

Journal of Advanced Research Design 71, Issue 1 (2020) 1-18

1

Journal of Advanced Research Design

Journal homepage:
 https://akademiabaru.com/submit/index.php/ard

ISSN: 2289-7984

Autonomous Robot Car Simulation and Control using Mobile Application

Luqman Hakim Zulkifli1, Fitri Yakub1,*

1 Department of Electronic Systems Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100 Kuala

Lumpur, Malaysia

ARTICLE INFO ABSTRACT

Article history:
Received 28 February 2020
Received in revised form 25 March 2020
Accepted 13 August 2020
Available online 27 August 2020

Autonomous cars are becoming more and more relevant as time progresses.
Companies are continuously developing better and smarter vehicles that act similarly
to human driving behaviour. Many researchers have done projects regarding robot
cars, autonomous or not, with different means of controlling them but not many are
researching mobile applications as an alternative means to control autonomous
vehicles. Mobile apps open to potential versatilities in terms of user interaction and
accessibility with their vehicles. This paper proposes to simulate an autonomous robot
car in a 3D simulation using the mobile app. In this paper, a 3D robot car was designed
using the Robot Operating System (ROS) as the middleware for the robot
simulation development, alongside with Gazebo simulator which provides the 3D
environment for the simulation. Then, using mapping algorithm to train the robot car
to map the simulation environment before testing the robot car’s autonomous driving
capabilities. The simulation was then tested through a phone application called ROS-
Mobile by giving control commands and applying visual angles of the robot car from
the mobile app. The mobile app was able to connect to the simulation via connecting
IP addresses and users can control and visualize the robot car simulation from the
mobile app.

Keywords:

Autonomous cars; Robot Operating
System (ROS); ROS-Mobile

1. Introduction

An ideal vision of what seems to be the future of modern transportation, autonomous
vehicles have been the topic of intensive research by universities, car companies and research centres
since the middle of the 1980s. Over the last decade, three competitions were organized by the
Defence Advanced Research Projects Agency aimed to give rise to the technology of autonomous
driving [1].

Nowadays, autonomous vehicles have become pertinent in a lot of real-life applications with
uses ranging from domestic uses to military and industrial levels. Companies such as Tesla,
Renault and many more have already released model vehicles that have an autopilot system where
the vehicle enters full autonomous driving mode. As such companies continue to research and
develop better and conventional approaches to improve autonomous driving technology, the
world will slowly but surely transition to this new modern trend [4-8].

* Corresponding author.
E-mail address: mfitri.kl@utm.my

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

2

Smartphones on the other hand, are one of the most advanced pieces of technology to which
almost everybody in the world has access. Today, many applications for smartphones have been
developed, one of them is being able to act as remote controls for devices through integrated
communications protocols, such as Wi-Fi or Bluetooth.

Present in an era where data can be stored and connected with one another, possibilities of
technology integration are endless and open to various innovative applications. With the assistance
of experimental simulations such as the 3D simulator GAZEBO, new applications can be tested with
different environmental scenarios prior to real experimental testing to gain supple data and reduce
risks and costs.

What makes autonomous vehicles apparent today is their ability to avoid obstacles from
their current environment and they rely on their built-in sensors such as radars and cameras to
detect obstacles and make decisions to navigate the vehicle accordingly. However, the technology
is not perfect and often experiences setbacks. In May 2016, the first accident was caused by a Tesla
vehicle during autopilot. Investigations found that the vehicles’ sensor system failed to identify a
moving object [2]. This caused the system unable to carry out any collision avoidance maneuver e.g.
evading the object or braking.

Another tragedy happened in March 2018 when the 38-year-old lost his life after his Tesla car
collided with a concrete barrier during autopilot [3]. The US National Transportation Safety Board
(NTSB) reported that the driver was distracted by a smartphone video game and was too reliant
on the autopilot system. They also reported that the Tesla’s obstacle avoidance system was not
programmed to sense the collision. This implies the importance of simulations to experiment and
replay such scenarios to study and figure out the flaws of the sensor system.

While autonomous cars are being actively researched and developed for the current time
being, there are not many mobile applications for remote-controlled autonomous vehicles
presently. Since previous existing studies focus on controlling robot simulations through the
simulator software itself or a web browser application, this paper proposes a mobile application
as a means to control and navigate an autonomous robot car in a simulation. The objectives of this
research are to design a 3D robot car simulation and to control and navigate the 3D robot car
simulation through a mobile application.

