developed. In this case, five variants of the training code are written to compare the 
performance of non-pre-trained transformers with 1, 2, 3, 4, and 5 encoder and decoder layers in 
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seq2seq code mutation. Besides, the inference code to test the non-pre-trained transformers is also 
developed. Listing 1 shows the algorithm of the training code of the non-pre-trained transformers, 
while Listing 2 shows the related inference code. The training process will be carried out for 500 
epochs, as most models tend to converge by the 500th epochs, as shown in Figure 4. 
 
Listing 1 
Training code algorithm of the non-pre-trained transformers 
 
Input: Training dataset containing pairs of fixed code and corresponding buggy code 
 
Output: Trained transformer model with n encoder-decoder layers for seq2seq code mutation 
 
Initialization: 
Import the required libraries such as PyTorch 
 
Initialize variables such as the number of epochs (500), batch size (16), and learning rate (3e-4) 
 
Set n number of encoder and decoder layers 
 
Load the training dataset containing fixed and buggy source code 
 
Check for GPU availability and set the device accordingly 
 
Initialize transformer from Pytorch nn.Transformer module with the parameters 
 
Initialize the Adam optimizer and a learning rate scheduler 
 
Define the loss function (Cross-Entropy Loss) 
 
Tokenize dataset 
 
Training loop: 
 
For each epoch in the range [1, number of epochs]: 
 
For each data batch: 
 
Get input and target sequences 
 
Perform forward pass, compute the loss, and update the model parameters 
 
Record training loss 
 
Save model checkpoint 
 
Calculate the training loss 
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Save and plot the training loss 
 
Listing 2 
Inference code algorithm of the non-pre-trained transformers 
 
Input: Trained transformer model with n encoder-decoder layers, and test dataset with code  to 
be mutated and corresponding buggy code for comparison 
 
Output: Mutants, training loss graph, mutant CHRF score 
 
Initialization: 
Import the required libraries such as PyTorch 
 
Check for GPU availability and set the device accordingly 
 
Load saved trained transformer model 
 
Load test data that consists of fixed code to be mutated, and corresponding buggy code for 
comparison 
 
Testing loop: 
 
For each code to be mutated in test dataset 
 
Load the code into the model to produce mutants 
 
Calculate the CHRF score of the produced mutants based on corresponding buggy code in the test 
dataset 
 
Calculate average CHRF score 
 
Save mutants and CHRF score to the output file 

 
As for the training of pre-trained transformers, the pre-trained models are loaded from Hugging 

Face, which is a hosting platform of ML models. Then, the code that fine-tunes the pre-trained 
transformers with the training dataset is developed. Besides, inference code is also developed to test 
the performance of non-pre-trained transformers in seq2seq code mutation. Listing 3 shows the 
algorithm of the fine-tuning code of the pre-trained transformers, while Listing 4 shows the related 
inference code. The training process will be carried out for 30 epochs, as most models tend to 
converge by the 30th epochs, as shown in Figure 5. Too many epochs may cause over-fitting. 
 
Listing 3 
Fine-tuning code algorithm of the pre-trained transformers 
 
Input: Training dataset containing pairs of fixed and buggy sentences 
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Output: Fine-tuned pre-trained transformer model (CodeT5, PLBART, Pegasus, or Prophetnet) for 
mutant generation 
 
Initialization: 
Import the required libraries, including transformers, PyTorch, and other libraries 
 
Initialize variables such as the number of epochs (30), batch size (16), and learning rate (1e-5) 
 
Check for GPU availability and set the device accordingly 
 
Load the training dataset containing fixed and buggy source code 
 
Load a pre-trained model and tokenizer (CodeT5, PLBART, Pegasus, or Prophetnet) 
 
Model Training: 
 
Move the pre-trained model to the GPU if available 
 
Define the optimizer (AdamW) and loss function (CrossEntropyLoss) 
 
Training Loop: 
 
For each epoch in the range [1, number of epochs]: 
 
Shuffle the training examples to ensure randomness 
 
For each data batch: 
 
