
 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

14

Penerbit

Akademia Baru

Performance Evaluation of Cryptographic

Algorithms on Reconfigurable Hardware: MD5

based on Timing and Area Implementation

S. Suhaili*,1,a and T. Watanabe2,b

1Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak,

Malaysia
2Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino,

Wakamatsu-Ku, Fukuoka 808-0135, Japan
*,asushamsiah@feng.unimas.my, bwatt@waseda.my,

Abstract – Cryptographic algorithm has become one of the most important aspects in hardware

implementation of embedded security system design. Message Digest (MD) is one of the cryptographic

algorithms that can be used in any security design application. Nowadays, designing the high speed,

low power, and small area implementation of cryptographic algorithms on reconfigurable hardware is

one of the critical subjects for hardware application. The purpose of this paper had been to analyse the

structure of MD5 hash function for high performance implementation in order to obtain small area

implementation, as well as to increase the speed of the design on FPGA. In this paper, the frequency

maximum for MD5 design with both grey and binary signal encoding is discussed. The results retrieved

from the analysis showed that the differing results were caused by the switching bit of the signal input.

Besides, the frequency maximum of MD5 that employed binary signal encoding provided the highest

frequency maximum with smaller area implementation. By using grey signal encoding, the frequency

maximum was almost similar to the MD5 binary signal encoding, but it suffered larger area

implementation. On top of that, this research focused on timing and area implementation of the design,

where TimeQuest timing analyser was applied to optimize the output of the design. Copyright © 2015

Penerbit Akademia Baru - All rights reserved.

Keywords: FPGA, Frequency Maximum, Grey, HDL, MD5

1.0 INTRODUCTION

Cryptographic algorithms on reconfigurable hardware have been widely used for data

protection in automotive, multimedia content, or any cryptographic material. Therefore, studies

and analyses pertaining to cryptographic algorithms, which involve the encryption technique,

have become an important aspect in embedded digital security system design for the next

generation. Moreover, cryptographic hash function, or better known as message digest

algorithms, is an algorithm that translates a random string of characters into hash code output.

Hash function has been widely used for cryptographic application and it is useful for message

authentication because it is strong enough against collision. One of the most famous hash

functions is the MD5 message digest, which was developed by Ronald Rivest [1]. Moreover,

 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

15

Penerbit

Akademia Baru

MD5 algorithm is intended for digital signature applications, where a large file must be

compressed in a secure manner before being encrypted [2].

In addition, high performance of the hash function design is important to improve the

throughput of the design since nowadays all systems require fast implementation. Besides,

efficient hardware implementation is one of the solutions of cryptographic algorithms on

reconfigurable hardware. Therefore, modification of the algorithms with specific target device,

such as structure and resources, needs to be taken into account. Apart from that, design

techniques and design tools also play important roles in the design process. Hardware

Description Language (HDL) coding styles can enhance the speed of the design with some

modification on the placement of the register. This is one of the methods employed to increase

the frequency maximum of the design. The motivation of this research was to analyse the

structure of MD5 hash function as it is important for message authentication code application.

For some security application reasons, it is good to have a short signature. Therefore, signing

off long messages to the hash function is the solution to this problem.

2.0 METHODOLOGY

In this research, the project began with pre-processing the message of MD5 by calculating the

bit length of arbitrary input. It was a transformation that involved variable size input, m, and

returned a fixed-size string called hash code. The modern hash function tries to improve the

internal compression function and the sequence of the processing message [2]. Algorithm 1

shows the pseudo code for MD5 compression function.

Algorithm 1: MD5 Compression Function

In clk, rst, message [31:0]

Out Hash_MD5Output [127:0]

1 Message[31:0]

2 {

3 Message Padding

4 Append Message

5 Initial input A[31:0],B[31:0],C[31:0],D[31:0]

6 {

7 Round 1 → �: 16	��	
�

8 Round 2	→ �: 16	��	
�

9 Round 3 →
: 16	��	
�

10 Round 4 → 	�: 16	��	
�

11 }

12 Hash output + initial input A[31:0],B[31:0],C[31:0],D[31:0]

13 }

14 Hash_MD5Output[127:0]

The process of message padding for nth-bit message was padded with a single 1-bit at the end

of the message bit, while the rest of the bit had the value of 0-bit until the length of the message

was congruent to 448 mod 512. After padding the bit of the message input, the remaining 64

bits were reserved for appending the message length with all zeroes, except for the last bytes,

which was the length of the message counter. Therefore, the overall message length, M, was

equal to 512 bits. Figure 1 illustrates the process of the MD5 compression function. The MD5

message algorithm started processing with four-word constant initial value input of 32-bit

register (A,B,C, and D) buffer initialization, as shown in Table 1. The process was executed

 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

16

Penerbit

Akademia Baru

until four rounds with each round consisted of 16 steps. The iterative process for each round

was continued until round 64 in order to obtain the hash code output of MD5 algorithm.