2. Methodology
2.1 Simulation Design
2.1.1 Robot car model

The mapping and navigation algorithm chosen to be applied to the robot car model (RCM) for
this project followed the same algorithm as the TurtleBot simulation tutorial [9]. Due to not wanting
to tamper with the default navigation and mapping stack parameter values set by the TurtleBot
simulation tutorial, the RCM was designed with close reference to the TurtleBot3 Waffle Pi model
such as wheel length, radius and sensor dimensions. Figure 1 (a) and (b) shows the TurtleBot3 Waffle
Pi model and Table 1 shows its dimensions.

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

3

(a) (b)

Fig. 1. TurtleBot3 Waffle Pi model from (a) Top angle view and (b) Side angle view

 Table 1
 TurtleBot3 Waffle Pi model dimensions

Component Dimensions

Main Body Length=26.6cm

Width=26.6cm
Height=9.4cm

Wheels Length=1.8cm
Radius=3.3cm

Top sensor (radar) Length=3.15cm
Radius=5.5cm

Front sensor
(camera

Length=1.5cm
Width=3cm
Height=2.7cm

2.1.2 Simulation environment

Simulation environments act as routes for the RCM to test its mapping and navigation

capabilities. Each simulation environment is different and comes with different sets of obstacles.

2.1.2.1 Provided simulation environments

The TurtleBot simulation package already provided two world environments in a launch file
[9]. The world environments are TurtleBot3 World and TurtleBot3 House World as shown in Figure
2 (a) and (b) respectively.

(a) (b)

Fig. 2. (a) The TurtleBot3 World and (b) the Turtlebot3 House World [9]

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

4

2.1.2.2 Designed simulation environments

Other than the provided simulation environment, Gazebo also has a world editor feature
and a building editor feature where users can create and design their world environment by using
and manipulating the 3D shapes and objects provided in Gazebo. Two new simulation environments,
KSJ-room World and KSJ-corridor World were created. These environments were designed replicas
based on Kolej Siswa Jaya (KSJ), Universiti Teknologi Malaysia hostel room and corridors,
respectively. These environments were to test the RCM mapping and navigation abilities if done in
real-world scenarios. Figures 3 (a) and (b) show photos of the KSJ hostel room and Figures 4 (a)
and (b) are photos of the KSJ corridor as a reference for the environment design.

(a) (b)

Fig. 3. Photos of Kolej Siswa Jaya room from (a) Entrance door view and (b)
Bathroom door view

(a) (b)

Fig. 4. Photos of Kolej Siswa Jaya corridors from (a) View of the elevator at the
center of the floor and (b) View of room corridor

2.2 Tele-operation and Mapping

The main step to train the robot to drive around its environment autonomously was to introduce
the robot to every space or course it potentially needs to manuever to. This can be done by
controlling the RCM via tele-operation to map the entire environment course creating a 2D map,
from sensor and location data collected by the RCM. This process is called Gmapping. The Gmapping
package provides laser-based Simultaneous Localization and Mapping (SLAM) as a ROS node named
slam_gmapping node. Widely used in robotics, SLAM’s algorithm generates a map of the environment
the RCM picked up during mapping and simultaneously locates its position using applied sensors.
This purpose of SLAM is the main reason why it is a great mapping method in the field of
autonomous driving [10]. Figure 5 shows all SLAM classifications based on the algorithm and target
generation used.

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

5

Fig. 5. Simultaneous localization and mapping (SLAM) classifications [10]

The SLAM algorithm method used for this project is the Extended Kalman Filter (EKF) under

the Kalman Filters (KF) class based on Bayes Filter. The KF consists of two parts: the prediction stage
and the updating stage. The prediction stage uses past values and iterations to guess the current
state's state. The update phase uses this guessed state and merges its current data collected from
the sensor nodes, known as the posterior [10]. The EKF was developed on top of the KF to generally
eliminate the Non-Linearity problem of the pose model [11]. In the EKF method, a first-order Taylor
expansion was used to estimate the current. In most cases, the guessed states were quite near to
ground truth.

2.2.1 Mapping parameters

SLAM_gmapping node comes with a long list of parameters [12] so that users can customize and
adjust the mapping parameters suitable for their robot’s specifications to produce more accurate
or more detailed mapping results. In this project, the SLAM_gmapping parameters focused are
listed in Table 2.