Tokenize the input and target sentences using the tokenizer 
 
Create batch tensors for input and target code sequences as well as attention mask 
 
Perform forward pass, compute the loss, and update the model parameters 
 
Save the model checkpoint at the end of each epoch and record training loss 
 
Calculate the training loss 
 
Save and plot the training loss 
 
Listing 4 
Inference code algorithm of the pre-trained transformers 
 
Input: Fine-tuned pre-trained transformer model (CodeT5, PLBART, Pegasus, or Prophetnet) & test 
dataset with code to be mutated and corresponding buggy code for comparison 
 
Output: Mutants, training loss graph, mutant CHRF score 
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Initialization: 
Import the required libraries, including transformers, PyTorch, and other libraries 
Check for GPU availability and set the device accordingly 
 
Load a pre-trained model and tokenizer 
 
Load the checkpoint that was saved during training 
 
Load test data that consists of fixed code to be mutated, and corresponding buggy code for 
comparison 
 
Testing loop: 
 
For each code to be mutated in test dataset 
 
Load the code into the model to produce mutants 
 
Calculate the CHRF score of the produced mutants based on corresponding buggy code in the test 
dataset 
 
Calculate average CHRF score 
 
Save mutants and CHRF score to the output file 
 
3.2 Machine Learning (ML) Models Performance Comparison and Mutant Analysis 
 

All the training code and fine-tuning code are run in a Python environment with access to P100 
GPUs. Throughout the training or fine-tuning process, the training loss is recorded and plotted into a 
line graph for analysis. After training, the resulting ML models are loaded into the inference code, 
which mutates the code sequences in the test dataset and compare the mutated code with the real 
buggy code in the test dataset. The similarity between the produced mutants and the real buggy code 
is measured in terms of character n-gram F-score (CHRF).  

Similar to BLEU score used in experiment by Tufano et al., [8], CHRF score is also a metric that is 
used to evaluate the quality of machine translated sentences. It computes the similarity between the 
generated mutants with the target mutation pattern in the test dataset based on character n-grams. 
In this research, CHRF score is used instead of BLEU score because, according to the empirical analysis 
by Evtikhiev et al., [35], CHRF score is closer to human assessment of machine translated sentence 
quality. CHRF score can be calculated using Eq. (2) where CHRP and CHRR represents precision and 
recall, respectively while 𝛽 is the importance of recall with respect to precision [36].  
 

𝐶𝐻𝑅𝐹 = (1 +  𝛽)
𝐶𝐻𝑅𝑃 .  𝐶𝐻𝑅𝑅

𝛽2.𝐶𝐻𝑅𝑃+𝐶𝐻𝑅𝑅
         (2) 

 
Lastly, for every ML models, 10 mutants are randomly selected so that their characteristics can 

be manually analysed. Due to space constraint, this paper will only illustrate a subset of the manually 
analysed mutants in Table 4 until Table 10. The full list of the manually analysed mutants can be 
founded in the online appendix [37]. This process is necessary because CHRF scores alone is not 
sufficient to gauge the quality of the produced mutants as it is not necessary for the produced 
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mutants to be exactly the same as the buggy code in the test dataset. If a ML model can produce a 
sufficiently complex code mutation while maintaining syntax correctness, it can be considered 
satisfactory. 

 

Fig. 2. Methodology flow of this study 

 

 
Fig. 3. Structure of transformer model 
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4. Results and Discussion 
 
RQ1. Do the pre-trained transformers perform better than the non-pre-trained transformer and the 
state-of-the-art RNN in mutating code? 

