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Despite being considered the first practical lattice-based cryptosystem, interest 
from the post-quantum cryptography society in the Goldreich-Goldwasser-Halevi 
(GGH) lattice-based cryptosystem drastically drop due to the embedding-based 
attacks. The attacks successfully simplified the underlying Closest-Vector 
Problem (CVP) and made the security of the scheme broken. The attacks become 
noxious to the GGH cryptosystem due to its ability to simplify the underlying CVP 
which triggered the enlargement of lattice gaps. Consequently, the simplified 
CVP can be reduced to a Shortest-Vector Problem (SVP) variant which can be 
solved by using lattice-reduction algorithms such as the LLL algorithm in a shorter 
amount of time. The simpler way to evade from these attacks is by implementing 
larger lattice dimensions which immediately reduce the efficiency of this scheme. 
Recently, an improved version of the GGH cryptosystem, namely the GGH-MKA 
cryptosystem, has been proven immune to the embedding-based attacks. The 
improvement is made by preventing the simplification of the underlying CVP. For 
that purpose, an error vector 𝑒! is introduced. The error vector is non-eliminable 
and at the same time maintains the lattice gap. Consequently, the underlying CVP 
remains in its original form without being simplified. In this study, we showed 
that the error vector 𝑒!  is not unique. We proposed another error vector 𝑒∗ to 
combat the embedding-based attacks. We proved that the new error 
vector  𝑒∗ has similar capabilities in terms of preventing the simplification of the 
underlying CVP and maintaining the lattice gap. By improving the security of the 
GGH cryptosystem, more interest from the mainstream post-quantum discussion 
could be redirected to the scheme to make it competent and relevant again. 

Keywords: 

GGH cryptosystem; lattice-based 
cryptography; post-quantum cryptography; 
embedding-based attacks 

 
 

 
* Corresponding author. 
E-mail address: arifman@ums.edu.my  
 
https://doi.org/10.37934/ard.122.1.173183 



Journal of Advanced Research Design  
Volume 122, Issue 1 (2024) 173-183 

174 
 

1. Introduction 
 
Cryptography becomes crucial in our today’s lifestyle since most of our data are currently created, 

stored, managed, and communicated digitally. That is why security goals are demanded to provide 
confidentiality, integrity, and availability to our data [1,2]. To accomplish all these goals, cryptography 
face numerous challenges, obstacles, and threats in the form of cryptanalysis. The situation become 
more difficult due to the emergence of new computing technology. The term ‘quantum’ received 
overwhelming attention in various aspects of discussion including computing technology. This is due 
to the current development of quantum computing technology that works based on qubits rather 
than binary bits as deployed by our widely used computers today. This technology offers 
computational power with extreme efficiency. Once a fully functional quantum computers available 
to public, then most of the currently deployed cryptosystems underneath our devices might be in 
fatal danger. This is due to the ability to of Shor’s quantum algorithm [3] for solving hard-
mathematical problems underlying these cryptosystems in much shorter amounts of time. 
Consequently, all cryptosystems that lie their security on these problems are considered broken [4]. 

That is why mainstream discussion in cryptography is currently diverting towards new arena 
called post-quantum cryptography. The mission is to find cryptographic alternatives which are 
immune towards the quantum attacks with hope that these alternatives could be deployed whenever 
a fully functional quantum computers are ready to operate. The mission is still in progress. Various 
schemes have been proposed [5-10]. To build confidence and trust on these schemes, exhaustive 
security measures are demanded. Other than security, the aspects of efficiency and practicality also 
equivalently vital and become the foremost concerns in this mission [11-13]. 

In the early of its emergence, the Goldreich-Goldwasser-Halevi cryptosystem [14] or simply 
referred to as GGH cryptosystem once being considered the first practical lattice-based scheme. 
Unfortunately, Nguyen [15] discovered a significant flaw on the GGH cryptosystem and launched 
embedding-based attacks which allowed simplification of the underlying Closest-Vector Problem 
(CVP), defined as GGH-CVP [16]. The simplified version is then being reduced to an easier Closest-
Vector Problem (CVP), defined as GGH-SVP [17]. It becomes easier due to the enlargement of lattice 
gap which allows lattice-reduction algorithms work much efficient for solving the derived GGH-SVP 
even in lattice dimensions up to 400. Increasing the lattice dimensions could avoid the attacks but 
the trade-off is the efficiency and practicality of the scheme. Since the devastating attack by Nguyen, 
interest on the GGH cryptosystem drastically dropped. Other lattice-based scheme received 
overwhelming attention and leave the GGH cryptosystem far away behind. 