Table 2
Focused mapping parameters [12]
Parameter Description

map_update_interval (Map update) Time (in seconds) taken for every laser scan updates of the generated
map. The less time taken, the more often the map is updated but takes
greater loading computation

maxUrange (Laser range) The maximum range of the laser scan distance
lskip The number of laser beams to skip or turned off
linearUpdate (Linear update) The range for the robot to travel for a scan process to occur
angularUpdate (Angular update) The angle for the robot to turn for a scan process to occur
particles Number of filter particles during scans
xmin Minimum map generated size in x-axis
xmax Maximum map generated size in x-axis
ymin Minimum map generated size in y-axis
ymax Maximum map generated size in y-axis

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

6

2.3 Autonomous Drive Testing

ROS navigation package is a 2D navigation stack that takes in information from t h e robot’s
sensors, the robot’s odometry, and a goal pose and outputs safe velocity commands that are
sent to a mobile base, in this case, the RCM. The goal of this navigation stack was to move the
RCM from the initial or starting position to the goal position without colliding with any obstacle
within the simulation environment.

The ROS navigation package comes with an implementation of several navigation-related
algorithms that aid in implementing autonomous navigation properties in mobile robots. Users only
need to give the goal destination of their robot and their robot odometry information from sensors
such as wheel encoders, IMU and GPS, alongside other sensor data streams. The navigation package’s
output will be the velocity and movement commands that will move the robot to the goal destination.

The navigation process for this project used Adaptive Monte Carlo Localization (AMCL). AMCL
is a localization system for a robot moving in 2D. This system applies the adaptive Monte Carlo
localization approach that uses an adaptive particle filter to trace the ground robot's pose, which
changes continuously as the ground robot navigates in the area [13]. Ideally, by applying the created
2D map from the Gmapping step, the AMCL algorithm will try to match the laser scans from the robot
car to the map and thus localizing the robot to its current environment based on the map.

2.4 Mobile Application Connection and Simulation Control

The ROS-Mobile app can be downloaded on Android phones for free at the Google Play Store.
The user interface consists of four tabs. The application must first establish a connection with the
simulation computer’s IP address at the “MASTER” tab. Figure 6 (a) shows the ROS-Mobile app at
the “MASTER” tab where the phone is currently not connected to any devices. After establishing a
connection, users can assign widgets at the “DETAILS” tab such as a joystick widget to remote
control the robot car simulation, a camera widget to view the robot from the camera plugin
angle, and a visualizer widget to visualize the mapping of the robot during the mapping process.
Finally, users can use and visualize their selected widgets at the “VIZ” tab. Figure 6 (b) shows the
“VIZ” tab with already assigned camera and joystick widgets but since the application is not
connected to the simulation computer IP address, no images were shown at the camera widget.

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

7

(a) (b)

Fig. 6. ROS-Mobile application at (a) MASTER tab and (b) VIZ tab

3. Results and Discussion
3.1 Robot Car Simulation Design
3.1.1 Robot car model

Since the mapping stack and navigation stack algorithm used in this project was designed for the
Turtlebot3 model, most of the RCM’s design was influenced by the dimensions of the Turtlebot3
model such as the wheel length and diameter and the top sensor (radar)’s height from the ground.
Figure 7 (a), (b) and (c) shows the 45-degree angle view, the side view and the top view of the
finished RCM designed, respectively. The specifications and dimensions of the designed 3D RCM for
this project are described in Table 3.

(a) (b) (c)

Fig. 7. The finished RCM design from (a) Angle view, (b) Side view and (c) Top view

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

8

Table 3
Dimensions of the 3D RCM
Component Dimensions

Main body Length=32cm
Width=20cm
Height=7cm

Top chassis Length=21cm
Width=18cm
Height=5cm

Wheels Length=1.8cm
Radius=3.3cm

Top sensor (Radar) Length=3.15cm
Radius=5.5cm

Front sensor (Camera) Length=1.5cm
Width=3cm
Height=2.7cm

3.1.2 Simulation environment

Four different simulation environments were used in this project for testing the mapping and
navigation of RCM. Two of them were provided by the tutorial website [9] which were Turtlebot3
World and Turtlebot3 House World. The remaining two simulation environments were created and
designed new environments based on the Kolej Siswa Jaya (KSJ) Hostel which are KSJ-room and KSJ-
corridor world.

