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Solar cells convert sunlight into electricity, and the efficiency of this conversion 
process largely depends on the material parameters. Optimizing these 
parameters, like thickness and carrier concentration, could significantly increase 
the efficiency of solar cells. This paper emphasizes the metaheuristic 
optimization approach in searching for the optimum input parameters of 
perovskite solar cell (PSC). The proposed approach is realized using Solar Cell 
Capacitance Simulator (SCAPS-1D) software incorporated with a hybrid L32 
Taguchi DoE-based Genetic Algorithm. Based on Multiple Linear Regression 
(MLR) analysis, the thickness of mix halide perovskite (CH3NH3PbI3-XClX) was 
discovered to be the most crucial input parameter affecting the Power 
Conversion Efficiency (PCE) variations. Based on the result of the Genetic 
algorithm, the optimal values of the input parameters: Fluorine doped tin oxide 
(FTO) thickness, FTO donor density, Titanium Dioxide (TiO2) layer thickness, TiO2 
donor density, CH3NH3PbI3-XClX layer thickness, CH3NH3PbI3-XClX donor density, 
graphene oxide (GO) layer thickness, and GO acceptor density are predicted to 
be 0.187 μm, 9.965x1021 cm-3, 0.033 μm, 9.629x1021 cm-3, 0.926 μm, 9.983x1021 
cm-3, 0.039 μm and 9.671x1021 cm-3 respectively. Using the predicted optimum 
input parameters, the simulation generates the best value of open voltage (Voc), 
current density (Jsc), fill factor (FF), and PCE measured at 1.647 V, 25.68 mA/cm2, 
92.03%, and 38.93%, respectively.  

Keywords: 
Genetic algorithm; L32 Taguchi DoE; multiple 
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1. Introduction 
 

The increasing electricity demand results from accelerated industrialization and rising household 
electricity consumption. Free and environmentally friendly electricity is the optimal solution to these 
increasing electricity requirements since it is not detrimental to the environment. As one of the most 
accessible renewable energy sources, solar energy ranks among the most appealing alternatives. It 
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could be one of the most effective solutions to meet increasing electricity demands. Furthermore, 
solar energy may also be readily turned into electricity, which may be realized by developing solar 
cells, photovoltaic devices, and solar absorbers, to name a few. 

Metamaterials have received much interest due to their distinctive electro-optical properties and 
tiny size, as opposed to large optical devices. It has been discovered that by utilizing dielectric 
metamaterials rather than glass, the Perovskite’s light conversion efficiency could be increased. Due 
to excellent power conversion efficiency (PCE), perovskite solar cells (PSCs) have attracted much 
attention in the field of research [1-5]. Moreover, modern advances in device layouts and material 
processing features have made PSC manufacturing one of the most promising trends in 
photovoltaics. The ultimate goal is to improve the architectural layout of the structure and the 
selection of materials in accordance with the significant performance increase that has forcefully 
enabled various exploratory and hypothetical evaluations. 

The PSCs have an electron transport material (ETM) and a hole transport material (HTM) between 
a perovskite absorber layer. Note that electrons and holes, two types of carriers, are produced when 
light is absorbed. Carriers move via a transporting channel after being stimulated by an incident 
photon. Therefore, it goes without saying that the absorber-to-front/back electrode carrier route 
significantly affects the PCE [6-9]. In order to further increase the PCE of PSC, the scientific community 
has recently focused a great deal of emphasis on introducing novel materials in the aforementioned 
route, particularly in the ETM, HTM, and absorber [10-13]. 

Design of Experiments (DoE) is a statistical approach for recognizing multiple input parameters 
and interactions that significantly impact the output of a device/system/process. In simulation 
modeling, DoE can assist in identifying essential factors with minimal simulation [14-17]. 
Furthermore, randomization, replication of experimental trials, and division are unnecessary in 
simulation-based DoE since the deterministic trait of simulations hinders experimental variation. 
Metaheuristics are advanced algorithms tailored for finding, creating, or choosing partial search 
algorithms (heuristics) that can yield reasonably effective solutions for complex optimization 
problems, particularly under conditions of incomplete data or limited computational resources [18-
23]. They leverage learning from previous solutions to more effectively navigate the solution space. 
Applied extensively in sectors such as business, engineering, economics, and science, metaheuristics 
tackle complex problems that defy easy resolution through conventional methods. While they don't 
assure the best solution, their goal is to identify viable solutions efficiently. Motivated by the impact 
of multiple layer variations on the PCE, this work aims to simulate and optimize multiple layers of PSC 
using a proposed hybrid L32 Taguchi DoE-based Genetic Algorithm. The primary contributions of this 
research work are listed below: 
 

i. We have analyzed and studied the impact of layer parameters of the PSC towards PCE. We 
have discovered that the thickness of the perovskite (CH3NH3PbI3-XClX) layer is the most 
significant input parameter contributing to the considerable variance in the PCE. 