 
The average CHRF score of the mutants produced by the state-of-the-art RNN is 51.68. Before we 

can start judging whether the pre-trained transformers can perform better than the non-pre-trained 
ones in seq2seq code mutation, we need to first compare whether the mutants produced by the 
transformers is better than the state-of-the-art RNN. Based on the average CHRF score collected 
during the experiment as shown in Table 2 and Table 3, it is clear that transformers are capable of 
learning the bug patterns from the bug-fix dataset and use the knowledge to mutate the input code 
sequences. With its self-attention mechanism, positional encoding of input sequence tokens and the 
behaviour of interpreting input sequence tokens simultaneously, the transformers are able to 
preserve the structure of the code such as function definitions, appropriate braces, and function 
implementations, while injecting appropriate code mutations. All investigated transformer variants 
except Prophetnet, can generate mutants that have average CHRF scores of more than 70, and they 
are significantly higher than that of the state-of-the-art RNN (51.68). The high average CHRF scores 
indicate that the mutations made to the code in the test dataset are mostly resemble to the desired 
mutation patterns which are adapted from the real buggy code made by software developers.  

CHRF scores alone is not sufficient to gauge the quality of the produced mutants as it is not 
necessary for the produced mutants to be exactly the same as the buggy code in the test dataset. 
During the manual analysis of the randomly selected mutants, we found out that the state-of-the-art 
RNN is more likely to produce mutants with syntax error compared to transformers. For example, as 
shown in Table 4, the mutants produced by the state-of-the-art RNN have “catch” scope immediately 
after “if” scope instead of “try” scope. The syntax error is likely due to the weakness of RNN in 
interpreting the dependencies between the code tokens that are far apart with each other. 
Meanwhile, the mutants produced by the state-of-the-art RNN also have simpler code mutation, 
unlike the transformer-generated mutants which have more complex code mutations such as 
changing conditional scope contents, addition of method calls, and wrapping method calls with 
conditional statements. The more complex code mutations are more capable to simulate real 
software faults for better MT. 

 
Table 2 
Final training loss, training time, and mutant CHRF score of non-pre-trained transformers 
Number of encoder-decoder layers 1 2 3 4 5 

Final loss 0.169029 0.045685 0.023704 0.017047 0.045188 
Training time 9290 15504 21605 27897 34218 
CHRF score 58.27 70.20 71.32 71.16 72.19 

 
Table 3 
Final training loss, training time, and mutant CHRF score of pre-trained transformers 
Type CodeT5 PLBart Pegasus Prophetnet  

Final loss 0.001756 0.001189 0.009221 0.000838 
Training Time 62547 86400 134220 183120 
CHRF score 82.89 79.61 80.48 30.26 
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Table 4 
RNN tend to produce mutants with syntax error 
Example ID Code Type Code 

eg8 Original code public void METHOD_1 ( TYPE_1 VAR_1 , int id ) { for ( TYPE_2 VAR_2 : new 
java.util.ArrayList ( VAR_3 ) ) { VAR_3 . remove ( VAR_2 ) ; VAR_4 . METHOD_2 
( VAR_2 ) ; } METHOD_3 ( ) ; METHOD_4 ( ) ; } 

RNN-mutated 
code 

public void METHOD_1 ( TYPE_1 VAR_1 , TYPE_1 VAR_2 ) { if ( VAR_1 != null ) { 
VAR_2 . METHOD_2 ( ) ; } catch ( TYPE_1 VAR_3 ) { VAR_3 . METHOD_3 ( ) ; } } 
//useless mutant with syntax error 

eg9 Original code public void METHOD_1 ( TYPE_1 status ) { if ( status . METHOD_2 ( ) ) { } else { 
TYPE_2 . METHOD_4 ( VAR_1 , ( STRING_1 + ( status . METHOD_5 ( ) ) ) ) ; 
METHOD_6 ( ) ; } } 

RNN-mutated 
code 

public void METHOD_1 ( TYPE_1 event ) { super . METHOD_1 ( ) ; if ( ( VAR_1 ) 
!= null ) { METHOD_2 ( ) ; } catch ( TYPE_1 VAR_1 ) { METHOD_3 ( ) ; } } 
//useless mutant with syntax error 