In 2020, Mandangan et al., [18] invented the cure which make the GGH cryptosystem to survive 
against the embedding-based attacks. The upgraded version is called GGH-MKA cryptosystem. The 
countermeasure is done by introducing a new error vector 𝑒′ and its elements distribution rule to 
replace the original error vector 𝑒. Simplification of the underlying GGH-CVP was possible since the 
original error vector 𝑒 is replaceable by a smaller error vector 𝜀. Consequently, the lattice gap 
becomes larger, and this allows efficient performance by lattice reduction algorithm to solve the 
derived GGH-SVP. On contrast, the newly introduced error vector 𝑒′ is non eliminable and non-
replaceable by the smaller error vector 𝜀. That means, the underlying GGH-CVP remain in its original 
form and the enlargement of lattice gap also has been prevented. 

In this study, we demonstrate that the error vector 𝑒′ and its elements distribution rule as 
introduced by the GGH-MKA cryptosystem are not unique. We discovered a new error vector 𝑒∗ 
together with its elements’ distribution rule. We prove that the simplification of the GGH-CVP as well 
as the lattice gap enlargement also could be prevented. Therefore, the proposed set and its 
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distribution rule could be deployed as a new countermeasure to combat the Nguyen’s embedding 
attacks, as done in the GGH-MKA cryptosystem. 

The rest of this paper is organized as follows. In Section 2, we provide some mathematical 
foundation related to lattices. Then, few works related to the security of GGH cryptosystem are 
discussed in the next section. The proposed countermeasure is discussed and justified in Section 4. 
Finally, discussion and conclusion remark are provided in Section 5. 
 
2. Lattices  
 

Lattice ℒ is a set of vectors. These vectors could be generated by different bases. When it is 
generated by basis 𝐵, the lattice ℒ is denoted as 𝐿(𝐵), i.e. 𝐿(𝐵) = ℒ. The lattice ℒ is defined as 
follows.  

Definition 1: For 𝑚 ≥ 𝑛, let 𝐵 = .𝑏0⃗ ", 𝑏0⃗ #, … , 𝑏0⃗ $3 be a set of linearly independent vectors 
𝑏0⃗ ", 𝑏0⃗ #, … , 𝑏0⃗ $ ∈ ℝ%. The lattice ℒ ⊂ ℝ% that is generated by the set 𝐵 is the set of all linear 
combinations of the vectors 𝑏0⃗", 𝑏0⃗ #, … , 𝑏0⃗ $ with integer scalars, i.e. (Figure 1) [19]. 
 
ℒ = 𝐿(𝐵) = .∑ 𝑎&𝑏0⃗ &$

&'" 9	𝑏0⃗ & ∈ 𝐵	𝑎𝑛𝑑	𝑎& ∈ ℤ, ∀	𝑖 = 1,… , 𝑛3        (1) 
 
The set 𝐵 is called a lattice basis or simply basis. It is a set of linearly independent vectors that spans 
the entire vectors in the lattice ℒ. For the lattice 𝐿(𝐵) as defined in the Definition 1, the dimension 
is dimC𝐿(𝐵)D = 𝑛 and the rank is rankC𝐿(𝐵)D = 𝑚. If dim(ℒ) = rank(ℒ), then the lattice ℒ is 
referred to as a full-rank lattice.  
 

 
 Fig. 1. The lattice ℒ ⊂ ℝ! with bases 𝐵 = &𝑏(⃗", 𝑏(⃗ !+  
 and 𝐺 = {�⃗�", �⃗�!} 

 
Consider a full-rank lattice ℒ ⊂ ℝ$ that is spanned by the basis 𝐵 = .𝑏0⃗", 𝑏0⃗ #, … , 𝑏0⃗ $3 where 
𝑏0⃗ ", 𝑏0⃗ #, … , 𝑏0⃗ $ ∈ ℝ$. Since 𝐵 ∈ ℝ$×$, then the lattice ℒ is representable in the following simpler form, 
ℒ = 𝐿(𝐵) = {𝐵�⃗�	|	�⃗� ∈ ℤ$}. For 𝑛 ≥ 2, the 𝑛-dimensional lattice ℒ has more than a single basis. Any 
two different bases for the lattice ℒ are mathematically related by a unimodular matrix 𝑈 ∈ ℤ$×$.  