ii. We have optimized and predicted the optimum layer parameters of the PSC that generate 
the highest possible PCE. We have successfully simulated a PSC model that generates 
38.93% of PCE. 

 
2. Related Works 
 

L8 Taguchi DoE was utilized to optimize input parameters in silicon-based solar cell simulation 
[24]. The findings demonstrate that an energy of 10 keV combined with a boron density of 5.0 x 1015 
cm-3 and phosphorus density of 2.0 x 1016 cm-3 yields a junction depth of 0.3 x 0.5 um and a stable FF 
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value of 80%, with PCE of 15% to 16%. The PCE of the silicon-based solar cell increased by 1% due to 
the optimized boron and phosphorus densities predicted using the L8 Taguchi DoE. For higher PCE in 
Dye Solar Cell (DSC) fabrication, the L8 Taguchi DoE was employed as well to optimize material 
thickness, surface area, and material density in electrolytes [25]. The proposed device suggests an 
optimum DSC efficiency of 4.59165% can be achieved using the optimized material’s thickness and 
density. The results clearly indicate the optimum efficiency of the DSC device could be attained by 
predicting the most optimum thickness and density of the applied materials. 

Response surface methodology (RSM) DoE was used to obtain the best PCE as the thickness was 
predictively tuned at 5 μm and 50 μL graphene quantum dots (GQD) [26]. The L9 Taguchi DoE was 
used in conjunction with the Analysis of Microelectronic and Photonic Structures (AMPS-1D) software 
to model a PSC device [27]. The findings revealed that Cadmium Sulphide (CdS) and Copper Telluride 
(CuTe) were deemed marginally significant on PCE, with the device demonstrating significantly 
enhanced PCE. The L9 Taguchi DoE was employed as well to optimize dye sensitised solar cell 
fabrication, with the experimental findings revealing that magnesium nitrate concentration had the 
greatest influence on photocurrent densities, followed by deposition time [28]. 

Solar Cell Capacitance Simulator (SCAPS-1D) software was used in conjunction with the L9 Taguchi 
DoE to optimize the absorber layer grading profile on the Copper Indium Gallium Selenide (CIGS) 
photovoltaic cell’s properties. The results demonstrated that an average PCE of 22.08% using the 
optimized absorber layer grading profile [29]. The PCE of a tandem organic solar cell was optimized 
using RSM DoE [30]. In comparison to the conversion rate of the monolayer solar cell using the same 
materials, the optimized thicknesses increased the PCE by 47.7%. 

The RSM DoE was also used to examine the impact of coating silicon solar cells with zinc oxide, 
aluminum oxide, titanium dioxide on their overall optical performance [31]. Applying ZnO material 
with a thickness of 38 nm, the research establishes the optimal conditions of silicon solar cell with 
reduced surface reflections. For the first time, the parameters of the triple diode model (TDM) of 
PSCs were determined using an improved version of the bald eagle search optimization method [32]. 
The results highlight the advantages of the improved version of the bald eagle search optimizer when 
compared to other methods, including the original bald eagle search optimization, particle swarm in 
optimization, hunger games search, and the latest coronavirus disease optimization algorithm in 
which it produced the highest current density of the PSC. 

In our study, we have applied a hybrid metaheuristic optimization in modelling multiple layer 
parameters of PSC device using SCAPS-1D with a hybrid L32 Taguchi DoE-based Genetic Algorithm for 
an improved PCE. Additionally, we evaluated the PCE from our proposed approach against the PCE 
derived solely from the L32 Taguchi DoE for conclusive comparison. 
 