 
Since it is now proven that transformers can perform better than the state-of-the-art RNN in 

seq2seq code mutation, we can now focus on investigating whether the pre-trained transformers 
can perform better than the non-pre-trained ones in seq2seq code mutation. Among the investigated 
pre-trained transformers, CodeT5 and PLBART are pre-trained with source code corpora while 
Pegasus and Prophetnet are pre-trained using natural language corpora. Except Prophetnet, all other 
pre-trained transformers can produce mutants that have average CHRF scores which are higher than 
that of the non-pre-trained transformers. Besides, as shown in Figure 4 and Figure 5, the pre-trained 
transformers also converge faster than the non-pre-trained transformers. This shows that the pre-
initialized weights of the pre-trained transformers can contribute to improve the performance of the 
transformers in interpreting the input source code sequences. During pre-training, the transformers 
learn to interpret the syntax or structures of source code or natural languages. However, the results 
show that fine-tuning the pre-trained transformers for the downstream task of seq2seq code 
mutation, requires longer time than training non-pre-trained transformers for the same task.  

During the manual analysis of the generated mutants, we found out that all the investigated pre-
trained transformers except Prophetnet are more likely to produce mutants which are closer in 
nature to the real bugs. For example, as shown in Table 5, the difference between the buggy code 
and the corresponding fixed code from the test dataset is the presence of a conditional statement, 
the pre-trained PLBART and CodeT5 are able to mutate the fixed code and produce a mutant with 
removed conditional statement. The produced mutants are similar in nature with the buggy code 
from the test dataset. On the other hand, the pre-trained transformers except Prophetnet are also 
less likely to produce mutants with syntax errors compared to non-pre-trained transformers. For 
example, as shown in Table 6, the non-pre-trained transformer produced mutants with syntax errors. 
Meanwhile, none of the ten manually analysed mutants produced by Pegasus, PLBART and CodeT5 
have syntax errors. 

In short, the results justified that pre-trained transformers especially CodeT5 and PLBART which 
previously only tested with other seq2seq downstream tasks such as source code summarization and 
source code programming language translation, is also capable for seq2seq code mutation. 
Moreover, they also performed better than all investigated non-pre-trained transformers. 
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Fig. 4. Training loss of non-pre-trained transformers 

 

 
Fig. 5. Fine-tuning loss of pre-trained transformers 

 
Table 5 
CodeT5 and PLBART are able to produce mutants with the expected nature 
Example ID Code Type Code 

eg4 Original code private static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { double 
sum = 0 ; for ( double i : p ) { if ( i > 0 ) sum -= i * ( TYPE_1 . METHOD_2 ( i ) ) ; } return 
sum ; } 

Expected 
mutation 

private static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { double 
sum = 0 ; for ( double i : p ) { sum -= i * ( TYPE_1. METHOD_2 ( i ) ) ; } return sum ; } 
//expectation: remove the enclosing “if” 

CodeT5-
mutated 
code 

private static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { double 
sum = 0 ; for ( double i : p ) { sum -= i * ( TYPE_1. METHOD_2 ( i ) ) ; } return sum ; } 
//produced mutant with expected nature 

PLBART-
mutated 
code 

private static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { double 
sum = 0 ; for ( double i : p ) { sum += TYPE_1. METHOD_2 ( i ) ; } return sum ; } 
//produced mutant with expected nature 
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Table 6 
Unlike the pre-trained transformer, the non-pre-trained transformer may produce mutants with syntax error 
Code Type Example ID Code 

Original code eg1 public void METHOD_1 ( ) { METHOD_3 ( ) ; if ( ( VAR_3 ) != null ) VAR_3 . 
METHOD_1 ( VAR_2 ) ; } 

eg4 private static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { 
double sum = 0 ; for ( double i : p ) { if ( i > 0 ) sum -= i * ( TYPE_1 . METHOD_2 ( i ) ) 
; } return sum ; } 