3.1.2.1 Provided simulation environments

Turtlebot3 World and Turtlebot3 House World are simulation environments provided along
with the tutorial package of Turtlebot3 simulation at Robotis Emanual website [9]. Figure 8 shows
the Turtlebot3 World environment where the obstacles are only simple pillars enclosed in a hexagon
wall. Figure 9 shows the Turtlebot3 House World environment. Figure 10 shows a detailed view of
the environment with labelled furniture and rooms. The Turtlebot3 House World environment
furniture consists of tables, cupboards, trash cans and has 6 rooms namely Room 1, Room 2, Room
3, Room 4, Room 5 and Room 6. The approximate dimensions of each room in the TurtleBot3 House
World environment are shown in Table 4.

Fig. 8. Turtlebot3 World Fig. 9. Perspective view of Turtlebot3 House

World

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

9

Fig. 10. Detailed top view of Turtlebot3 House World

 Table 4
 TurtleBot3 House World environment rooms’ approximate dimensions
Room No. Dimensions

1 Length=5m Width=2.5m
2 Length=4.5m Width=2.5m

3 Length=5.5m Width=5m

4 Length=4.5m Width=2.5m

5 Length=5.5m Width=5m

6 Length=5m Width=3m

3.1.2.2 Designed simulation environments

Two simulation environments, KSJ-room World and KSJ-corridor World were designed replicas

of KSJ Hostel, Universiti Teknologi Malaysia room and corridors, respectively. The measurements
of each exterior and obstacle were measured manually using measuring tape. Figure 11 shows the
detailed top view of KSJ-room World. It consists of two rooms, namely Room 1 and Room 2,
connected by a shared bathroom as well as furniture like lockers (black), study table (green) and
bed (red). Figure 12 is the comparison between the KSJ-room World simulation and real-life
photos of the KSJ room hostel.

Fig. 11. Detailed top view of KSJ-room
World

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

10

Fig. 12. Comparison of KSJ room simulation and real life

Figure 13 (a) and (b) show the detailed top view of KSJ-corridor World. It has four main

corridors, namely Corridor 1, Corridor 2, Corridor 3 and Corridor 4, connected to the middle
elevator area along with objects such as benches (red), washing machine (green), water dispenser
(blue) and trash cans (grey). Figure 14 is the comparison between the KSJ-corridor World
simulation and real-life photos of the KSJ hostel corridor. The approximate length of each corridor
in the KSJ-corridor World environment is shown in Table 5.

Fig. 13. Detailed view of (a) KSJ-corridor World and (b) Elevator area centre

 Table 5

 KSJ-corridor World environment corridors' approximate lengths
Corridor no. Length (meters)

1 38.00
2 38.40

3 38.60

4 39.40

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

11

Fig. 14. Comparison of KSJ corridor simulation and real-life photos

3.2 RCM Training and Mapping

Figure 15 (a) shows the RCM manually controlled via tele-operation to map the entire

TurtleBot3 House World environment creating a 2D map of it shown in Figure 15 (b). The
generated 2D map, although not precisely aligned, follows the same dimensions as the original
footprint of the rooms of the TurtleBot3 House World environment.

(a) (b)

Fig. 15. (a) The robot car (in red) mapping the House environment resulting in (b)
Generated 2D occupancy grid map of the House World

The mapping process was executed on all four simulation environments to experiment with

the algorithm’s mapping accuracy. Figures 16 (a), (b) and (c) show the Turtlebot3 World, Turtlebot3
House World and KSJ-room World simulation environments respectively with their resulting 2D
occupancy map generated by SLAM_gmapping node when controlling the RCM to map the
entire simulation environment. It was found that the 2D map generated from the mapping of
these three simulation environments was quite accurate with little to no error in terms of the
environment’s dimension lengths.

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

12

Fig. 16. Simulation environments with the resulting 2D occupancy map of (a) Turtlebot3
World, (b) Turtlebot3 House World and (c) KSJ-room World

However, mapping for KSJ-corridor World created inaccurate 2D-map dimensions of the

environment. Figure 17 shows Corridor 1 of the KSJ-corridor World simulation environment and the
resulting 2D-map.