Definition 2: Let 𝑈 ∈ ℤ$×$. If det(𝑈) = ±1, then 𝑈 is a unimodular matrix. Since det(𝑈) ≠ 0, this 
implies that the inverse 𝑈)" exists and it is a unimodular matrix as well, where 𝑈)" ∈ ℤ$×$ and 
det(𝑈)") = ±1 [20]. 

Lemma 1: Let 𝐺, 𝐵 ∈ ℝ$×$ be non-singular matrices and 𝑈 ∈ ℤ$×$ be a unimodular matrix. The 
matrices	𝐺 and 𝐵 span the same lattice ℒ ⊂ ℝ$, i.e., 𝐿(𝐺) = 𝐿(𝐵) = ℒ ⊂ ℝ$, if and only if these 
matrices are related as 𝐺 = 𝐵𝑈 [19]. For 𝑛 ≥ 2, there are infinitely many unimodular matrix  𝑈. This 
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implies that, there are infinitely many bases for the lattice ℒ. These bases have different quality in 
terms of the norms and orthogonality of their basis vectors. A basis with shorter and more orthogonal 
vectors is referred to as a ‘good’ basis while a ‘bad’ basis is a basis with longer and less orthogonal 
vectors. Both good and bad bases are essential in cryptography where a bad basis is normally used 
as public key while the good basis is used as private key. Lattice bases are used to define lattice-based 
problems. 

Definition 3: Let ℒ ⊂ ℝ$ be a lattice. Given a basis for the lattice ℒ and a target vector 𝑡 ∈ ℝ$, 
the Closest-Vector Problem (CVP) is to find a non-zero vector �⃗� ∈ ℒ that minimizes the distance 
W𝑡 − �⃗�W [19]. 

Definition 4: Let ℒ ⊂ ℝ$ be a lattice. Given a basis for the lattice ℒ, the Shortest-Vector Problem 
(SVP) is to find a non-zero vector �⃗� ∈ ℒ such that ‖𝑥‖ is minimal, i.e., ‖�⃗�‖ = 𝜆"(ℒ) [19]. The CVP is 
proven to be NP-hard while the SVP is NP-hard under randomized reduction [19]. In [21], the CVP is 
proven to be a little bit harder than the SVP. The hardness of these problems is significantly 
influenced by various factors. One of the factors is lattice gap as defined below. 

Definition 5: Let ℒ ⊂ ℝ$ be a full-rank lattice and 𝜆"(ℒ), 𝜆#(ℒ) ∈ ℝ* denote the first and second 
minima of the lattice ℒ respectively. The lattice gap of the lattice ℒ is the ratio between the 𝜆#(ℒ) 
and the 𝜆"(ℒ), i.e. [15]. 
 
𝑔𝑎𝑝(ℒ) = +!(ℒ)

+"(ℒ)
∈ ℝ*             (2) 

 
Experimentally, the larger the lattice gap is, the more efficient lattice-reduction algorithm could 
perform to solve the lattice problems [15]. For congruence relation between vectors, consider the 
following definition. 

Definition 6: For 𝑛, 𝜎 ∈ ℕ, let �⃗�, 𝑏0⃗ ∈ ℤ$. Then �⃗� ≡ 𝑏0⃗ (𝑚𝑜𝑑	𝜎) holds if: 
  
/0⃗ )20⃗

3
= 𝑘0⃗ ∈ ℤ$		                         (3)

  
3. Security of the GGH Cryptosystem  
3.1 Embedding-Based Attacks 
 

Through extensive security measures, inventors of the GGH cryptosystem conjectured that the 
underlying GGH-CVP of the GGH scheme are intractable in lattice dimensions of more than 300. The 
GGH-CVP can be solved or approximated using embedding-based attacks. The attack works by 
reducing the underlying GGH-CVP to the GGH-SVP. The derived GGH-SVP is then solved by using 
lattice-reduction algorithm and the obtained solution is containing the demanded solution of the 
GGH-CVP which immediately break the GGH cryptosystem. 