3. Methodology 
 

Proposed methodology of this work comprises four stages; Simulation of Perovskite solar cell, L32 
Taguchi Design of Experiments (DoE), Multiple Linear Regression and Genetic algorithm. The 
proposed flowchart of the methodology are depicted in Figure 1. 
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Fig. 1. Flowchart of the methodology 

 
3.1 Perovskite Solar Cell Simulation 
 

A perovskite solar cell configuration was studied, with graphene oxide (GO) used as hole transport 
material (HTM) to prevent electron flow. The Solar Cell Capacitance Simulator (SCAPS-1D) was used 
to build the whole device assembly shown in Figure 2. Figure 3 shows the energy band diagram of 
the proposed perovskite device structure. In order to simulate the current-voltage characteristics of 
the device, appropriate values of layer parameters were inserted. Table 1 shows multiple physical 
parameters used in this work. 
 

    
Fig. 2. Perovskite device structure          Fig. 3. Energy band diagram of Perovskite 

device structure 
 

The main function of GO layer is to promote carrier accumulation at the metallic electrode. 
Furthermore, the degradation of a perovskite device could be lowered by reducing ion electro 
migration from the metallic electrode to the perovskite layer, which triggers electrical shunting. In 
addition, rapid heat dispersion from the GO layer to the surrounding environment increases the 
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thermal stability of the perovskite device, hence lowering the volume of heat created within the cell 
during actual operation. The parameters of GO layer and the perovskite planar layer must be carefully 
configured, as a large interlayer discrepancy will increase the recombination rate otherwise. 
 

Table 1  
Parameters used in the simulation work 
Parameter TCO ETL Absorber HTL 

FTO TiO2 CH3NH3PbI3-XClX GO 
Thickness (µm) 0.1 0.03 0.9 0.05 
Bandgap (eV) 3.5 3.2 1.55 3.2 
Electron affinity (eV) 4 4 3.9 1.9 
Dielectric permittivity (relative) 9 100 6.5 3 
Conduction band effective density of states (cm-3) 2.2x1018 1019 2.2x1017 2.2x1021 
Valence band effective density of states (cm-3) 1.8x1019 1019 1.8x1019 1.8x1021 
Electron thermal velocity (cm/s) 107 107 107 107 
Hole thermal velocity (cm/s) 107 107 107 107 
Electron mobility (cm2/Vs) 20 6x10-3 2 100 
Hole mobility (cm2/Vs) 10 6x10-3 2 300 
Shallow uniform donor density, ND (cm-3) 1019 1019 1017 - 
Shallow uniform acceptor density, NA (cm-3) - - - 1020 
Defect density, Nt (cm-3) 1015 1015 1013 1015 
References [33] [33] [33] [34] 

 
The GO layer was employed as planar structure as was suggested in previous researches [34-36]. 

SCAP-1D was used to simulate the electrical characteristics of the perovskite cell, which were initially 
displayed in Figure 4. During numerical simulation, a typical solar spectrum AM 1.5 is projected to 
the front contact in which the carrier transport, drift-diffusion, and recombination models are 
computed to extract open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), and 
power conversion efficiency (PCE) of the perovskite device. 
 

 
Fig. 4. Initial current–voltage characteristics of PSC 

 
3.2 L32 Taguchi Design of Experiments (DoE) 
 

Taguchi DoE employs specific orthogonal arrays to investigate all design parameters with the least 
number of tests. In this work, L32 Taguchi DoE shown in Table 2, is utilized to attain corresponding 
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power conversion efficiency (PCE) for 32 different experiment sets. Each input parameters are varied 
into two levels; low and high as listed in Table 3. 
 

         Table 2 
                        Input parameters and their levels 

Symbol Input parameter Unit Low High 
a FTO thickness µm 0.1 0.9 
b FTO donor concentration cm-3 1E+11 1E+20 
c TiO2 thickness µm 0.03 0.09 
d TiO2 donor concentration cm-3 1E+11 1E+20 
e CH3NH3PbI3-XClX thickness µm 0.1 0.9 
f CH3NH3PbI3-XClX donor concentration cm-3 1E+11 1E+20 
g GO thickness µm 0.03 0.09 
h GO acceptor concentration cm-3 1E+11 1E+20 

