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The purpose of this study was to investigate the effectiveness of fairing as a device to 
suppress vortex-induced vibration (VIV) of a cylindrical structure which is commonly 
used as a riser and conductor in the oil and gas industry. This phenomenon is caused 
by the interaction between a structure and shed vortices which can result in large 
amplitude vibrations of the structure that may lead to severe damage over time. 
Repairs to these systems are costly and time-consuming, hence significant effort has 
been expended to develop a means of eliminating the need of repairs from vibrations. 
Passive methods of altering the flow behaviour around the cylindrical structure to 
mitigate the hydrodynamic forces that cause VIV were considered. As a result, 
structural enhancements to a cylinder which use fairing was attempted to accomplish 
this goal. This study was performed through numerical analysis by investigating the 
drag coefficient and lift coefficient of bare cylinder when subjected to a typical 
maximum fluid flow speed range from metocean data for Malaysia region, and 
comparing it with the data produced when cylinder is applied with fairing of different 
chord lengths. These marine structures could sustain longer during its service life and 
hence could reduce the maintenance cost for the operator as the fatigue life increases 
due to the application of fairing. Validation of numerical model against the data from 
literature was also performed to ensure that the outcomes of this analysis can be used 
for other related future study. This numerical analysis was conducted using 
commercially available computational fluid dynamics (CFD) software ANSYS Fluent 
version 16. Navier-Stokes equations were solved in the simulation to obtain the results 
of the study. 
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1. Introduction 
 

Petroleum industry is one of the primary industries in the world. Structural reliability is among 
the important factor for offshore design structure. A lot of money has been paid by the oil and gas 
industry player to perform maintenance and reparation of the riser system which mainly consist of 
cylindrical structure system so called risers and conductors.  

Vortex-induced vibration (VIV) become one of most important design consideration. Insufficient 
understanding of VIV causes significant increase in cost due to large safety factor applied. Test data 
are also not extensively available in public domain due to proprietary nature in industry. Figure 1 
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shows an offshore platform with the wells for oil and gas, as well as the risers consist of cylindrical 
form structures which are commonly used in the oil and gas industry. 

 

 
Fig. 1. Cylindrical structures on an offshore platform 

 
Riser or conductor can be either rigid or flexible connection between a platform and a wellhead 

on sea bed. Figure 2 shows the typical location and configuration of the riser and conductor. 
 

 
Fig. 2. Sketch for riser/conductor system principle 

 
Cylindrical structures such as marine risers are exposed to a so-called VIV phenomenon. 

Conductor pipes such as rigid risers will experience extensive oscillations or vibrations, which can 
lead to high frequency cyclic stresses, resulting in high rates of fatigue damage or premature failure. 
This detrimental effect is severe for drilling risers, and even more so for production risers where 
service life of more than 25 years is often required. Thus, this study aimed to reduce the effect of VIV 
phenomenon and hence reducing the risk of damaging the cylindrical structure such as conductor 
pipe used in the oil and gas industry. 
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2. Literature Review 
 

VIV of structures is of practical interest to many fields of engineering. Cylindrical structures such 
as marine risers in deep water applications are prone to this phenomenon, which is due to the regular 
shedding of vortices from the riser when exposed to unsteady current flow. The primary purposes of 
this structure are not to gain lift or minimize drag as it is with aircraft components, but rather to bear 
loads, contain flow or provide heat transfer [1]. Association of VIV in the interaction between fluids 
and riser is subjected to extensive researches in both industries and academic field over the past few 
decades due to high demand in exploring hydrocarbon resources. 

Karman vortex shedding occurs due to the flow separation around any structure [2]. When the 
vortex shedding frequencies are synchronized with natural frequencies of a riser along a considerable 
length, the system is said to be in a “lock in” range. As a result, the conductor pipe will experience 
extensive oscillations or vibrations, which can lead to high frequency cyclic stresses, resulting in 
unacceptable high rates of fatigue damage or premature failure to the structure [3]. This detrimental 
effect is severe for drilling risers, and even more so for production risers where normally the service 
of more than 25 years is required. Generally, deep water risers are most susceptible to complex VIV 
response because current flow intensity can be different along the different depths in deep water 
areas. 