Security threat by the embedding-based attacks already being realised by the inventors of the 
GGH cryptosystem. That is why they launch the attack to the GGH cryptosystem in their security 
measures [14]. By using LLL algorithm for solving the derived GGH-SVP, the attack only managed to 
break the GGH cryptosystem in 120 lattice dimensions. Later, Schnorr et al replaced the LLL algorithm 
by the BKZ algorithm [22] and the attack managed to break the GGH cryptosystem in 150 lattice 
dimensions. Using the same strategy, Nguyen launched another embedding-based attack [15]. This 
time the underlying GGH-SVP is solved by using pruning algorithm and the attack managed to reach 
200 lattice dimensions after being executed in few days. Note that, all these attacks used the same 
strategy. The only difference was the lattice-reduction algorithm being deployed to solve the derived 
GGH-SVP. 
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3.2 Improved Embedding-Based Attacks 
 

Nguyen discovered that the underlying GGH-CVP as well as the derived GGH-SVP are hard to 
solved in their original form. That is why GGH cryptosystem in practical lattice dimensions up to 400 
dimensions remain secure at those time. The breakthrough happened when Nguyen discovered a 
major flaw regarding the error vector 𝑒 ∈ {−𝜎,+𝜎}$, where 𝑛, 𝜎 ∈ ℕ. The vector can be eliminated 
from the encryption equation and this allowed the simplification of the underlying GGH-CVP as well 
the GGH-SVP. 

The simplification occurred due a major flaw in the design of the GGH cryptosystem. The 
encryption equation is as follows. 
 
𝑐 = 𝐵𝑚00⃗ + 𝑒			              (4) 
 
where 𝑐 ∈ ℝ$ is a ciphertext, 𝐵 ∈ ℝ$×$ is a lattice basis, 𝑚00⃗ ∈ ℤ$  is a plaintext and 𝑒 ∈ {−𝜎,+𝜎}$ is 
an error vector. Since 𝐵 is a basis for the lattice ℒ and 𝑚00⃗ ∈ ℤ$, then 𝐵𝑚00⃗ = �⃗� ∈ ℒ is a lattice vector. 
Thus, Eq. (4) can be rewritten as follows. 
 
𝑐 = �⃗� + 𝑒		              (5) 
 
The error vector 𝑒 is added to the lattice vector 𝑣 and yields a non-lattice vector 𝑐. The GGH 
cryptosystem is constructed in such a way that �⃗� is the lattice vector that is located closest to the 
ciphertext 𝑐. This implies that, the distance ‖𝑐 − 𝑣‖ as well as the norm ‖𝑒‖ are considered 
minimum. 

Definition 7: For 𝑛 ∈ ℕ, let 𝑐 = 𝑣 + 𝑒 where 𝑐 ∈ ℝ$ is a ciphertext, �⃗� ∈ ℒ is a lattice vector and  
𝑒 ∈ ℝ$ is an error vector. The Euclidean distance ‖𝑐 − �⃗�‖ is defined as the GGH-CVP distance. As 
proved in [15], the GGH-CVP distance ‖𝑐 − �⃗�‖ = 𝜎√𝑛. A task to find the lattice vector �⃗� in Eq. [5] is 
a variant of the CVP, defined as the GGH-CVP. 

Definition 8: (GGH-CVP) For 𝑛, 𝜎 ∈ ℕ, let 𝐵 ∈ ℝ$×$ be a basis for a lattice	𝐿(𝐵) = ℒ ⊂ ℝ$ and 
𝑐 = �⃗� + 𝑒 be a ciphertext vector where �⃗� ∈ ℒ is a lattice vector and 𝑒 ∈ {−𝜎,+𝜎}$ is an error vector. 
Given 𝐵, 𝑐 and 𝜎, find the lattice vector �⃗� such that ‖𝑐 − �⃗�‖ = 𝜎√𝑛 [17]. Once the GGH-CVP distance 
is shorter than 𝜎√𝑛, the lattice gap in the embedded lattice ℒ4 ⊂ ℝ$*" becomes larger. 
Consequently, the Nguyen’s embedding attacks could perform better for solving the GGH-SVP which 
immediately solve the GGH-CVP as well. Details of the embedding based attack are explained in [17]. 
The distance become shorter since the error vector 𝑒 is eliminable from the encryption Eq. (4) To do 
so, Nguyen used public parameters 𝑛, 𝜎 ∈ ℕ to form an integer vector 𝑠 ∈ {𝜎}$ and then inserted it 
into the encryption Eq. (4) as follows. 
 
𝑐 + 𝑠 = 𝐵𝑚00⃗ + 𝑒 + 𝑠		             (6) 
 
Note that, the following equation hold. 
 