 
Table 3 
L32 Taguchi design of experiments 
Exp. No. Level of input parameters 

A B C D E F G H 
1 Low Low Low Low Low Low Low Low 
2 Low Low Low Low High Low High High 
3 Low Low Low High Low High Low High 
4 Low Low Low High High High High Low 
5 Low Low High Low Low High High Low 
6 Low Low High Low High High Low High 
7 Low Low High High Low Low High High 
8 Low Low High High High Low Low Low 
9 Low High Low Low Low High High High 
10 Low High Low Low High High Low Low 
11 Low High Low High Low Low High Low 
12 Low High Low High High Low Low High 
13 Low High High Low Low Low Low High 
14 Low High High Low High Low High Low 
15 Low High High High Low High Low Low 
16 Low High High High High High High High 
17 High Low Low Low Low High High High 
18 High Low Low Low High High Low Low 
19 High Low Low High Low Low High Low 
20 High Low Low High High Low Low High 
21 High Low High Low Low Low Low High 
22 High Low High Low High Low High Low 
23 High Low High High Low High Low Low 
24 High Low High High High High High High 
25 High High Low Low Low Low Low Low 
26 High High Low Low High Low High High 
27 High High Low High Low High Low High 
28 High High Low High High High High Low 
29 High High High Low Low High High Low 
30 High High High Low High High Low High 
31 High High High High Low Low High High 
32 High High High High High Low Low Low 
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3.3 Multiple Linear Regression 
 

Multiple linear regression is an algorithm for machine learning that predicts a dependable 
variable based on the magnitude of two or more independent variables. In other words, the 
independent variables are the parameters through which the dependent variable (response) or 
outcome is calculated. A multiple regression model extends to numerous explanatory variables. In 
this work, the multiple linear regression is used to derive the objective function that describe the 
relationship between a predictor variable and the response. Hence, the objective function that 
relates eight independent inputs; a, b, c, d, e, f, g and h with one dependent output; PCE can be 
written as: 
 
𝑃𝐶𝐸 = 	𝐵! +	𝐵"𝑎 + 𝐵#𝑏 + 𝐵$𝑐 + 𝐵%𝑑 + 𝐵&𝑒 + 𝐵'𝑓 + 𝐵(𝑔 + 𝐵)ℎ                                                       (1)                                                                                                                                                    
 
where B0 is the y-intercept, B1B2B3B4B5B6B7B8 represent the regression coefficients for the 
corresponding input parameters. 
 
3.4 Genetic Algorithm 
 

Genetic algorithm is an approach for addressing both limited and unbounded optimization based 
on mechanism that drives evolutionary biology.  As depicted in Figure 5, the Genetic algorithm 
involves numerous phases consisting of initial population, objective function, fitness scaling, 
selection, crossover, and mutation. 
 

 
Fig. 5. Process flow of  
Genetic algorithm 
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In this study, the initial population consisted of the starting values of FTO thickness, FTO donor 
density, TiO2 layer thickness, TiO2 donor density, CH3NH3PbI3-xClx layer thickness, CH3NH3PbI3-xClx 
donor density, GO layer thickness, and GO acceptor density, represented by a, b, c, d, e, f, g, and h, 
respectively. The objective function derived by multiple linear regression was then scaled to fit within 
predetermined lower and upper constraints. Since the primary purpose was to search for the largest 
value of PCE, the fitness function (fi) for this objective problem was defined as depicted in Figure 6. 
The default preferences of Genetic algorithm for this study was shown in Figure 7. 
 

   
Fig. 6. Fitness function subjected to    Fig. 7. Default preferences of Genetic 

     the constraints                                         algorithm 
 
4. Results and Discussion 
 

This section discusses the results of metaheuristic optimization for improved PCE of the 
Perovskite Solar Cell by incorporating L32 Taguchi DoE, multiple linear regression, and the Genetic 
algorithm. Table 4 displays the simulation results in which the PCE values for 32 experimental rows 
were recorded, accordingly. The relationship between eight layer parameters and the PCE values for 
32 experimental rows is subsequently examined using the MLR approach, from which the normal Q-
Q plot illustrated in Figure 8 is derived. There are no data in the actual dataset near the center of the 
theoretical distribution, hence there is no point on the Q-Q plot at this location (0, 0). The top half of 
the Q-Q plot is a reflection of the lower half across x and y. The residuals are therefore seen as having 
a bimodal distribution. Table 5 presents the results of the multiple linear regression for this 
investigation. It is clearly evident that the most significant input parameter contributing the 
considerable variance on the PCE is input parameter e (CH3NH3PbI3-XClX thickness) as it exhibits the 
least p-value among others.  