There are two possible motions of a cylinder structure such as riser when subject to current flow, 
namely the in-line motion and transverse or cross-flow motion. Figure 3 shows the direction of the 
possible motions for a cylinder when subjected to a current flow. 
 

 
Fig. 3. Motions of a cylinder when subjected to current flow 

 
Studies on the vibration of circular cylinders in oscillating flow began with structures exposed to 

open ocean waves in marine engineering applications. Morison et al., [4] proposed a modeling 
method where the force on the structure in oscillating flow is expressed as the summation of inertia 
and drag forces. A lot of researchers still use this method. 

Rahman et al., [5] studied the unsteady flow passed a circular cylinder using a 2D finite volume 
method with different Reynolds number (Re). They found that, as Re becomes higher than 40 the 
flow reports a loss of symmetry in the wake. The studiy also reported the Strouhal number (St) was 
found to be 0.164 for Re=100. Vijaya et al., [6] investigated 2D unsteady flows of power-law fluids 
over a cylinder. The study concluded using a finite volume method as solver. 

Mittal and Kumar [7] studied VIV on a pair of equal-size cylindrical cylinders with two sets of 
arrangement, inline and staggered. The fixed cylinders for the 2D simulation were simulated in a 
rectangular computational domain with a fixed Re = 1000. They concluded that for a circular cylinder, 
flow separation point changes with Re, so the wake was unsteadiness. They also concluded that the 
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oscillations of the cylinders result in an alternate mode of vortex shedding and where the vibration 
of cylinders is usually accompanied by an increase in drag. 

Shao and Zhang [8] used the finite volume method to investigate two side-by-side cylindrical 
cylinders. The cylinders were simulated in a 23 times of the cylinder diameter computational domain 
with a constant inlet velocity of 7 m/s. They concluded that large eddy simulation (LES) was capable 
of reproducing complex subcritical turbulent wake behind a circular cylinder, but fine meshes and 
longer time were required for the flow around the circular cylinder. 

Bourguet et al., [9] studied lock-in of the VIV on an in-line flow of a flexible cylindrical cylinder 
using direct numerical simulation (DNS) of the 3D incompressible Navier-Stokes equations. They 
concluded that the structural vibrations were mixtures of standing and traveling wave patterns. A 
frequency ratio of approximately 2 can be established between the excited frequencies in the in-line 
and cross-flow directions. 

Pratish and Tiwari [10] investigated unsteady wakes behind two inline arrangement of square 
cylinders. 2D computational domain was used where the length and width of the channel were 16 
and 6 times of the square width cylinders, respectively. 

Chandrakant and Swapnil [11] analyzed vortex shedding behind a D shaped cylinder. 2D 
computational domain with 2 m length and 1.6 m, and quad meshing was used for the study. They 
also reported that the Strouhal number increased with the increase in Re and the number of vortices 
increases with Re. 

Ali and Edris [12] analyzed the numerical simulation of unsteady flow with vortex shedding 
around circular cylinder. 2D flow of an incompressible fluid around a circular cylinder were simulated 
in both uniform stream flow and oscillated flows at Re = 300. The computational domain with length, 
0.3 m and width, 0.2 m with water as the assumption liquid was used in the study. 

Roshko [13] found out that vortex shedding was not observed at Re <3.5x106. Below the value of 
Re <3.5x106, no peak frequency occurred, but above this value there appeared a strong spectral peak, 
said to be well above the turbulence level. 

Synchronization occurs when the cylinder natural frequency was near to the vortex shedding 
frequency, leading to lock-in and hence large amplitude vibrations. Lock-in occurs in both the cross-
flow and in-line directions [1].  

Karman vortex shedding arises due to flow separation around the structures [14]. It has been an 
important subject of study due to its direct relation to the excitation for frequency. The alternate 
shedding of vortices behind the structures lead to periodic pressure oscillations both in transverse as 
well as flow directions [15-17]. At this stage, the vortex shedding frequency is matched with the 
oscillation frequency of the cylinder structures. However, pressure oscillations occur at double the 
vortex shedding frequency in the flow direction. It is known also known that Strouhal number varies 
with Re, surface roughness and turbulence intensity [18-20].  