Figure 1: MD5 Compression Function

Table 1: Buffer Initialization

 Normal Value Little-Endian Format

A 32’h01234567 32’h67452301

B 32’h89abcdef 32’hefcdab89

C 32’hfedcba98 32’h98badcfe

D 32’h76543210 32’h10325476

The security compression comes from the original input message bit-length in order to obtain

the shorter bit length of the output hash code. In this design, there were four non-linear

functions; F, G, H, and I. Hence, 64 steps were performed to complete the overall algorithms.

Besides, equations 1, 2, 3, and 4 show the auxiliary function of four rounds in MD5 algorithms,

where ˄, ˅, 	¬, and ⊕		represent logical AND, OR, NOT, and XOR operations respectively.

All the operations were executed in the little-endian format. Moreover, Rivest chose the little-

endian architecture for interpreting the message of a sequence of 32-bit because based on his

observation on several processors; little-endian format offered fast processing [1] of hash

function that strongly depended on the security of the compression function [1]. The following

are the related terms:

���, �, �� = ��	˄	C�	˅	�¬�	˄	D� (1)

���, �, �� = ��	˄	D�	˅	�C	˄	¬��	 (2)

��, �, �� = �	 ⊕ �	 ⊕ � (3)

���, �, �� = �	 ⊕ ��		˅	¬�� (4)

Besides, i was considered as a step index of the MD5 algorithms. For each step of the algorithm,

64-element of the 32-bit constant table T[i], which was constructed from sine function, had

been applied. Let << S denote a left circular shift by S bits. Then, let Mi[k] denote the k-th 32-

bit word of Mi. The operations of the MD5 function were executed from i = 0 until i= 63.

Equation 5 shows the operation for MD5 rounds with Func(B,C,D), which represented function

F(B,C,D) for the first round, G(B,C,D) for the second round, H(B,C,D) for the third round, and

I(B,C,D) for the fourth round.

m

MP = 448 mod 512

Message

Message Padding

Append Message Padding

 M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

F

Round 1

(16 Steps)

G

Round 2

(16 Steps)

I

Round 4

(16 Steps)

a

b

c

d

 +

H

Round 3

(16 Steps)

Message = M

APL= MP + message length in 64 bit (512 bits)

 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

17

Penerbit

Akademia Baru

��, �, �, �,��� !, �, "�#!�
� = � + ��� + �%&'��, �, �� +	��� ! + "�#!� ≪ ��
� ← �, � ← �, � ← �,� ← � (5)

The final step of MD5 algorithms was to obtain the output of the hash function. By adding the

initial value (IV) with the last output from the compression function I(B,C,D), the hash code

was produced. Then, the output hash code had to be converted to its normal value in order to

obtain the final hash output.

2.1 MD5 Step Function and Frequency Maximum

The architecture of MD5 step function was implemented based on basic architecture, which is

known as iterative looping. Iterative looping is looping that is based on the same block of step

function module with a number of iteration round. There were 64 rounds as the output was fed

back to the input of the design. This type of design utilized a small logic area, but it consumed

more clock cycle. Moreover, the structure of the MD5 step function architecture highly affected

the throughput of the output hash. In this paper, Verilog code was used to construct the MD5

logic design. Figure 2 shows the structure of the MD5 step function. It had been the main

operation for the implementation of MD5 algorithms, where 64 steps were run iteratively.

Based on MD5 step function, four operation functions, such as F, G, H, and I, were executed

continuously during the process.

Figure 2: MD5 Step Function Architecture

It had been the most important step in the MD5 hash function where the process of four

functions; F, G, H, and I, had to be carried out iteratively to complete the overall hash

processing. The architecture of MD5 algorithms was successfully tested. Modification on the

structure for functions F, G, H, and I improved the frequency maximum of the design. Besides,

CAD tools played an important role in producing better results. In this paper, two types of

signal encodings were employed to design the MD5 algorithm in order to evaluate the effects

of MD5 hash function during the synthesis and the implementation processes on reconfigurable

hardware. There are three main inputs to the step function module, such as Message value,

Constant, and Shift. Message value, Constant, Shift are represented by M_value, Const, and

Shft, respectively, as shown in equation 6.