Code by non-
pre-trained 5-
layer 
transformer 

eg1 native void method_1 ( ) ; java.lang.system.out.println ( ( string_1 + ( method_2 ( ) ) 
) ; method_3 ( ) ; if ( ( var_3 ) != null ) var_3 . method_1 ( var_2 ) ; } //useless 
mutant with syntax error 

eg4 static double method_1 ( java.util.arraylist < java.lang.double > p ) { double sum = 0 
; for ( double i : p ) { if ( i < sum > 0 ) sum -= type_1 . method_2 ( i ) ; } return sum ; } 
//useless mutant with syntax error 

CodeT5-
mutated code 

eg1 public void METHOD_1 ( ) { if ( ( VAR_1 ) >= ( VAR_2 ) ) { VAR_3. METHOD_1 ( 
VAR_2 ) ; } METHOD_2 ( ) ; METHOD_3 ( ) ; } //mutant with no syntax error 

eg4 private static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { 
double sum = 0 ; for ( double i : p ) { sum -= i * ( TYPE_1. METHOD_2 ( i ) ) ; } return 
sum ; } //no syntax error 

PLBART-
mutated code 

eg1 
 

public void METHOD_1 ( ) { VAR_1 = METHOD_2 ( ) ; METHOD_3 ( ) ; if ( ( VAR_3 )!= 
null ) VAR_3. METHOD_1 ( VAR_2 ) ; } //mutant with no syntax error 

eg4 private static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { 
double sum = 0 ; for ( double i : p ) { sum += TYPE_1. METHOD_2 ( i ) ; } return sum ; 
} //mutant with no syntax error 

Pegasus-
mutated code 

eg1 public void METHOD_1 ( ) { if ( ( ( VAR_1 )!= null ) && ( ( VAR_2 )!= null ) ) { 
METHOD_2 ( ) ; METHOD_3 ( ) ; if ( ( VAR_3 )!= null ) VAR_3. METHOD_1 ( VAR_2 ) ; 
} } //mutant with no syntax 

eg4 public static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { double 
sum = 0 ; for ( double i : p ) { if ( i < 0 ) sum -= i * ( TYPE_1. METHOD_2 ( x, 0 ) ) ; } 
return sum ; } //mutant with no syntax 

 

RQ2. Does the type of pre-training data and the pre-training method influence the transformers in 
the downstream task of seq2seq code mutation? 

 
Among the four investigated transformers, CodeT5 and PLBART are the ones which are pre-

trained with source code datasets. The average CHRF score that show CodeT5 is the best performing 
pre-trained transformer for seq2seq code mutation, justified that the pre-training process which 
involves code identifier tagging is indeed useful to improve the performance of transformers in 
interpreting source code structure. PLBART yields a slightly inferior CHRF score compared to CodeT5 
while producing code mutation, because its pre-training process treats the source code datasets like 
normal natural language datasets.  

Meanwhile, Pegasus and Prophetnet are pre-trained with natural language datasets. The results 
show Pegasus did surprisingly well in seq2seq code mutation while Prophetnet yields a very inferior 
performance. One assumption that can be made here is that Pegasus is pre-trained with text 
summarizations. Since Pegasus is pre-trained with text summarizations, one assumption that can be 
made is that the nature of summarizing text is quite similar to code mutation. So, fine-tuning Pegasus 
with the bugfix datasets can allow Pegasus to produce mutants in seq2seq manner as expected. On 
the other hand, Prophetnet is pre-trained to predict tokens and possible future tokens, which their 
information is then used as extra guidance to predict more future tokens for the output. One 
assumption that can be inferred from the poor Prophetnet performance is that, predicting possible 
future tokens may be suitable only for natural language which words at the latter part of the sentence 
can be more easily guessed based on a few words the early part of the sentence, as for our 
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downstream task about seq2seq source code mutation, the appropriate code tokens in the latter 
part of the output sequence may not be accurately guessed based on the information of the code 
tokens at the early part of the code sequence. The poor performance of Prophetnet proven that, 
apart from pre-training datasets, the method of pre-training will also greatly influence the 
performance of the transformers in performing downstream tasks, which in this case, seq2seq code 
mutation. 

 
RQ3. What are the characteristics of the mutants produced by the non-pre-trained transformers, the 
transformers pre-trained with source code corpora, the transformers pre-trained with natural 
language, and the state-of-the-art RNN model? 