A cylinder will be exposed not only to the periodical vortex shedding induced forces but also to 
broad band turbulence. The latter excitation becomes relatively more significant when the periodic 
shedding frequency is far from the structural frequency. Both turbulences propagated from upstream 
and turbulence play an important role. 
 
3. Methodology  
 

In general, CFD solution method consists of three main steps which are pre-processing, solver 
and post-processing. Schematic diagram for the process flow of this study is shown in Figure 4 below. 
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Fig. 4. Schematic diagram of CFD solution method 

 
3.1 Relevance of Design Inputs 

 
Cylinder with diameter of 0.5 m was chosen to be used in the study because it lies in one of the 

common range for riser and conductor in oil and gas industry. This size was neither too small nor too 
big for the application. Properties of water such as density and viscosity (kinematic and dynamic) 
were used instead of sea water because a lot of experimental data in laboratory used water. The 
results could be then compared more accurately with the experimental data from laboratory. In 
addition to that, the difference in terms of density and viscosity between water and sea water is 
relatively small.  

Cylinder is subjected to a flow speed of 0.5 - 2.0 m/s with the incremental value of 0.5 m/s. These 
values were selected as these should cover the typical maximum current speeds of metocean data in 
Malaysia region for up to 100 years extreme storm condition. When performing back calculation with 
the other inputs data, the flow speeds used in the analysis represent the Re of between 10^5 and 
10^6. This range Re is considered high and lies within the range of turbulent flow.  

There were three configurations of cylinder used in this study namely bare cylinder, cylinder with 
chord length of 1.25D and cylinder with chord length of 1.5D. Lower value of chord length was not 
considered due to the space required when installing the bearing mechanism to allow the fairing to 
be weathervane in actual condition. On the other hand, higher values of chord length was not 
included due to practicality of fairing in the application, whereby longer fairing chord length 
contributed to greater weight as well as cost increase. Design inputs for this study are summarized 
in Table 1. 

 
 
 
 

Pre-processing

•Computational Domain

•Mesh

•Boundary Conditions

Solver Execution

•ANSYS Fluent 16 Settings

Results

•Drag cofficient

•Lift Coefficient

•Strouhal number

Validation

•Drag cofficient

•Strouhal number

Post-Processing

•Graph and contour of flow over bare cylinder

•Graph and contour of flow over cylinder with fairings
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Table 1 
Design inputs 
Item  Detail 

Geometry 
Fluid Properties (Water) 

Size of bare cylinder 0.5 m 

Density 998.2 kg/m3 
Dynamic viscosity 1 × 10−3 kg/m3 
Kinematic viscosity 1 × 10−6 m2/s 

Flow Speed Four variations 0.5 m/s 

 1.0 m/s 
 1.5 m/s 
 2.0 m/s 

Corresponding Reynolds 
Number 

Four variations 2.49E + 05 

 4.98E + 05 
 7.46E + 05 
 9.95E + 05 

Fairing Chord Length Two variations 1.25D 

 1.5D 

 
3.2 Simulation Variables 
 

The analysis was categorized into 3 main variables; Independent variable, dependent variable and 
controlled variable. The speed of fluid flow or the Re and the cylinder configurations were the 
independent variables in this study. Three different configurations of cylinder are shown in Figure 5. 

  

 
(a)                     (b)                   (c) 
Fig. 5. Configurations of cylinder (a) Bare cylinder (b) F1.25D and (c) F1.5D 

 
The dependent variables or the parameters that were extracted from the output of the analysis 

were drag coefficient (Cd), lift coefficient (Cl) and Strouhal number (St). Controlled variables or 
parameters that were constant throughout the simulation were fluid temperature, fluid density and 
fluid viscosity (kinematic and dynamic). Details of variables are summarized in Table 2. 