On the other side, the least significant input parameter is recognized as input parameter g (GO 
thickness) since it exhibits the largest p-value among others. In practice, any p-value below 0.05 is 
typically viewed as significant which imply the coefficient does in fact contribute value to the model 
by helping to explain the variation within PCE. MLR analysis indicates that GO material has the 
minimal impact on PCE among the layers. However, GO provides excellent chemical compatibility 
with perovskite materials, securing stable interfaces and reducing interfacial recombination that can 
harm device efficiency. The fabrication process for GO is relatively simple and inexpensive, making it 
a good option for mass production of PSCs. Additionally, GO contributes to the thermal and chemical 
stability of PSCs, which is critical for their longevity and effectiveness. 
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Table 4 
Simulated PCEs from L32 Taguchi DoE 
Exp. No. Level of input parameters PCE 

(%) A B C D E F G H 
1 Low Low Low Low Low Low Low Low 15.66 
2 Low Low Low Low High Low High High 27.85 
3 Low Low Low High Low High Low High 18.30 
4 Low Low Low High High High High Low 34.87 
5 Low Low High Low Low High High Low 17.91 
6 Low Low High Low High High Low High 34.51 
7 Low Low High High Low Low High High 15.56  
8 Low Low High High High Low Low Low 27.45 
9 Low High Low Low Low High High High 18.59 
10 Low High Low Low High High Low Low 35.74 
11 Low High Low High Low Low High Low 15.97 
12 Low High Low High High Low Low High 28.94 
13 Low High High Low Low Low Low High 15.91 
14 Low High High Low High Low High Low 28.20 
15 Low High High High Low High Low Low 18.40 
16 Low High High High High High High High 35.63 
17 High Low Low Low Low High High High 17.22 
18 High Low Low Low High High Low Low 32.76 
19 High Low Low High Low Low High Low 14.65 
20 High Low Low High High Low Low High 26.13 
21 High Low High Low Low Low Low High 14.60 
22 High Low High Low High Low High Low 25.23 
23 High Low High High Low High Low Low 17.15 
24 High Low High High High High High High 32.82 
25 High High Low Low Low Low Low Low 15.79 
26 High High Low Low High Low High High 28.65 
27 High High Low High Low High Low High 18.40 
28 High High Low High High High High Low 35.43 
29 High High High Low Low High High Low 18.07 
30 High High High Low High High Low High 35.27 
31 High High High High Low Low High High 15.65 
32 High High High High High Low Low Low 28.00 

 

 
Fig. 8. Normal Q-Q plot 



Journal of Advanced Research Design 
Volume 122, Issue 1 (2024) 219-233 

228 
 

Table 5 
Results of the multiple linear regression 
Regression coefficients Estimation Std. error t value Pr (>|t|) Significant code 
Intercept 1.266e+01 1.020 12.404 1.14e-11 *** 
a -1.068 6.352e-01 -1.681 0.106  
b 1.248e-20 5.082e-21 2.456 0.022 * 
c -4.781 8.470 -0.565 0.578  
d 8.688e-22 5.082e-21 0.171 0.866  
e 1.794e+01 6.352e-01 28.244 < 2e-16 *** 
f 4.803e-20 5.082e-21 9.449 2.20e-09 *** 
g -7.396e-01 8.47 -0.087 0.931  
h 1.719e-21 5.082e-21 0.338 0.738  
Significant Code: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’ 0.1-1 ‘ ’ 
Residual standard error 1.437 on 23 degrees of freedom 
Multiple R-squared 0.975 Adjusted R-squared 0.9663 
F-statistic 112 on 8 and 23 DF p-value < 2.2e-16 
Significant code: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’ 0.1-1 ‘ ’ 