C_in

B_in

A_in

BCD_in

A_out

D_out

C_out

B_out

<< S
+ +

+

+

F/G/H/I

Const

Message

Shft

D_in

 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

18

Penerbit

Akademia Baru

TConst = {Const[43:12], Shft[11:4], M_value[3:0]} (6)

Meanwhile, the register block for inputs A, B, C, and D only occurred in the multiplexer

module, where all the inputs were processed before the step function module. Therefore, there

was no register block in this step function module. Moreover, in order to improve the

performance of the design, a small modification on the HDL code style, especially in the step

function module, could be done. The main focus of this project was to increase the speed of

the MD5 design. Thus, the frequency maximum of the design had to be improved. Step function

module is one of the main target modules that can increase the speed of the design.

Furthermore, moving the placement of register could also increase the performance of the

design. Besides, adding output registers can maximize the clock frequency, while adding input

registers can minimize both the setup and the hold window.

The frequency maximum of the design can be created by using the sequential system delay. In

this project, Altera Quartus II Arria II GX was used as the CAD tools to implement the design.

Hence, the frequency maximum was calculated during the execution of the synthesis process

based on board level of family device. The delay of the design came from the gate propagation

delay where the digital logic was constructed from the transistors because the transistors

functioned as on/off switches. Thus, a smaller transistor has the ability to switch faster than a

large transistor. Therefore, the switching delay of the transistor created delay in the logic gate.

This propagation delay (tpd) contributed to pin delays where pin delays are based on cell and

net delays. Hence, propagation delays for modern integrated circuit were considered where the

setup�t+,� and the hold�t-.� time had been taken into consideration in order to ensure the

stability of the input. Figure 3 illustrates the condition of a stable input via setup and hold time.

Figure 3: Setup and Hold Time

In addition, there are three types of sequential system delays, such as pin-to-pin propagation

delay (tp2p), clock-to-output propagation delay (tc2Q), and register-to-register delay (tR2R). In the

modern circuit designs, tR2R is the largest delay among all these three types of delays. This

delay starts at output of the register to function as the input of another register where the route

always involves at least two registers. For example, if the sequential system design consists of

two registers and there are combinational logic gate, the overall delay for tR2R is shown in

equation 7. Similarly for board level delay, if there are two blocks of sequential system design,

the overall tR2R can be calculated with equation 8. By considering U1 and U2 as two different

blocks of sequential system design, the combination started at output U0until input	U0.

t12344
+	t1567_929 +	t+,_:: = 	 t929 (7)

U0_;123 +	U2_;<. +	U0_;+, =	 t123_+=+ (8)

Stable

thd tsu

tsu (setup)

thd (hold)

 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

19

Penerbit

Akademia Baru

On the other hand, the maximum clock frequency was calculated from sequential delay until

board level delay where the longest delay within each of these types of delay was obtained.

Therefore, the longest delay amongst these three types of sequential system delay had been the

worst case of the design. This delay was the minimum delay for a circuit to function properly.

Thus, this minimum clock period allowed for gate output to reach a stable value. Besides, the

setup and hold adjustment in the board level could also improve the frequency maximum of

the system design. Hence, external signal to the circuit must not violate tsu before the clock and

thd after the clock at the input to the internal register. Nevertheless, the adjustment in the board

level can be executed between data and clock to input register where the value for two different

paths can give the total tsu and thd.

Figure 4 illustrates the adjusted setup and hold time. As mentioned earlier, the worst case for

the setup time was the longest delay from data input to register and the shortest delay from

clock to input register, whereas the hold time setup was the opposite from the worst case for

time setup. Equations 9 and 10 represent the total time for setup and hold after adjustment. The

negative value of thd was specified as zero. Hence, the total setup and hold time affected the

improvement of the maximum clock frequency.