 
Table 2 
Details of variables 
Items Details 

Independent Variables Flow speeds / Reynolds number 
 Fairing Chord Length 
Dependent Variables Drag coefficient, Cd 
 Lift coefficient, Cl 
 Strouhal Number 
Controlled Variable Fluid Temperature 
 Fluid Density 
 Fluid Viscosity 
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3.3 Test Matrix 
 

The analyses were conducted with 3 sets of data. The set were differentiated with the type of 
cylinder configurations used. Each set consists of four load cases which were varied in terms of the 
fluid flowing speed. Strouhal number (St), drag coefficient (Cd) and lift coefficient (Cl) were extracted 
as the output results. The test matrix is summarized as in Table 3. 

 
Table 3 
Test matrix 

Item 
Load 
Case 

Input Variables Output Variables 

U Re St Cd Cl Cl/Cd Ratio 

m/s - - - - - 

Bare 
Cylinder 

1 0.50 2.49E + 05 - - - - 

2 1.00 4.98E + 05 - - - - 
3 1.50 7.46E + 05 - - - - 
4 2.00 9.95E + 05 - - - - 

Cylinder 
with Fairing 
1.25D 

1 0.50 2.49E + 05 - - - - 

2 1.00 4.98E + 05 - - - - 
3 1.50 7.46E + 05 - - - - 
4 2.00 9.95E + 05 - - - - 

Cylinder 
with Fairing 
1.5D 

1 0.50 2.49E + 05 - - - - 

2 1.00 4.98E + 05 - - - - 

3 1.50 7.46E + 05 - - - - 

4 2.00 9.95E + 05 - - - - 

Note:  - = Results yet to be known     

 

3.4 Parameters for Model Validation 
 

In order to create a simulation baseline model that is then used throughout the different cylinder 
configurations, few preliminary simulations for flow over bare cylinder were generally performed 
using default parameters in the Ansys Fluent software. These miscellaneous parameters are available 
in the software were then fine-tuned once at a time so that two parameters such as the drag 
coefficient (Cd), as well as Strouhal number (St), that are used for validation are matched as close as 
possible. 

The first validation for the baseline model was done using the comparison of the drag coefficient 
(Cd) between the results obtained from preliminary simulations and the established plot of drag 
coefficient (Cd) versus Re for a smooth cylinder. The data of the plot showing this relationship 
between drag coefficient and Re was produced by H Schlichting and is available in many fluid 
mechanics literatures. The plot is shown in Figure 6. 
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Fig. 6. Plot of drag coefficient vs Reynolds number 

 
Re range of interest for this study lies in the 105 - 106 regions which correspond to flow speed of 

0.5 - 2.0 m/s flow over a 0.5 m diameter of cylinder. The drag coefficient (Cd) in the region of interest 
as mentioned above should be in the range of 0.2 and 1.2. Should the drag coefficient (Cd) obtained 
was not within the range of these expected values, other parameters available in the Ansys Fluent 
software are required to be fine-tuned. Example of parameters than can be fine-tuned includes the 
mesh type and size, type of solver, intensity of turbulence and surface roughness. These steps are 
continued to take place until the drag coefficient (Cd) obtained, were within the expected range. 

The second validation for the baseline model was done using the comparison of the Strouhal 
number (St) between the results obtained from preliminary simulations and the established plot of 
Strouhal number (St) vs Re for a smooth cylinder. The data of the plot showing this relationship 
between Strouhal number and Re is depicted in Figure 7. 
 

 
Fig. 7. Plot of Strouhal number vs Reynolds number 

 
3.5 Pre-Processing 
3.5.1 System domain 
 

A CFD analysis requires high usage of computational resources. Therefore, only 2D representation 
of simulation (surface body) was chosen to conduct the analysis numerically. The system domain 
consists of an inlet (left), an outlet (right), a 2D cylinder (middle) and two walls (top and bottom). 
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There were several boundary conditions for the discretized equations. Some of them are inlet, outlet, 
wall and prescribed pressure [21]. 