Fig. 17. Corridor 1 of KSJ-corridor World environment with its resulted 2D occupancy map

Table 6 shows the comparison between the length of Corridor 1 in the simulation environment

and the length of its generated 2D map. Based on Table 6, the length of the 2D-map generated from
the mapping of the KSJ-corridor World environment was far from accurate. Even from the first glance of
Figure 17, it can be assumed that the 2D-map generated was much shorter than the simulation
environment. This can lead to conflict later in the autonomous driving test when the inaccurate
2D map is applied and users place destination goals based on the 2D map and the RCM will still drive
autonomously but will not arrive at the desired goal in the simulation environment.

This inaccuracy of mapping along the simulation corridor is known as the “Corridor Problem”
where the mapping algorithm thinks that the RCM is not moving when its laser sensor data scans
are always the same in long corridors [14]. Two different approaches were tested to solve this
“Corridor Problem”.

 Table 6
 Comparison lengths of Corridor 1 environment and resulted in 2D-map

Corridor 1 Length (meters)

KSJ-corridor environment 38.00

2D occupancy map 5.00

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

13

3.2.1 “Corridor problem” approach 1: Adjusting mapping parameters

The first approach to solve the “Corridor Problem is adjusting the RCM’s mapping algorithm’s
mapping parameters. Table 7 shows the trial and error of focused mapping parameters mentioned
in Table 2 with different value combinations to get the distance mapped of the corridor as close as
possible to the actual simulation distance of Corridor 1 KSJ-corridor World environment. The
mapping accuracy was calculated using the accuracy percentage formula,

Mapping accuracy =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑝𝑝𝑒𝑑

𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟 1 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑥 100% × (1)

Table 7
Trial and error of different combination values of mapping parameters

 Parameters

Trial Laser
range

Linear
update

Angular
update

Map
update

Particles xmin xmax ymin ymax lskip Distance
mapped

Corridor
1 actual
distance

Mapping
accuracy
(%)

1 3 1 0.2 2 100 -10 10 -10 10 0 6 38 15.79

2 80 1 0.5 5 30 -100 100 -100 100 0 6 38 15.79

3 80 1 0.2 1 100 -10 10 -10 10 0 8 38 21.05
4 80 1 0.2 2 100 -100 100 -100 100 0 7 38 18.42

5 80 0.1 0.2 2 30 -100 100 -100 100 0 7 38 18.42
6 80 0.1 0.2 2 100 -10 10 -10 10 10 14~15 38 36.84~

39.47

7 3 1 0.2 2 100 -100 100 -100 100 10 13-14 38 34.21~
36.84

8 80 1 0.2 2 100 -100 100 -100 100 5 9-10 38 23.68~
26.31

9 80 1 0.2 2 100 -100 100 -100 100 0 7 38 18.42

Based on Table 7, the difference in distance between the distance mapped during environment

mapping and the actual distance improved at trials 6 and 7. In those trials, the parameter “lskip”
which was the number of laser beams to be skipped or turned off is increased, it allows less
computation for laser work for the mapping algorithm. This is ideal since the resulting map was
only a 2D map and does not need very detailed mapping. This allowed prioritization on the
mapping distance aspect of the mapping algorithm. Despite the improved precision of the distance
mapped, the result was still inaccurate, and the results were not consistent with multiple trials.

3.2.2 “Corridor problem” approach 2: Adding obstacles in the simulation environment

The second approach was adding obstacles along Corridor 1 of the KSJ-corridor World

environment so that the mapping algorithm of RCM can sense some changes when mapping the
corridor and assume the RCM was certainly moving. Figure 18 shows the comparison change
between the original Corridor 1 design to the new version. The new version was modified by
adding trash cans (blue) along the corridor of Corridor 1 KSJ-corridor World environment. Figure 19
shows the modified Corridor 1 and its resulting 2D-map of the modified environment.

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

14

Fig. 18. Comparison changes between the original Corridor 1 design to the new modified version

Fig. 19. Modified Corridor 1 of KSJ-corridor World environment with its resulted 2D occupancy map

Table 8 shows the multiple trials of mapping of the changed Corridor 1 KSJ-corridor World to

compare the distance mapped and mapping accuracy of the environment with the actual
environment length.