 
The residual standard error is a measure of the model's fit to the data. A regression model's fit to 

a dataset improves as the residual standard error decreases. The larger the residual standard error, 
however, the less a regression model fits a dataset. A regression model with a low residual standard 
error will have variables clustered around the fitted regression line. In this case, the model’s residual 
standard error is 1.437, implying that the regression model suggests the PCE of the PSC with an 
average error equivalent to approximately 1.437. Multiple R-squared is applied to display the 
proportion of PCE fluctuations explained by the eight input parameters. Basically said, it is a way for 
measuring the data-fitting capabilities of a constructed model. Multiple R-squared explains ~97.5% 
of the variation within PCE in this case. Adjusted R-squared is utilized when performing multiple linear 
regression and can be functionally compared to Multiple R-squared. The Adjusted R-squared 
indicates what proportion of the variation in PCE is explained by all predictors. The distinction 
between these two measures is a calculation subtlety that accounts for the PCE variation introduced 
by the addition of input parameters.  

In this case, adjusted R-squared explains there is ~96.63% of the variation within PCE. Based on 
the constructed model, the F-statistic is quite large and the p-value is so small that it is effectively 
zero. This would suggest that the null hypothesis should be rejected leading to the conclusion that 
PCE and eight input parameters have a significant relationship. Thus, the objective function 
describing the relationship between PCE (the dependent variable) and eight input parameters (the 
independent variables) can be derived as: 
 
𝑃𝐶𝐸 = 1.266𝑒 + 01	 − 	1.068𝑎	 + 	1.248𝑒 − 20𝑏	 − 	4.781𝑐	 + 	8.688𝑒 − 22𝑑	 + 	1.794𝑒 + 01𝑒  

		01𝑒 + 	4.803𝑒 − 20𝑓	 − 	7.396𝑒 − 01𝑔	 + 	1.719𝑒 − 21ℎ        (2) 
 

Theoretically, the Genetic algorithm is used to find for the minima of a function. Thus, the 
objective function in (2) was inverted to search for its local maxima. Subject to the fixed constraints, 
the fitness function of the maximizing purpose can be expressed as: 
 
𝑓𝑖 = −1.266𝑒 + 01	 + 1.068𝑎	 − 	1.248𝑒 − 20𝑏	 + 	4.781𝑐	 − 	8.688𝑒 − 22𝑑	 − 	1.794𝑒 + 01𝑒 

4.803𝑒 − 20𝑓	 + 	7.396𝑒 − 01𝑔	 − 	1.719𝑒 − 21ℎ        (3) 
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The fitness function (fi) is subjected repeatedly to the phases of selection, crossover, and 
mutation until its maximum value is found. As depicted in Figure 9, the process of selection, 
crossover, and mutation was terminated after 844 cycles. 
 

 
Fig. 9. Performance of Genetic algorithm during convergence 

 
Based on the results of the Genetic algorithm, the largest achievable fitness value of the PCE is 

determined to be 657.64, where the optimal values of the input parameters; FTO thickness, FTO 
donor density, TiO2 layer thickness, TiO2 donor density, CH3NH3PbI3-xClx layer thickness, CH3NH3PbI3-

xClx donor density, GO layer thickness, and GO acceptor density are predicted to be 0.187 μm, 
9.965x1021 cm-3, 0.033 μm, 9.629x1021 cm-3, 0.926 μm, 9.983x1021 cm-3, 0.039 μm and 9.671x1021 cm-

3 respectively. For validation purpose, the Graphene-based PSC model is simulated again using the 
recently predicted input parameters via SCAPS-1D.  Figure 10 depicts the comparison of  J-V transfer 
characteristics PSC prior to optimization using L32 Taguchi DoE and L32 Taguchi DoE-based Genetic 
algorithm. 
 

 
Fig. 10. Overlay of J-V transfer characteristics of the PSC before  
optimization, via Taguchi DoE and via L32 Taguchi DoE-based  
Genetic algorithm 
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Based on the overlay plot, the Voc of the PSC has increased by 13.4% after being optimized with 
the L32 Taguchi DoE-based Genetic algorithm compared to before optimization. In addition, the Voc 
demonstrates a 7.2% improvement over to the L32 Taguchi DoE approach, conducted using Minitab 
software [37]. The Jsc of the PSC after optimization using L32 Taguchi DoE-based Genetic algorithm 
has improved by 49.1%, with the Jsc before optimization approach and after L32 Taguchi DoE-based 
Genetic algorithm being 13.06 mA/cm2 and 25.68 mA/cm2, respectively. Jsc value skyrockets 
primarily as a result of enormous resistive losses brought on by large thickness variations in 
CH3NH3PbI3-XClX. However, there is no difference between the Jsc value and the L32 Taguchi DoE 
approach, where the Jsc remains unchanged at 25.68 mA/cm2. Table 6 summarizes the input 
parameter values and simulation outcomes of the PSC. 
 