The fluid flows from the inlet to outlet through subject study (cylinder) with walls as boundary 
conditions. Sufficient area of system domain was created to compromise between output results and 
computational time. The cylinder has a distance of 6D to the inlet, 15D to the outlet and 6D to both 
of side walls. The sketch of the system domain is shown in Figure 8. 
 

 
Fig. 8. System domain for analysis 

 
3.5.2 Mesh generation 
 

At the initial stage, the size of elements is set to be as coarse as possible, so that any solution 
glitch, due to geometry creation, during initial run could be detected earlier without contributing to 
time wastage. If there is no anomaly found, meshing with finer configurations is set up. There are in 
total of about 54 000 number of nodes and 75 000 number of elements used in the analysis. The 
elements consist of a mixture between quad and triad shape. Quad elements were concentrated at 
the critical area which is at the cylinder wall, while triad elements are located at the remaining 
locations. There are two mesh treatments applied in the creation of mesh. These are inflation and 
edge sizing. This is to ensure that the output results generated from the simulation are as accurate 
as possible, while compromising with the computational time taken to run a simulation. Details of 
the mesh configuration are shown in Table 4 and the mesh result is shown in Figure 9. 
 

Table 4 
Mesh details 
Item Parameters Details 

Statistical data Number of nodes 54,085 

Number of elements 75,796 

Mesh elements Quad At critical area (cylinder wall) 

Triad Remaining location 

Mesh treatment Inflation On cylinder wall 

Edge Sizing On cylinder wall 
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Fig. 9. Generated mesh in system 
domain (zooming in) 

 
3.5.3 Time step 

 
Timestep was derived from the Strouhal number for flow past a smooth cylinder. At least 20 to 

25 timesteps was considered in one shedding cycle. Table 5 shows the details for setting up the time 
steps. Formula of Strouhal number is as Eq. (1), 

 

𝑆𝑡 =  
𝑓𝑠𝐷

𝑈
. (1) 

 
Table 5 
Mesh details 
Load 
case no. 

U Re St f t Time step 

m/s - - Hz s min = t/25 taken 

1  0.50 2.49E+05 0.27 0.27 3.70 0.15 0.100 
2  1.00 4.98E+05 0.36 0.72 1.39 0.06 0.050 
3  1.50 7.46E+05 0.40 1.20 0.83 0.03 0.025 
4  2.00 9.95E+05 0.43 1.72 0.58 0.02 0.020 

 
3.5.4 Solver execution 
 

To numerically simulate the flow over cylinder problem, commercially available ANSYS Fluent 16 
was utilized. The double-precision, pressure-based transient solver setup is summarized in Table 6. 
 

Table 6 
Fluent settings 
Item Remarks 

Initialization Hybrid 

Reference value Compute from inlet 

Spatial discretization Gradient: Least Square Cell Based 

 Pressure: Second Order 

 Momentum: Second Order Upwind 

Transient formulation Second Order Implicit 

Convergence criteria 1 × 10-6 for continuity 

 1 × 10-6 for x and y velocity 

Others Max Iterations per Time step = 200 
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3.5.5 Assumptions and simplifications 
 

To reduce complexity of numerical solution model, assumptions and simplifications are essential 
as long as it is able to represent the desired real or conceptual problem by retaining physically 
important features. For this study, list of all assumptions and simplifications are listed below. 

 System domain adapted in the analysis is in 2D. 

 No weathervane bearing was considered in the model. 

 Fairing was always parallel to the dominant current flow direction. 

 Fillet size of 0.05 m was designed at the fairing end. This also helped in producing good       
       meshing. 

 No change in temperature and fluid properties. 
 
3.6 Post-processing 
 

At this stage, graphs and contours for the output parameters such as drag coefficient (Cd), lift 
coefficient (Cl) and Strouhal (St) numbers were tabled and plotted to see the trends and patterns 
before conclusions could be made. 
 
4. Results and Discussion 
4.1 Data Comparison for Validation 
 

The baseline model that was used throughout the different cylinder configurations, were 
determined based on the preliminary simulations performed in the Ansys Fluent software. After fine-
tuning some miscellaneous parameters available in the software, two parameters such as the drag 
coefficient (Cd), as well as Strouhal number (St) were used for validation purpose and the results are 
shown in the following subsections. 
 