 Table 8
 Mapping accuracy trials of new KSJ-corridor World environment

Trial Distance mapped Corridor 1 distance Mapping accuracy (%)

1 38.00 38.00 100
2 37.50 38.00 98.68
3 38.00 38.00 100
4 38.00 38.00 100
5 37.00 38.00 97.37
6 37.50 38.00 98.68

Based on Table 8, the mapping results of the Corridor 1 KSJ-corridor World after adding obstacles

along the corridor give little to no error in distance difference. Hence, this approach was used as the
solution to the “Corridor Problem” due to better mapping accuracy. The simulation environment of
KSJ-corridor World was changed by adding trash cans (blue) along each corridor. Figure 20 shows
the comparison between the previous and updated KSJ-corridor World environment.

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

15

Fig. 20. Comparison between the original and modified KSJ-corridor World environment

3.3 Autonomous Driving Test

Figure 21 shows the initial position of the RCM after the autonomous driving simulation program
launch. The initial position of the RCM was in Room 1. The blue-coloured area represents the robots’
local map planner that gave velocity commands to send to the robot car corresponding with the
current nearest environment around it. The green lines were true obstacles picked up by the robot’s
laser sensor. In this case, the green lines match closely with the created 2D map.

Fig. 21. Initial position of robot car before
autonomous driving

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

16

Then, a destination goal was set as shown in Figure 22 (a) which was supposed to be right under
the table in Room 3. The navigation stack then generated a course for the robot car to follow towards
the goal, which was to drive from Room 1, passing Room 2 and entering Room 3 until the robot car
reaches the goal such as in Figure 22 (b), avoiding obstacles along the way.

(a) (b)

Fig. 22. (a) The simulation of the robot car driving autonomously towards the goal
and (b) The robot car reaching the goal

3.4 Mobile App Connection and Simulation Control

The final step was testing the RCM simulation on a mobile application, ROS-Mobile app. The

first was establishing a connection with the simulation computer’s IP address at the “MASTER”
tab. A stable internet connection was needed and both computer and mobile phone need to be
in the same network for the connection to successfully establish. Figure 23 (a) shows the ROS-
Mobile app at the “MASTER” tab where the phone was currently connected to the RCM simulation’s
computer’s IP address.

Next, assign widgets at the “DETAILS” tab to aid the user interface with the simulation from
the mobile app. Figure 23 (b) shows two selected widgets at the “DETAILS” tab which are a joystick
widget to control the RCM and a camera widget to view the simulation environment from the RCM
camera plugin view angle.

Finally, visualizing the simulation at the “VIZ” tab. Figure 23 (c) shows the “VIZ” tab with already
assigned camera and joystick widgets. The RCM was controlled via the joystick widget. The
camera widget shows the simulation environment the RCM is currently in which is the Turtlebot3
World environment. The demonstration of the robot car simulation and ROS-MOBILE control can
be seen in the video link [15].

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

17

(a) (b) (c)

Fig. 23. ROS-Mobile application running the simulation control at (a) MASTER tab,
(b) DETAILS tab and (c) VIZ tab

4. Conclusion

This research was carried out using the 3D simulator GAZEBO as not only the main environment
setter but also as the main editing tool for RCM and simulation environment designing. Using the
mentioned mapping stack packages and SLAM, the RCM was then trained to map four simulation
environments namely Turtlebot3 World, Turtlebot3_House World, KSJ-room World and KSJ-
corridor World, and simultaneously generating 2D maps of each mapped environment. From the
mapping of KSJ-corridor World, it was found that the mapping algorithm produced inaccurate results
which was the inaccurate mapping of corridor path length. Two approaches were taken to improve
the RCM’s mapping capability which were to adjust its mapping parameters and modifying the
environment by adding obstacles around the inaccurate path. The latter approach improved the
RCM mapping effectively and was used as a solution to the inaccurate mapping problem. Next, the
RCM’s autonomous driving capabilities were simulated by setting a location goal and running the
navigation stack. Rviz software was applied as a visualization tool to display the data captured from
the RCM’s sensors. Finally, the ROS-Mobile application was applied to connect to the simulation’s
computer’s IP address to control and navigate the RCM simulation through the mobile application.