Table 6 
Summary of simulation outputs of the PSC 
Symbol Input parameter Units Before 

optimization 
(first experiment 
row) 

L32 Taguchi DoE 
approach 

L32 Taguchi DoE-
based Genetic 
algorithm 

a FTO thickness µm 0.1 0.1 0.187 
b FTO donor concentration cm-3 1x1011 1x1020 9.965x1021 
c TiO2 thickness µm 0.03 0.03 0.033 
d TiO2 donor concentration cm-3 1x1011 1x1020 9.629x1021 
e CH3NH3PbI3-XClX thickness µm 0.1 0.9 0.926 
f CH3NH3PbI3-XClX donor 

concentration 
cm-3 1x1011 1x1020 9.983x1021 

e GO thickness µm 0.03 0.03 0.039 
h GO acceptor concentration cm-3 1x1011 1x1020 9.671x1021 
Open voltage (Voc) V 1.426 1.529 1.647 
Current density (Jsc) mA/cm2 13.06 25.68 25.68 
Fill factor (FF) % 84.08 91.49 92.03 
Power conversion efficiency (PCE) % 15.66 35.91 38.93 

 
According to Table 6, the PSC exhibits a 59.8% increase in PCE, with the PCE increasing from 

15.66% to 38.93% upon optimization with the L32 Taguchi DoE-based Genetic algorithm. In addition, 
the FF is enhanced by 8.6% upon optimization with the L32 Taguchi DoE-based Genetic algorithm. In 
addition, it is also noticed that both FF and PCE have improved by 0.59% and 7.76%, respectively, 
compared to the optimization via the L32 Taguchi DoE approach. The simulated 38.93% of PCE is due 
to the use of heterojunction perovskite solar cells (PSCs), which differ greatly from single-junction 
solar cells. The Shockley-Queisser (SQ) limit, which defines the maximum theoretical efficiency for 
single-junction cells, does not restrict multi-junction or heterojunction cells. These advanced cells can 
surpass the SQ limit by utilizing multiple layers or junctions that absorb different segments of the 
solar spectrum more efficiently. The high efficiency of these PSCs is a result of their specialized 
structure and materials.  

By optimizing the materials and cell configuration, researchers can substantially reduce losses 
and enhance light absorption, leading to efficiencies greater than those of traditional single-junction 
cells. For instance, recent developments in crystalline silicon-perovskite tandem solar cells have 
shown efficiencies up to 33.9% [38]. The simulated structure described in the study probably 
incorporates such innovative designs and materials to achieve the 38.93% efficiency. Furthermore, 
this impressive theoretical PCE is observed through simulations, and the actual PCE might differ when 
validated through experimental fabrication and testing. Hence, the final results demonstrate that the 
L32 Taguchi DoE-based Genetic algorithm could be applied to simulate solar cell devices effectively. 
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In future, the L32 Taguchi DoE could be incorporated with alternative approaches besides Genetic 
algorithm in an effort to provide more precise and inclusive solutions. 
 
5. Conclusions 
 

In summary, the optimum input parameters of the Perovskite solar cell device were accurately 
predicted using SCAPS-1D software integrated with L32 Taguchi DoE-based Genetic algorithm. This 
study's primary goal was to identify the input parameters of the device that would generate the 
maximum feasible power conversion efficiency (PCE). The thickness of CH3NH3PbI3-XClX was deemed 
the most significant input parameter based on multiple linear regression analysis, as it had the lowest 
p-value among others. Subsequently, the objective function that links the eight input parameters 
with PCE was then statistically derived. The Genetic algorithm was employed to search the maximum 
converging point of the objective function within lower and upper specified boundaries. After 844 
iterations, the highest fitness value (fi) is determined to be 657.64. Using the anticipated optimum 
input parameters, the predicted model generated the highest possible PCE of 38.93%. The final 
findings imply that the L32 Taguchi DoE-based Genetic algorithm can be regarded as one of the 
effective methods in boosting the overall PSC’s performance. 
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