4.1.1 Drag coefficient 
 

The first validation for the baseline model was done using the comparison of the drag coefficient 
(Cd) between the results obtained from preliminary simulations and the established plot of drag 
coefficient (Cd) vs Reynolds number for a smooth cylinder. Figure 10 shows the results of drag 
coefficient when a bare cylinder was subjected to a flow with different speeds. 

 

 
Fig. 10. Comparison of drag coefficient, Cd for 
bare cylinder with respect to flow speed 
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4.1.2 Strouhal Number 
 

The second validation for the baseline model was done using the comparison of the Strouhal 
number (St) between the results obtained from preliminary simulations and the established plot of 
Strouhal number (St) vs Reynolds number for a smooth cylinder. Figure 11 shows the results for 
Strouhal Number when a bare cylinder was subjected to a flow with different speeds. 
 

 
Fig. 11. Comparison of Strouhal number, St for bare 
cylinder with respect to flow speed 

 
4.2 Results (Quantitative) 
4.2.1 Results for set 1 (bare cylinder) 
 

The comparison values for Strouhal and drag coefficient for bare cylinder at different flow speeds 
along with the respective lift coefficient and ratio of lift and drag coefficient are shown in Table 7. 
While the comparison values for Strouhal and drag coefficient for cylinder with fairing chord length 
of 1.25D and 1.5D at different flow speeds along with the respective lift coefficient and ratio of lift 
and drag coefficient are shown in Table 8 and 9 respectively. 
 

Table 7 
Results for set 1 (bare cylinder) 
Load 
case no. 

U Re St (lit) Cd (lit) St (sim) Cd (sim) Cl Cl/Cd ratio 

m/s - - - - - - - 

1  0.50  2.49E+05  0.27  0.95  0.45  0.73  0.79  1.08  
2  1.00  4.98E+05  0.36  0.25  0.55  0.49  0.77  1.57  
3  1.50  7.46E+05  0.40  0.25  0.50  0.36  0.51  1.42  
4  2.00  9.95E+05  0.43  0.35  0.49  0.30  0.38  1.27  

 
Table 8 
Results for set 2 (fairing 1.25D) 
Load 
case no. 

U Re St Cd Cl Cd/Cl ratio 

m/s - - - - - 

1  0.50  2.49E+05  0.10  0.28  0.48  1.71  
2  1.00  4.98E+05  0.23  0.17  0.27  1.59  
3  1.50  7.46E+05  0.42  0.14  0.15  1.07  
4  2.00  9.95E+05  0.40  0.18  0.19  1.06  
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Table 9 
Results for set 3 (fairing 1. 5D) 
Load 
case no. 

U Re St Cd Cl Cd/Cl ratio 

m/s - - - - - 

1  0.50  2.49E+05  0.07  0.16  0.43  2.69  
2  1.00  4.98E+05  0.02  0.12  0.41  3.42  
3  1.50  7.46E+05  0.08  0.11  0.35  3.18  
4  2.00  9.95E+05  0.20  0.08  0.21  2.63  

 
4.3 Results (Qualitative) 
 

A general comparison of qualitative result between the flow pattern for bare cylinder and cylinder 
with fairing of 1.25D chord length was made. Vortex shedding formation was relatively aggressive, 
faster and very close to the main structure for bare cylinder. This is shown in Figure 12. While for 
cylinder with fairing of 1.25D chord length, the vortex shedding formation was less aggressive, slower 
and further away from the main structure. This is shown in Figure 13. 
 

 
Fig. 12. Flow contour for bare cylinder subjected to flow speed of 1.0 m/s 
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Fig. 13. Flow contour for cylinder with fairing 1.25D subjected to flow speed of 1.0 m/s 

 
4.4 Results Based on Flow Speed 
4.4.1 Analysis at flow speed of 0.5 m/s 
 

The values for drag and lift coefficients for bare cylinder and cylinder with fairing of different 
chord lengths at flow speed of 0.5 m/s are shown in Table 10. The trends for drag and lift coefficients 
for bare cylinder and cylinder with fairing of different chord lengths at flow speed of 0.5 m/s are 
shown in Figure 14. 
 