Figure 4: Adjusted setup and hold time

(Tpd_data(MAX) –tpd_clk(MIN))+ tsu_ff = Tsu_total (9)

(Tpd_clk (MAX) –tpd_data(MIN))+ thd_ff = Thd_total (10)

2.2 MD5 Architecture Design

After designing the MD5 step function, the next stage was to construct the architecture of the

MD5 design. The architecture of the MD5 design began with four initial inputs and four

different non-linear functions, such as F, G, H, and I. The 32-bit input of the MD5 algorithm

used in_mem[511:0] memory to keep the 448-bit data where the data for the last 64-bit had

been calculated by checking each byte of the message input. In this project, the input was

padded with a padding unit until 448-bit because the message length could only be calculated

after 448-bit. Besides, the counter message calculated the length of the message in the last 64-

bit, and the overall result of the message input was 512 bits. With that, the architecture of the

MD5 design had been successfully tested.

During the synthesis and the implementation processes of the design, the frequency maximum

was obtained and the design must meet the requirement of timing analysis. Thus, the analysis

of the clock constraint had to be considered. Based on the Altera Quartus II as the CAD tools

of the design, the TimeQuest timing analyzer was considered as the best solution to offer the

clock constraint to the input of the design. The timing must be met to avoid violation in the

design in order to obtain a positive slack, which is the difference between data arrival and data

required. Figure 5 shows the top level of the MD5 design, which is the block diagram of the

design after synthesis and implementation processes. It was developed by using the Altera

Quartus II CAD tool when no syntax error occurred during the synthesis and the

Gate delays

Gate delays

Data

Clk
U1

D

C

Q

 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

20

Penerbit

Akademia Baru

implementation processes. Moreover, there were four inputs; clk, rst, load, and message [31:0].

If there was a message, the load input was logic 1 in order to receive the 32-bit input message

to the Message_input_Opt module. The process of the message continuously looped until 64

rounds. Finally, the 128-bit hash_MD5Output output was obtained.

Figure 5: Top Level MD5 Algorithm

In addition, various types of signal encodings can be designed to encode the individual states,

such as binary encoding, one-hot encoding, and grey encoding. Signal encoding is one way to

reduce power consumption of the design that includes the finite state machine. In this project,

only two types of signal encodings were used, namely binary and grey encodings. Power

consumption can be reduced by using the grey coding if compared to binary encoding because

there is only 1-bit of the state switching during the transition process. Figure 6 illustrates the

state encoding for both binary and grey encodings. By considering A as input and E as output

of the system, the state binary encoding of the finite state machine starts from 0,1,2,3, and 4,

whereas for grey encoding, the state of the sequence starts from 0,1,3,4, and 6. Besides, Figure

6 clearly shows that the state of the grey signal encoding switches 1-bit for each transition.

Figure 6: State Encoding: (a) Binary Encoding (b) Gary Encoding

In this project, the top levels of MD5 algorithms consisted of various types of modules. These

modules were connected from the input module until the output module of the design. The

process of the message was mainly operated by counter MD5 module, as illustrated in Fig. 7.

This counter module controlled the input message of MD5 where the 32-bit message was

divided into four 8-bit messages to calculate the length of the message. The last 64-bit was the

bit length of the message. Therefore, the counter counted the message at round 14 of round 4,

where the entire bit message was calculated byte by byte.

A

000

B

001

E

100
C

010

D

011

A

000

B

001

C

011

E

110

D

010

(a) (b)

 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

21

Penerbit

Akademia Baru

Figure 7: Counter MD5 module

Table 2 shows the first 16 rounds of round bit 0 that had been executed during the hash

processing for both binary and grey encodings. 1-bit of round output consisted of 16 clock

cycles, whereas 1-bit of round 4 output was equal to 4 clock cycles. In this project, the round

number for the input to be padded with the padding unit was round 56 of round 64, where each

round consisted of one clock cycle. The processing of the message was completed until round

bit 4. Thus, the calculation for the message length could be calculated at round 14 of round 4.

Table 2: Counter Round Output

Round Binary Gary

round 0 0

round4 14 9

round64 56 36

Furthermore, gating the clock at the input of Step Function module is one of the techniques to

save dynamic power consumed within the System on Chip (SoC). In this project, MD5 clock

gating was designed for both binary and grey encodings. Block enable was inserted together

with the clock to convert them into the clock-gated implementation, as shown in Figure 8.

Moreover, the evaluation of the performance had been based on timing and area

implementation, which determined the speed of the design.

Figure 8: Gating the clock (a) Normal Implementation (b) Clock-Gated Implementation

enable

&&Sel

Step

Function

ABCD_in

clock

Sel

Step

Function

ABCD_in

clock

(a) (b)

 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

22

Penerbit

Akademia Baru

3.0 RESULTS AND DISCUSSION

The comparisons of frequency maximum for different types of MD5 designs were analysed. In

this analysis, the input message, m, was tested. Table 3 illustrates the synthesis and the

implementation results for MD5, MD5_Gray, MD5_Gating, and MD5_Gray_Gating.