5⃗*6⃗)7%000⃗

#3
= 8⃗*6⃗

#3
	              (7) 

 
Since 𝑒 ∈ {−𝜎,+𝜎}$ and 𝑠 ∈ {𝜎}$, then 𝑒 + 𝑠 ∈ {0, 2𝜎}$. Thus,  
 

	8⃗*6⃗
#3

∈ {0, 1}$	              (8) 
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is an integer vector. Eq. (7) implies that, 

	
𝑐 + 𝑠 − 𝐵𝑚00⃗

2𝜎 ∈ ℤ$																																																																																																																																																(9) 
 
as well and this allows the following congruence holds. 
 
𝑐 + 𝑠 ≡ 𝐵𝑚00⃗ 	(𝑚𝑜𝑑	2𝜎)	          (10) 
 

Clearly, the error vector 𝑒 has been successfully eliminated from the encryption Eq. (4). The 
encryption Eq. (4) which originally has two unknown vectors 𝑚00⃗  and 𝑒 has been transformed to the 
congruence Eq. (10) which contain only a single unknown vector 𝑚00⃗ . Nguyen proved that the 
congruences Eq. (10) is solvable with very few solutions [15]. With non-negligible probability, these 
congruences has a single solution when gcd(|det(𝐵)|, 𝜎) = 1 and gcd(|det(𝐵)|, 2𝜎) = 1. Thus, 
assume that the solutions of the congruence Eq. (10) are obtained as the following. 

𝑚00⃗ ≡ 𝐵)"(𝑐 + 𝑠)(𝑚𝑜𝑑	2𝜎)	          (11) 
 
Denote the solution as 𝐵)"(𝑐 + 𝑠)	𝑚𝑜𝑑	2𝜎 = 𝑚00⃗ #3  where 𝑚00⃗ #3 ∈ ℤ#3$ . Although 𝑚00⃗ ≠ 𝑚00⃗ #3, the 
vector 𝑚00⃗ #3  is considered as partially decrypted plaintext since, 
 
𝑚00⃗ 	≡ 𝑚00⃗ #3(𝑚𝑜𝑑	2𝜎).           (12) 
 

Once the vector 𝑚00⃗ #3  is obtained, the GGH-CVP can be simplified. The vectors 𝑚00⃗ #3  is multiplied 
with the public basis 𝐵. The product vector 𝐵𝑚00⃗ #3 ∈ ℝ$ is inserted into both sides of encryption Eq. 
(4) as follows. 
 
𝑐 − 𝐵𝑚00⃗ #3 = 𝐵(𝑚00⃗ − 𝑚00⃗ #3) + 𝑒         (13) 
 
By Definition 6, the congruences is representable as follows. 
 
𝑚00⃗ − 𝑚00⃗ #3 = 2𝜎𝑘0⃗            (14) 
 
for 𝑘0⃗ ∈ ℤ$. Substituting Eq. (14) into Eq. (13) yields the following equation. 
 
𝑐 − 𝐵𝑚00⃗ #3 = 𝐵2𝜎𝑘0⃗ + 𝑒          (15) 
 
5⃗)7%000⃗ !#

#3
= 𝐵𝑘0⃗ + 8⃗

#3
           (16) 

 
For simplicity, denote 5⃗)7%000⃗ !#

#3
= �⃗� ∈ ℝ$. Since 𝑐, 𝐵,𝑚00⃗ #3  and 𝜎 are known information, then �⃗� is 

known vectors. Note that, 𝐵 is a basis for the lattice 𝐿(𝐵) ⊂ ℝ$ and 𝑘0⃗ ∈ ℤ$. By Definition 1,  
𝐵𝑘0⃗ = �⃗� ∈ 𝐿(𝐵) which means that �⃗� ∈ ℒ. Since 𝑘0⃗  is an unknown vector, then �⃗� is also an unknown 
lattice vector. Although the value of the parameter 𝜎 is known, the arrangement of the entries −𝜎 
and +𝜎 in the error vector 𝑒 ∈ {−𝜎,+𝜎}$ is privately determined. Thus, the following is an unknown 
vector. 
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𝜀 = 	 8⃗
#3
∈ k− 3

#3
, + 3

#3
l
$
= k− "

#
, "
#
l
$

         (17) 
 

Now, Eq. (16) can be simply rewritten as: 
 
�⃗� = �⃗� + 𝜀		            (18) 
 

where �⃗� ∈ ℝ$, �⃗� ∈ 𝐿(𝐵), and 𝜀 ∈ k− "
#
, "
#
l
$

. Note that, Eq. (18) is similar to Eq. (4) where the distance 
‖𝑝 − �⃗�‖ is analogue to the distance of ‖𝑐 − 𝑣‖ in GGH-CVP. Recall that ‖𝑐 − �⃗�‖ = 𝜎√𝑛. But the 
Nguyen’s attack made ‖�⃗� − �⃗�‖ < ‖𝑐 − �⃗�‖ as proven below. 