Table 10 
Values of drag and lift coefficient at flow speed of 0.5 m/s for different cylinder conditions 
Load case no. Cylinder Type Cd Cl Cd/Cl ratio 

1  Bare  0.73 0.79 0.92 

2  Fairing 1.25D  0.02 0.48 0.04 

3  Fairing 1.5D  0.02 0.43 0.05 

 

 
Fig. 14. Trend of drag and lift coefficient at flow speed of 0.5 
m/s for different cylinder conditions 
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Drag coefficient reduces from bare cylinder to fairing with increasing chord length. Lift coefficient 
also reduces from bare cylinder to fairing with increasing chord length. Lift coefficient is more 
dominant than drag coefficient for all cylinder type. It would be possible that the cylinder with fairing 
length of 1.5D is at optimum condition for the flow speed of 0.5 m/s in the studied configurations. 
 
4.4.2 Analysis at flow speed of 1.0 m/s 

 
The values for drag and lift coefficients for bare cylinder and cylinder with fairing of different 

chord lengths at flow speed of 1.0 m/s are shown in Table 11. The trends for drag and lift coefficients 
for bare cylinder and cylinder with fairing of different chord lengths at flow speed of 1.0 m/s are 
shown in Figure 15. Drag coefficient reduces from bare cylinder to fairing with increasing chord 
length. Lift coefficient also reduced from bare cylinder to fairing with 1.25D chord length but 
increases back on fairing with 1.5D chord length. Lift coefficient was more dominant than drag 
coefficient for all cylinder types. It would be possible that the cylinder with fairing length of 1.25D 
was at optimum condition for the flow speed of 1.0 m/s in the studied configurations. 
 

Table 11 
Values of drag and lift coefficient at flow speed of 1.0 m/s for different cylinder conditions 
Load case no. Cylinder Type Cd Cl Cd/Cl ratio 

1  Bare  0.49  0.77  1.57  
2  Fairing 1.25D  0.17  0.27  1.59  
3  Fairing 1.5D  0.12  0.41  3.42  

 

 
Fig. 15. Trend of drag and lift coefficient at flow speed of 1.0 
m/s for different cylinder conditions 

 
4.4.3 Analysis at flow speed of 1.5 m/s 
 

The values for drag and lift coefficients for bare cylinder and cylinder with fairing of different 
chord lengths at flow speed of 1.5 m/s are shown in Table 12 and the trends for drag and lift 
coefficients for bare cylinder and cylinder with fairing of different chord lengths at flow speed of 1.5 
m/s are shown in Figure 16. Drag coefficient reduces from bare cylinder to fairing with increasing 
chord length. Lift coefficient also reduces from bare cylinder to fairing with 1.25D chord length but 
increased back on fairing with 1.5D chord length. Lift coefficient was more dominant than drag 
coefficient for all cylinder types but fairing with 1.25D chord length has Cl/Cd ratio of almost 1 (equal 
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magnitude). It would be possible that the cylinder with fairing length of 1.25D is at optimum condition 
for the flow speed of 1.5 m/s in the studied configurations. 
 

Table 12 
Values of drag and lift coefficient at flow speed of 1.5 m/s for different cylinder conditions 
Load case no. Cylinder Type Cd Cl Cd/Cl ratio 

1  Bare  0.36  0.51  1.42  
2  Fairing 1.25D  0.14  0.15  1.07  
3  Fairing 1.5D  0.11  0.35  3.18  

 

 
Fig. 16. Trend of drag and lift coefficient at flow speed of 1.5 
m/s for different cylinder conditions 

 
4.4.4 Analysis at flow speed of 2.0 m/s 
 

The values for drag and lift coefficients for bare cylinder and cylinder with fairing of different 
chord lengths at flow speed of 2.0 m/s is shown are Table 13.  
 