 
For every ML models, 10 mutants are randomly selected so that their characteristics can be 

manually analysed. The non-pre-trained transformers may sometimes generate mutants with syntax 
errors, but not as often as the state-of-the-art RNN. The weakness of RNN in interpreting long range 
token relationships is proven when the state-of-the-art RNN append “catch” scope after “if” scope 
instead of “try” scope as shown in Table 4. Moreover, RNN also have higher tendency in generating 
mutants with unnecessary extra brackets as shown in Table 7. Out of the ten randomly selected 
mutants, five of the mutants produced by the state-of-the-art RNN have syntax errors while only two 
of the mutants produced by the non-pre-trained transformers have syntax errors. 

Even though the non-pre-trained transformers and the state-of-the-art RNN can produce mutants 
with correct syntax in some cases, the code modifications of the produced mutants are not as 
complex as those that are produced by the pre-trained transformers. For example, as shown in Table 
7, the state-of-the-art RNN and the non-pre-trained transformer only mutate the return statements 
and function access level, respectively. PLBART, on the other hand, are able to add an extra 
conditional scope.  

Unlike the non-pre-trained transformers, the code pre-trained transformers, CodeT5 and 
PLBART, are more capable in creating mutants that have higher potential to alter the program 
behaviour. For example, CodeT5 and PLBART can produce code modifications that involve adding 
extra method call, removing conditional statement, altering loop scope conditions, and wrapping 
existing lines with conditional scope as shown in Table 8. 

Despite being a transformer pre-trained with natural language corpora, Pegasus can still produce 
code mutants that are less likely to have syntax errors. However, unlike mutants produced by CodeT5 
and PLBART, the mutants produced by Pegasus tend to have less complex code modifications. For 
example, as shown in Table 9, Pegasus only mutate the return statement, while CodeT5 and PLBART 
is able to mutate the code by adding multiple conditional scopes with different return statements in 
each scope. However, in some cases, Pegasus may not conduct mutation to the input code sequence, 
especially when the input code sequence resembles buggy code that can be fixed with very minor 
code corrections. For example, as shown in Table 10, Pegasus does not made any changes to the 
initialization of the int variable, while both CodeT5 and PLBART are able to make a small change to 
the initialization of the int variable. This shows that, unlike Pegasus, CodeT5 and PLBART are capable 
to produce either mutants with a large degree of code modifications or mutants with minor code 
modification when necessary, depending on the nature of the input code sequences that will be 
mutated. Meanwhile, Prophetnet, which is also a transformer pre-trained with natural language 
corpora, has high tendency to produce mutants with syntax errors. Out of the ten manually analysed 
mutants, seven out of ten mutants produced by Prophetnet have syntax errors. This shows that not 
all transformers pre-trained with natural language are suitable to be fine-tuned for seq2seq code 
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mutation, as the pre-training method will influence the performance of the transformers in carrying 
out the downstream tasks. 
 

Table 7 
Unlike RNN and non-pre-trained transformer, PLBART is able to produce a more complex mutation 
Example ID Code Type Code 

eg3 Original code public static boolean equals ( TYPE_1 VAR_1 , TYPE_1 VAR_2 ) { return VAR_1 
. METHOD_1 ( VAR_2 ) ; } 

RNN-mutated code public boolean METHOD_1 ( TYPE_1 VAR_1 , int VAR_2 ) { return ( ( TYPE_1 . 
METHOD_2 ( VAR_1 . METHOD_2 ( ) ) ) ) && ( ( ( ( VAR_2 . METHOD_2 ( ) ) ) ) ; 
} //mutated return statement but it is a useless mutant due to syntax error 

Code by non-pre-
trained 5-layer 
transformer 

static double equals ( type_1 var_1 , type_1 var_2 ) { return var_1 . method_1 
( var_2 ) ; }  //changed return type and function access level 