Proposition 1: For 𝑛, 𝜎 ∈ ℕ where n, 𝜎 > 1, let 𝐵 ∈ ℝ$×$ be a basis for the lattice 𝐿(𝐵) ⊂ ℝ$, 	
�⃗� ∈ ℝ$ such that 𝑝 = �⃗� + 𝜀 where 	�⃗� ∈ 𝐿(𝐵). If 𝜀 ∈ k− "

#
, "
#
l
$

, then ‖𝑝 − �⃗�‖ < 𝜎√𝑛. Proof, since �⃗� =
�⃗� + 𝜀, then ‖𝑝 − �⃗�‖ = ‖𝜀‖. Note that, 
 

‖𝜀‖ = op±
"
#
q
#
+ p± "

#
q
#
+⋯+ p± "

#
q
#

stttttttttutttttttttv
9::;:	$	=>?;@

= w𝑛 p"
A
q = √$

#
.      (19) 

 
Suppose that ‖𝑐 − �⃗�‖ = 𝜎√𝑛. Since 𝑛, 𝜎 ∈ ℕ and 𝑛, 𝜎 > 1, thus, 
 

𝜎√𝑛 − √$
#
= #3√$)√$

#
= √$(#3)")

#
> 0        (20) 

 
This implies that, ‖𝑝 − �⃗�‖ < 𝜎√𝑛. 
 
3.3 GGH-MKA Cryptosystem 
 

Recently, Mandangan et al., [18] proposed a new variant of the GGH cryptosystem, referred to 
as the GGH-MKA cryptosystem. Through minor modification on the GGH cryptosystem's design, the 
flaw that being exploited by the Nguyen's embedding attacks is repaired. Consequently, the 
simplification of the GGH-CVP is completely prevented, and the GGH-CVP distance is maintained as 
𝜎√𝑛. These improvements are achieved by introducing a new error vector 𝑒′ ∈ ℤ$ the together with 
its elements’ distribution rule to ensure that the distance 𝜎√𝑛 could be preserved.  

The error vector 𝑒′ consisting the entries𝑒& ∈ {(2 − 𝜎), (1 − 𝜎), 𝜎, (𝜎 + 1)} for all  
𝑖 = 1,… , 𝑛. By distributing the entries (2 − 𝜎), (1 − 𝜎), 𝜎 and (𝜎 + 1) randomly in the vector 𝑒′ 
according to the provided distribution rule, then it is proven that the error vector 𝑒′ is non-eliminable 
from the encryption equation and the distance ‖�⃗� − �⃗�‖ = 𝜎√𝑛. 

Theorem 1: For 𝑛, 𝜎 ∈ ℕ, let 𝑐 = 𝐵𝑚00⃗ + 𝑒 be a ciphertext vector where 𝐵 ∈ ℝ$×$ is a public 
basis for the lattice 𝐿(𝐵) = ℒ ⊂ ℝ$, 	𝑚00⃗ ∈ ℤ$ is a plaintext vector and 𝑒 ∈ ℤ$ is an error vector. 
Suppose that 𝑛 = (4𝜎 − 2)𝑘, where 𝜎 > 2 and 𝑘 ∈ ℕ. If 𝑒& ∈ 𝑒 for all 𝑖 = 1,… , 𝑛	are randomly 
selected from the set 𝐸 = {(2 − 𝜎), (1 − 𝜎), 𝜎, (𝜎 + 1)} based on the following distributions. Then, 
the GGH cryptosystem is invulnerable to Nguyen’s embedding attacks [18]. 
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𝑒& =

⎩
⎪
⎨

⎪
⎧(2 − 𝜎), 𝑓𝑜𝑟	

$
A3)#

	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑛𝑡𝑟𝑖𝑒𝑠			

(1 − 𝜎), 𝑓𝑜𝑟	 3$)$
#3)"

	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑛𝑡𝑟𝑖𝑒𝑠	

𝜎,											𝑓𝑜𝑟	 $
A3)#

	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑛𝑡𝑟𝑖𝑒𝑠		

(𝜎 + 1), 𝑓𝑜𝑟	 3$)$
#3)"

	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑛𝑡𝑟𝑖𝑒𝑠	

       (21) 

 
4. The Proposed Countermeasure 
 

The Nguyen’s embedding-based attacks succeed due to its ability to simplify the underlying GGH-
CVP and make the GGH-SVP distance shorter than 𝜎√𝑛. Thus, stopping the simplification and 
maintain the distance could win the combat against the Nguyen’s embedding-based attacks. 
 