Table 13 
Values of drag and lift coefficient at flow speed of 2.0 m/s for different cylinder conditions 
Load case no. Cylinder Type Cd Cl Cd/Cl ratio 

1  Bare  0.30  0.38  1.27  
2  Fairing 1.25D  0.18  0.19  1.06  
3  Fairing 1.5D  0.08  0.21  2.63  

 
The trends for drag and lift coefficients for bare cylinder and cylinder with fairing of different 

chord lengths at flow speed of 2.0 m/s are shown in Figure 17. Drag coefficient reduces from bare 
cylinder to fairing with increasing chord length. Lift coefficient also reduces from bare cylinder to 
fairing with 1.25D chord length but increases back on fairing with 1.5D chord length. Lift coefficient 
was more dominant than drag coefficient for all cylinder type but fairing with 1.25D chord length has 
Cl/Cd ratio of almost 1 (equal magnitude). It would be possible that the cylinder with fairing length 
of 1.25D is at optimum condition for the flow speed of 2.0 m/s in the studied configurations. 
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Fig. 17. Trend of drag and lift coefficient at flow speed of 2.0 
m/s for different cylinder conditions 

 
5. Conclusion  
 

Flow around cylindrical structures is a classical subject, but still is interesting and relevant to 
investigate and study especially when the shape is changed to a more complex geometry. When a 
cylindrical structure such as a riser and conductor in oil and gas industry are subjected to continuous 
current flow, additional accessories such as faring can be applied on the structure to increase service 
life by reducing the drag as well as lift force, and hence reducing damage to the structure. This will 
be of great benefit to the platform operator in terms of reducing the maintenance cost. 

It is found from this investigation that increasing the fairing chord length will reduce the drag 
coefficient (Cd) of the cylindrical structure, but not necessarily to reduce the lift coefficient further 
as the drag coefficient (Cd) getting higher. The lift coefficient (Cl) could be lowest at the optimum 
fairing chord length. Validation on numerical solution model shows that results for few parameters 
such as drag coefficient (Cd) and Strouhal number (St) was in good agreement with the data from the 
literature. Thus, reliability of the CFD solution method executed in this study is relatively solid and 
hence is referable for future studies. 

CFD simulation study for VIV is still not fully matured due to limitations of computational 
resources. Very few researches have done on VIV effect for high Reynolds number. Furthermore, 
there is still no solid relationship between geometry of fairing with the amplitude of VIV has been 
established. Therefore, understanding on VIV is still being improved and better prediction of VIV 
phenomena is still being developed and explored. 

The analysis of VIV suppression device using fairing performed here could be improved and 
extended further in future. It is recommended to run more simulations with different cylinder 
configurations. In other words, the fairing chord can be varied further to a length of 2D to 5D to see 
the effects of change in terms of drag coefficient and lift coefficient produced. 

Another recommendation was to perform the simulation in 3D and enabling fluid structure 
interaction (FSI) of either 1 or 2 ways for better result agreement with experimental data. The analysis 
can also be solved using different turbulence models and comparison can be made to see the 
correlation with other analysis approach. Both approaches however require greater computational 
time and resources. 

It is also recommended to run the analysis with different arrangement of cylinders should it be 
performed in 3D. The cylinder can be arranged in either vertical, horizontal or even in an angle 
position. To increase the variation of the study, the cylinder could also be set up in tandem 



Journal of Advanced Research Design 

Volume 85, Issue 1 (2021) 1-19 

18 
 

arrangement. All of the variations would produce a more complex correlation that would be useful 
to the industry when selecting the fairing configuration according to its applications. 

Scale model experiment should be conducted in the laboratory to compare the agreements of 
results between the one performed in simulation and laboratory experiment. Should the cost of study 
be no longer become a limitation, actual experiment in open sea could be conducted. However, a lot 
of sensors need to be installed to measure the results obtained and intensive post processing was 
required to filter the unwanted noise from the data. 

Finally, it is recommended to run the analysis with different types of VIV suppression device such 
as helical strake, rope, shroud and vane. Some of the devices mentioned here could perform better 
than others and the pros and cons could be studied to an extended detail. 
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