References
[1] Badue, Claudine, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vinicius B. Cardoso, Avelino Forechi,

Luan Jesus et al. "Self-driving cars: A survey." Expert Systems with Applications 165 (2021): 113816.
https://doi.org/10.1016/j.eswa.2020.113816

[2] United States National Transportation Safety Board. Highway Preliminary Report: HWY19FH008, https://www.
ntsb.gov/investigations/accidentreports/pages/hwy19fh008 preliminary-report.aspx

[3] "Tesla Autopilot crash driver 'was playing video game'", BBC News, 2021. [Online]. Available:
https://www.bbc.com/news/technology-51645566

[4] Padmaja, B., PV Narasimha Rao, M. Madhu Bala, and E. Krishna Rao Patro. "A novel design of autonomous cars
using IoT and visual features." In 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and
Cloud) (I-SMAC) I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference
on, pp. 18-21. IEEE, 2018. https://doi.org/10.1109/I-SMAC.2018.8653736

https://doi.org/10.1016/j.eswa.2020.113816
https://www/
https://www/
https://www.bbc.com/news/technology-51645566
https://doi.org/10.1109/I-SMAC.2018.8653736

Journal of Advanced Research Design

Volume 71, Issue 1 (2020) 1-18

18

[5] Olson, Elizabeth A., Nathalie Risso, Adam M. Johnson, and Jonathan Sprinkle. "Fuzzy control of an autonomous car
using a smart phone." In 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and
Communication Technologies (CHILECON), pp. 1-6. IEEE, 2017. https://doi.org/10.1109/CHILECON.2017.8229692

[6] S. Rao, "How to Build a Data Pipeline for Autonomous Driving | NetApp Blog", NetApp Blog, 2019. [Online].
Available: https://blog.netapp.com/how-to- build-a-data-pipeline-for-autonomous-driving/

[7] Lange, Stefan, Fritz Ulbrich, and Daniel Goehring. "Online vehicle detection using deep neural networks and lidar
based preselected image patches." In 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 954-959. IEEE, 2016.
https://doi.org/10.1109/IVS.2016.7535503

[8] Hou, Yew Cheong, Khairul Salleh Mohamed Sahari, Leong Yeng Weng, Hong Kah Foo, Nur Aira Abd Rahman, Nurul
Anis Atikah, and Raad Z. Homod. "Development of collision avoidance system for multiple autonomous mobile
robots." International Journal of Advanced Robotic Systems 17, no. 4 (2020): 1729881420923967.
https://doi.org/10.1177/1729881420923967

[9] "ROBOTIS e-Manual", ROBOTIS e-Manual. [Online]. Available:
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo- simulation

[10] Sankalprajan, P., Thrilochan Sharma, Hamsa Datta Perur, and Prithvi Sekhar Pagala. "Comparative analysis of ROS
based 2D and 3D SLAM algorithms for Autonomous Ground Vehicles." In 2020 International Conference for
Emerging Technology (INCET), pp. 1-6. IEEE, 2020. https://doi.org/10.1109/INCET49848.2020.9154101

[11] Chong, T. J., X. J. Tang, C. H. Leng, Mohan Yogeswaran, O. E. Ng, and Y. Z. Chong. "Sensor technologies and
simultaneous localization and mapping (SLAM)." Procedia Computer Science 76 (2015): 174-179.
https://doi.org/10.1016/j.procs.2015.12.336

[12] "gmapping -ROS Wiki", Wiki.ros.org. [Online]Available: http://wiki.ros.org/gmapping
[13] Chatziparaschis, Dimitrios, Michail G. Lagoudakis, and Panagiotis Partsinevelos. "Aerial and ground robot

collaboration for autonomous mapping in search and rescue missions." Drones 4, no. 4 (2020): 79.
https://doi.org/10.3390/drones4040079

[14] "Problems in hector slam -ROS Answers: Open Source Q&A Forum", Answers.ros.org, 2021. [Online]. Available:
https://answers.ros.org/question/235304/problems-in hector-slam/

[15] L.H. Zulkifli, Final Year Project (FYP) Video Presentation, 2021. [Video file]. Available:
https://www.youtube.com/watch?v=zYkUGm3ZfZI&t=2s

https://doi.org/10.1109/CHILECON.2017.8229692
https://blog.netapp.com/how-to-%20build-a-data-pipeline-for-autonomous-driving/
https://doi.org/10.1109/IVS.2016.7535503
https://doi.org/10.1177/1729881420923967
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo- simulation
https://doi.org/10.1109/INCET49848.2020.9154101
https://doi.org/10.1016/j.procs.2015.12.336
http://wiki.ros.org/gmapping
https://doi.org/10.3390/drones4040079
https://answers.ros.org/question/235304/problems-in%20hector-slam/
https://www.youtube.com/watch?v=zYkUGm3ZfZI&t=2s