4.1 Preventing Simplification of GGH-CVP 
 

Nguyen’s embedding attacks work by inserting vector 𝑠 ∈ {𝜎}$ into the encryption equation  
𝑐 = 𝐵𝑚00⃗ + 𝑒, where 𝑐 ∈ ℝ$ is a ciphertext vector, 𝐵 ∈ ℝ$×$ is a basis for the lattice  
𝐿(𝐵) = ℒ ⊂ ℝ$, 𝑚00⃗ ∈ ℤ$ is a plaintext vector and 𝑒 ∈ ℤ$ is an error vector. In the GGH cryptosystem, 
the vector 𝑒 ∈ {−𝜎,+𝜎}$ is eliminable through the formation of the congruences  
𝑐 + 𝑠 ≡ 𝐵𝑚00⃗ 	(𝑚𝑜𝑑	2𝜎). Consequently, the GGH-CVP can be simplified. To prevent the simplification, 
consider the following lemma. 

Lemma 2.1: For 𝑛, 𝜎 ∈ ℕ, let 𝑠 ∈ {𝜎}$ and 𝑐 = 𝐵𝑚00⃗ + 𝑒 where 𝑐 ∈ ℝ$ is a ciphertext vector,  
𝐵 ∈ ℝ$×$ is a basis for the lattice 𝐿(𝐵) = ℒ ⊂ ℝ$, 𝑚00⃗ ∈ ℤ$ is a plaintext vector and 𝑒∗ ∈ ℤ$ is an 
error vector. If 𝜎 > 1 and 𝑒&∗ ∈ 𝑒∗ are randomly selected from 𝐹 = {(2 + 𝜎), (2 − 𝜎), (1 + 𝜎), (−𝜎 −
1)} for all 𝑖 = 1,… , 𝑛 and all entries of 𝐹 appear at least once in 𝑒∗, then 𝑐 + 𝑠 ≢ 𝐵𝑚00⃗ 	(𝑚𝑜𝑑	𝜎) and 
𝑐 + 𝑠 ≢ 𝐵𝑚00⃗ 	(𝑚𝑜𝑑	2𝜎). Proof, given that 𝑐 = 𝐵𝑚00⃗ + 𝑒∗ and 𝑠 ∈ {𝜎}$. Thus, 
 
𝑐 + 𝑠 = 𝐵𝑚00⃗ + 𝑒∗ + 𝑠           (22) 
 
𝑐 + 𝑠 − 𝐵𝑚00⃗ = 𝑒∗ + 𝑠           (23) 
 
Suppose that 𝑒"∗ = 2 + 𝜎, 𝑒#∗ = 2 − 𝜎, 𝑒C∗ = 1 + 𝜎, 𝑒A∗ = −𝜎 − 1 and 𝑒$∗ = −𝜎 − 1. Thus, 
 

8⃗∗*6⃗
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#3

⎣
⎢
⎢
⎢
⎢
⎡
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⎥
⎥
⎥
⎥
⎤
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⎢
⎢
⎢
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⎥
⎥
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⎤
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⎢
⎢
⎢
⎡
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3
+ 1
"
3

"
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+ 1

− "
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⋮

− "
#3 ⎦
⎥
⎥
⎥
⎥
⎥
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⎥
⎤

∉ ℤ$      (24) 

 
These imply that,  
 
5⃗*6⃗)7%000⃗

#3
∉ ℤ$            (25) 
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By Definition 6, therefore 𝑐 + 𝑠 ≢ 𝐵𝑚00⃗ 	(𝑚𝑜𝑑	2𝜎). By implementing the proposed error vector 𝑒∗, the 
simplification of the underlying GGH-CVP can be totally prevented. The encryption equation 
is maintained as 𝑐 = 𝐵𝑚00⃗ + 𝑒∗ and the underlying GGH-CVP remain in its original form. 
 