PLBART-mutated 
code 

public static boolean equals ( TYPE_1 VAR_1, TYPE_1 VAR_2 ) { if ( false ) 
throw new TYPE_2 ( STRING_1 ) ; return VAR_1. METHOD_1 ( VAR_2 ) ; } 
//extra “if” condition 

 
Table 8 
CodeT5 and PLBart can produce mutants that likely alter the system behaviour 
Example ID Code Type Code 

eg1 Original code public void METHOD_1 ( ) { METHOD_3 ( ) ; if ( ( VAR_3 ) != null ) VAR_3 . 
METHOD_1 ( VAR_2 ) ; } 

Code by non-pre-
trained 5-layer 
transformer 

native void method_1 ( ) ; java.lang.system.out.println ( ( string_1 + ( 
method_2 ( ) ) ) ; method_3 ( ) ; if ( ( var_3 ) != null ) var_3 . method_1 ( 
var_2 ) ; } //useless mutant with syntax error 

CodeT5-mutated 
code 

public void METHOD_1 ( ) { if ( ( VAR_1 ) >= ( VAR_2 ) ) { VAR_3. METHOD_1 ( 
VAR_2 ) ; } METHOD_2 ( ) ; METHOD_3 ( ) ; } //extra method call and changed 
“if condition” 

PLBART-mutated 
code 

public void METHOD_1 ( ) { VAR_1 = METHOD_2 ( ) ; METHOD_3 ( ) ; if ( ( 
VAR_3 )!= null ) VAR_3. METHOD_1 ( VAR_2 ) ; } //extra method call added 

eg4 Original code private static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { 
double sum = 0 ; for ( double i : p ) { if ( i > 0 ) sum -= i * ( TYPE_1 . 
METHOD_2 ( i ) ) ; } return sum ; } 

Code by non-pre-
trained 5-layer 
transformer 

static double method_1 ( java.util.arraylist < java.lang.double > p ) { double 
sum = 0 ; for ( double i : p ) { if ( i < sum > 0 ) sum -= type_1 . method_2 ( i ) ; } 
return sum ; } //useless mutant with syntax error 

CodeT5-mutated 
code 

private static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { 
double sum = 0 ; for ( double i : p ) { sum -= i * ( TYPE_1. METHOD_2 ( i ) ) ; } 
return sum ; } //line no longer enclosed by “if” scope 

PLBART-mutated 
code 

private static double METHOD_1 ( java.util.ArrayList < java.lang.Double > p ) { 
double sum = 0 ; for ( double i : p ) { sum += TYPE_1. METHOD_2 ( i ) ; } 
return sum ; } //line no longer enclosed by “if” scope 

eg8 Original code public void METHOD_1 ( TYPE_1 VAR_1 , int id ) { for ( TYPE_2 VAR_2 : new 
java.util.ArrayList ( VAR_3 ) ) { VAR_3 . remove ( VAR_2 ) ; VAR_4 . 
METHOD_2 ( VAR_2 ) ; } METHOD_3 ( ) ; METHOD_4 ( ) ; } 

Non-pre-trained 5-
layer transformer-
mutated code 

void method_1 ( type_1 var_1 , int id ) { for ( type_2 var_2 : var_3 ) { var_4 . 
method_2 ( var_2 ) ; } method_3 ( ) ; method_4 ( ) ; } 

CodeT5-mutated 
code 

public void METHOD_1 ( TYPE_1 VAR_1, int id ) { for ( TYPE_2 VAR_2 : VAR_3 
) { VAR_3. remove ( VAR_2 ) ; VAR_4. METHOD_2 ( VAR_2 ) ; } METHOD_3 ( ) 
; METHOD_4 ( ) ; } //changed “for” loop condition 

PLBart-mutated 
code 

public void METHOD_1 ( TYPE_1 VAR_1 ) { for ( TYPE_2 VAR_2 : VAR_3 ) { 
VAR_3. remove ( VAR_2 ) ; VAR_4. METHOD_2 ( VAR_2 ) ; } METHOD_3 ( ) ; 
METHOD_4 ( ) ; } //changed “for” loop condition 
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eg10 Original code public final void METHOD_1 ( boolean VAR_1 ) { VAR_2 = VAR_1 ; 
METHOD_2 ( VAR_1 ) ; } 