Moreover, two types of signal encoding designs, as depicted in Table 3, namely MD5 and

MD5_Gray, represented MD5 binary and MD5 Gary encodings respectively. Meanwhile, the

other two designs of MD5 were for clock-gated implementation. MD5_Gating was clock-gated

for binary encoding, whereas MD5_Gray_Gating illustrated clock-gated for Gary encoding.

Simulation was carried out by using ModelSim Altera to verify the correctness of the Verilog

coding output. From this table, MD5 gave the highest frequency maximum with clock

constraint 7. As for the 900mV 100C model, the frequency maximum for MD5 was 145.94

MHz with a slack for the setup time at 0.148 ns, while for the 900 mV -40C model, the

frequency maximum for MD5 was about 152.32 MHz with a slack for the setup time at 0.435

ns. The performance of the overall design was almost similar where the frequency maximum

for four different types of the design had been at the same range. From Table 3, the frequency

maximum for MD5_Gray had been the lowest among all these designs. Moreover, by gating

the clock into the MD5 design, the speed of the design could be improved. From this analysis,

the switching bit of the state did not affect the performance in terms of speed of the design.

Furthermore, these designs reduced the power of consumption because of the switching bit of

the state during the transition process.

Table 3: Synthesis and Implementation of MD5 Design

MD5 Design

Device

Clock

constraint

Slow 900 mV 100C

Model

Slow 900 mV -40C

Model

slack(ns) fMax (MHz)

slack (ns) fMax (MHz)

MD5 Arria II

GX

7 0.148 145.94 0.435 152.32

MD5_Gray Arria II

GX

7.5 0.344 139.74 0.657 146.13

MD5_Gating Arria II

GX

7 0.113 145.2 0.37 150.83

MD5_Gray_Gating Arria II

GX

7 0.093 144.78 0.429 152.18

The results of MD5 design implementation on reconfigurable hardware relied on the choice of

FPGA family devices and the structure of HDL code chosen. Therefore, after designing the

MD5 architecture, the processes of synthesis and implementation of the design had to be

executed in order to obtain the critical path of the design. In this project, the TimeQuest timing

analyzer was used to optimize and to produce better fMax with clock constraint input. Each

design had to specify the accurate value for clock constraint. Therefore, the iteration process

was executed several times for all designs. Moreover, there had been a number of reasons for

applying the TimeQuest in designing the MD5 for this project. It was easier to use since it

provided simple GUI and interactive reporting for analysing timing, industry standard, and

more powerful with SDC format that allowed for faster, easier description, and analysis of

advanced design constructs. The main purpose of designing the different types of MD5 designs

for this project was to evaluate the performance of the design in terms of speed and area based

on Arria II GX family devices from Altera Quartus II. Besides, the clock constraint of the

 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

23

Penerbit

Akademia Baru

design could increase the performance of the design, as well as meet the timing requirement

with positive slack. In other words, the critical path of the design could be reduced.

Table 4 shows the area implementation of MD5 designs. From this table, the smallest area for

implementation was MD5. The usage of combinational ALUT was 1989, while the total

register was 1713. From this analysis, MD5 binary encoding offered high speed and small area

implementation. However, MD5_Gray_Gating used large area implementation, which was

about 2221 for combinational ALUT and 1936 total register even though the frequency

maximum for MD5_Gray_Gating was more or less similar to the MD5 design, but it suffered

from large area implementation. Based on these results, the area implementation of

combinational ALUT for four different MD5 designs had been in the range of 1989 to 2221,

whereas for the total register, the range was from 1713 to 1936. In fact, there were some

differences in terms of area implementation for different types of MD5 designs. In order to

reduce the area implementation, the register implementation had to be reduced.