4.2 Maintaining GGH-CVP Distance as 𝜎√𝑛 
 

We proposed the distribution rule to tabulate the entries of the new set 𝐹 in the new error vector 
𝑒∗. The position of all these entries is randomly distributed but the number of appearances of each 
entry must follows the proposed distribution rule. By doing so, we proved that the desired GGH-CVP 
distance can be preserved as 𝜎√𝑛. Consequently, the lattice gap in the embedded lattice ℒ4 is 
maintained and this makes the derived GGH-SVP by the embedding-based attacks becomes harder 
to solve as faced by all attacks prior to Nguyen’s embedding-based attack. 

Lemma 2.2: For 𝑛, 𝜎 ∈ ℕ, let 𝑠 ∈ {𝜎}$ and 𝑐 = �⃗� + 𝑒∗ where 𝑐 ∈ ℝ$, 𝑣 ∈ ℒ ⊂ ℝ$ and 𝑒∗ ∈ ℤ$ is 
an error vector. If 𝜎 > 1, 𝑛 = (10𝜎 − 3)𝑘 and 𝑒&∗ ∈ 𝑒∗ are randomly selected from 𝐹 =
{(2 + 𝜎), (2 − 𝜎), (1 + 𝜎), (−𝜎 − 1)} based on the following distribution rule. 
 

𝑒&∗ =

⎩
⎪⎪
⎨

⎪⎪
⎧ 2 + 𝜎, for	 $(#3)#)

"D3)C
	entries,

2 − 𝜎, for	 $(A3)C)
"D3)C

	entries,

1 + 𝜎, for	 $(#3)#)
"D3)C

	entries,

−𝜎 − 1, for	 $(#3)#)
"D3)C

	entries,

         (26) 

 
For all 𝑖 = 1,… , 𝑛, then 𝑐 − �⃗� = 𝜎√𝑛. Proof, note that, 
 

‖𝑒‖ = w∑ (2 + 𝜎)#
%(!#'!)
")#'*
&'" + ∑ (2 − 𝜎)#

%(+#'*)
")#'*
&'" +∑ (1 + 𝜎)#

%(!#'!)
")#'*
&'" + ∑ (−𝜎 − 1)#

%(!#'!)
")#'*
&'"   

= w$(#3)#)
"D3)C

(2 + 𝜎)# + $(A3)C)
"D3)C

(2 − 𝜎)# + $(#3)#)
"D3)C

(1 + 𝜎)# + $(#3)#)
"D3)C

(−𝜎 − 1)#  

= w𝑛 p#3)#((#*3)
!*(3*")!*()3)")!)*A3*C(#)3)!

"D3)C
q  

= w𝑛𝜎# p"D3)C
"D3)C

q  

= 𝜎√𝑛                        (27) 
 
Since 𝑐 = �⃗� + 𝑒∗, then 𝑐 − 𝑣 = 𝑒∗ and ‖𝑐 − �⃗�‖ = ‖𝑒‖. Therefore, ‖𝑐 − �⃗�‖ = 𝜎√𝑛. 
  
5. Discussion and Conclusion 
 

Other than security, practicality also should be considered as significant aspect in post-quantum 
cryptography. The GGH cryptosystem was considered practical prior to the devastating attacks by 
Nguyen. Upgrading the security of the GGH cryptosystem against the Nguyen’s embedding attacks 
should revive the interest on the GGH cryptosystem. That is why countermeasure to strengthen 
security of the scheme is worth to be done. Findings from this study justify that the set of entries 𝐹 
as well as the distribution rule for the entries of 𝐹 in the error vector are not unique. We expect that 
more sets and distribution rules could be discovered to secure the GGH cryptosystem against 
Nguyen’s embedding attacks. Since the set of entries is not unique, it could be interesting to find the 
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generalization of the set based on the pre-setup parameters. The strategy is still the same. Prevent 
the simplification of the GGH-CVP and keep the GGH-CVP distance as 𝜎√𝑛. This is what we have done 
in this study. 

We proved that the formation of the congruence 𝑐 + 𝑠 ≡ 𝐵𝑚00⃗ 	(𝑚𝑜𝑑	2𝜎) can be prevented by 
using the newly proposed error vector 𝑒∗. On top of that, the lattice gap enlargement which 
accelerates the performance of lattice reduction algorithms also totally avoided due to the proposed 
distribution rules on the entries of the proposed error vector 𝑒∗.  More and thorough security 
analyses on the GGH-MKA cryptosystem are demanded to justify its robustness towards any possible 
attacks other than the Nguyen’s embedding-based attacks to build confident, trust and willingness 
to consider the scheme as competent alternative in post-quantum cryptography. 
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