Non-pre-trained 5-
layer transformer-
mutated code 

final void method_1 ( boolean var_1 ) { var_2 = var_1 ; method_2 ( var_1 ) ; } 

CodeT5-mutated 
code 

public final void METHOD_1 ( boolean VAR_1 ) { if ( VAR_1 ) { VAR_2 = VAR_1 
; METHOD_2 ( VAR_1 ) ; } else { VAR_2 = false ; } } //lines wrapped into 
conditionals 

PLBART-mutated 
code 

public void METHOD_1 ( boolean VAR_1 ) { VAR_2 = VAR_1 ; METHOD_2 ( 
VAR_1 ) ; } 

 
Table 9 
CodeT5 and PLBart can make complex code mutations, unlike Pegasus 
Example ID Code Type Code 

eg5 Original code public int method_1 ( ) { return var_1 . method_2 ( ) ; } 
Pegasus-mutated code public int METHOD_1 ( ) { return VAR_1. METHOD_2 ( ). METHOD_3 

( ) ; } //mutation to return statement 
CodeT5-mutated code public int METHOD_1 ( ) { if ( VAR_1. isEmpty ( ) ) { return ( VAR_2 ) 

++ ; } else { return VAR_1. METHOD_2 ( ) ; } } //lines wrap into 
conditional statements 

PLBART-mutated code public int METHOD_1 ( ) { if ( ( VAR_1 )!= null ) { return VAR_1. 
METHOD_2 ( ) ; } return - 1 ; } //lines wrap into conditional 
statements 

 
Table 10 
CodeT5 and PLBart can make small mutations when necessary, unlike Pegasus 
Example ID Code Type Code 

eg6 Original code public int METHOD_1 ( ) { int VAR_1 = ( value . METHOD_2 ( INT_1 ) ) 
+ 1 ; return VAR_1 ; } 

Pegasus-mutated code public int METHOD_1 ( ) { int VAR_1 = ( value. METHOD_2 ( INT_1 ) ) 
+ 1 ; return VAR_1 ; } //method content remains unchanged 

CodeT5-mutated code public int METHOD_1 ( ) { int VAR_1 = ( value. METHOD_2 ( INT_1 ) ) 
+ INT_2 ; return VAR_1 ; } //small mutation made to method content 

PLBART-mutated code public int METHOD_1 ( ) { value. METHOD_2 ( INT_1 ) ; return VAR_1 
; } //small mutation made to method content 

 
5. Conclusion and Future Work 
 

In summary, this paper presented a comparison study between the non-pre-trained 
transformers, the transformers pre-trained with source code corpora, the transformers pre-trained 
with natural language corpora, and the state-of-the-art RNN model, in producing complex mutants 
that resemble realistic software faults made by programmers, which solves the TMP that lead to 
inaccurate mutation score. The results showed that the transformers pre-trained with source code 
yield a superior result with CodeT5 being the best achiever in terms of CHRF score and code mutation 
complexity. The source code which are related to this research paper are available at, 
https://github.com/LohZheungYik/TransformerMutation. 

In the future, we will propose a mutation tool that utilizes the fine-tuned CodeT5 model. The tool 
will be used to create mutants of a software-under-test whose test suite inadequacies and ground-
truth mutation score are known. Next, mutation analysis will be conducted to determine the 
mutation score of the test suite. The mutation score yielded by the mutants produced using the 
proposed tool, will be compared with the ground-truth mutation score. This is to confirm whether 
the transformer-generated mutants can produce accurate mutation score. Then, the tool will be 
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integrated with the solutions that rectify the cost and equivalent mutant problem of MT, so that not 
only trivial mutant problem of MT is handled. The tool will be different from other existing MT 
solutions which only tackle one of the MT problems and give rise to other MT problems [18]. 
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