Table 4: Area Implementation of MD5

MD5 Design Combinational

ALUT

Total Register

MD5 1989 1713

MD5_Gray 2140 1935

MD5_Gating 2080 1713

MD5_Gray_Gating 2221 1936

3.1 Performance Evaluation

In fact, there are several other researchers who have implemented the MD5 designs based on

both Altera and Xilinx CAD tools. Table 5 shows the comparison results for synthesis and

implementation of MD5 design. The output results for MD5[3], which was based on iterative

technique improved the frequency maximum of the design by using Carry Save Adder (CSA)

with 102.7 MHz of frequency maximum. On the other hand, MD5[4] provided fast

performance and a large area of logic resources for pipelining design, whereas the results based

on iterative implementation with Xilinx provided a small logic area for implementation with

78.3 MHz of frequency maximum. Furthermore, the iterative looping for MD5[5] with Xilinx,

which was iterated several times to perform the complete loop, contributed to 60.20 MHz

frequency maximum. While the implementation of MD5[6] showed that the device utilization

of iterative design was significantly small, 880 slices with 21 MHz of frequency maximum had

been the result. Based on these results, it also showed that the implementation of MD5 on

Stratix II GX offered 103.32 MHz with clock constraint 11, whereas MD5[3] contributed to

only 102.7 MHz. However, this design employed a large area for implementation. Besides, it

was clearly observed that Arria II GX family device provided high frequency maximum, which

was 152.32 MHz, with combinational ALUT at about 1989 and the usage of the total register

was 1713. Hence, Arria II GX could contribute to high performance of the design, as well as

increase the throughput of the design.

Table 5: Synthesis and Implementation Comparison of MD5 design

Design Device fMax

(MHz)

Combinational

ALUT (Altera)

Total Register

(Altera)

Slices

(Xilinx)

MD5 Arria II 152.32 1989 1713 -

MD5 Stratix II GX 103.32 1847 1633 -

 Journal of Advanced Research Design

 ISSN (online): 2289-7984 | Vol. 10, No.1. Pages 14-24, 2015

24

Penerbit

Akademia Baru

MD5[3] Stratix II GX 102.7 1352 462 -

MD5[4] Virtex II 78.30 - - 1325

MD5[5] Virtex II 60.20 - - 1369

MD5[6] Virtex V 21 - - 880

4.0 CONCLUSION

The architecture of MD5 design for both grey and binary signal encodings had been

successfully synthesized and analysed with Altera Quartus II Arria II GX, as well as Stratix II

GX by using Verilog code. By giving different values of constraint to the clock of MD5 design,

the frequency maximum of the design increased significantly. Therefore, the improvement of

frequency maximum for the design could enhance the throughput of the MD5 design. This

leads to the high performance of the MD5 design. Furthermore, various other methodologies

or techniques can be implemented to increase the frequency maximum in order to obtain high

throughput of the implementation. HDL coding styles also could affect the implementation

results of the design. One of the key technologies to increase the performance of the design is

pipelining, but this structure had the tendency to increase resource utilization. In addition, a

circuit with many XOR gates would produce many glitches that could consume more power

due to fast switching activity. Besides, FPGA offers higher performance and low cost design

with the development tool of HDL. Hence, it is the best choice when dealing with algorithm,

but it suffers from high power consumption. Thus, the usage of different types of techniques in

reducing the SoC power consumption without high-level circuit design tools can produce low

power circuit design. In the near future, FPGA may be expected to be cost-effective, even for

small-end applications.

REFERENCES

[1] F.R. Henriquez, N.A. Saqib, A.D. Perez, C.K. Koc, Cryptographic algorithms on

reconfigurable hardware, Springer series on Signal and Communication (2006) 189-201.

[2] R.L. Rivest, The MD5 Message-Digest Algorithm, RFC 1321, MIT Laboratory for

Computer Science and RSA Data Security Inc., April (1992).

[3] Y. Wang, Q. Zhao, L. Jiang, Y. Shao, Ultra high throughput implementations for MD5

hash algorithm on FPGA, high performance computing and applications, Lecture Notes

in in Computer Science 5938 (2010) 433-441.

[4] K. Jarvinen, M. Tommiska, J. Skytta, Hardware implementation analysis of the MD5

hash algorithm, In Proceedings of the 38th Hawaii International Conference on System

Sciences, (2005).

[5] J.M. Diez, S. Bojanic, Lj. Stanimirovic, C. Carreras, O. Nieto-Taladriz, Hash algorithms

for cryptographic protocols: FPGA implementations, 10th Telecommunications forum

TELFOR’2002, Belgrade, Yugoslavia, Nov. 26-28 (2002).

[6] J. Deepakumara, H.M. Heys, R. Venkatesan, FPGA implementation of MD5 hash

algorithm, Proceedings of the Canadian Conference on Electrical and Computer

Engineering, CCECE 2001, Toronto, Canada, 2 (2001) 919-924.

