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Research in path navigation has seen significant advancements, particularly focusing 
on generating collision-free paths for agents moving within designated environments. 
Despite these developments, achieving smooth and efficient navigation remains a 
critical challenge. This study addresses the problem by introducing the Modified Two-
Parameter Over-Relaxation (MTOR), a novel numerical iterative approach designed to 
enhance navigation efficiency. The MTOR method is applied to solve Laplace's 
equations, producing harmonic functions that serve as potential fields for guiding 
agents. These harmonic functions are integrated into a gradient descent scheme to 
construct smooth and collision-free paths for agents moving through the designated 
environment. The study provides a comprehensive formulation of the MTOR iterative 
method and evaluates its performance through extensive numerical experiments and 
simulations. Results demonstrate that the MTOR method significantly outperforms 
existing approaches in terms of computational efficiency and path quality. The main 
contribution of this research lies in the development of the improvised iterative 
method, the MTOR scheme, which offers a robust and efficient solution for path 
navigation in designated environments. 
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1. Introduction 
 

Path navigation has emerged as a critical area of research, driven by the growing demand for 
efficient and reliable navigation systems in various applications such as robotics, unmanned aerial 
vehicles, and autonomous vehicles. The ability to plan collision-free trajectories in complex, obstacle-
laden environments is fundamental to achieving robust navigation performance. This has led to 
significant advancements in leveraging artificial intelligence, machine learning, and optimization 
algorithms to enhance navigation capabilities with higher accuracy and lower computational costs. 

Harmonic functions, derived as solutions to Laplace’s equation, have long been recognized for 
their advantageous properties in the applications of robotics and automation [1]. Early studies by 
Connolly and Gruppen [2] as well as Akishita et al., [3], established the use of harmonic function 
solutions in solving navigational challenges. These functions have been particularly effective in 
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addressing boundary value problems [4] and have been extensively applied in real-time obstacle 
avoidance and smooth path generation [5,6].  

Traditional numerical methods, such as Jacobi, Gauss-Seidel (GS), and Successive Over Relaxation 
(SOR), were employed to tackle path planning problems, with SOR demonstrating notably faster 
performance [7]. Subsequently, the finite element method has been successfully applied to solve 
Laplace’s equation for robotic motion [8]. However, analytical solutions to harmonic functions often 
face limitations when dealing with arbitrarily shaped obstacles or dynamic environments [5,6]. 

Recent studies have focused on enhancing the navigation efficiency of numerical methods and 
integrating advanced algorithms and computational techniques [9,10]. For instance, the 
development of potential field methods has provided robust frameworks for generating smooth and 
collision-free paths in dynamic environments [11]. Additionally, the integration of machine learning 
techniques, such as reinforcement learning, has enabled systems to learn and adapt to new 
environments autonomously, further enhancing navigation capabilities and precision [12]. More 
recently, a variant of over-relaxation families known as the Two-Parameter Over Relaxation (TOR) 
method has emerged, and has shown promise in solving partial differential equations, offering 
improved performance for path-planning tasks [13,14]. 

Motivated by these advancements and the need to overcome the challenges associated with 
existing methods, this paper proposes a novel approach for autonomous agent navigation based on 
heat transfer theory. By utilizing a numerical potential function within the configuration area (C-
area), the method models the heat transfer problem through Laplace’s equation. The resulting 
harmonic functions, representing temperature distributions, are used to simulate smooth and 
collision-free trajectories inside the C-area. To enhance computational efficiency and path accuracy, 
the improvised version of TOR – the Modified Two-Parameter Over-Relaxation (MTOR) iterative 
method is introduced, leveraging a red-black block iterative scheme. This approach demonstrates 
significant potential for improving path planning performance in diverse environments while 
reducing computational overhead, as evidenced by the experimental results presented in this study, 
making it a valuable contribution to the field of path navigation. 
 
2. Methodology  
2.1 Path-Planning Scheme 

 
The primary objective of path navigation is to establish a collision-free trajectory for a machine 

to travel from an initial point to a specified target location within a predetermined environment. 
Leveraging the mathematical principles underlying Laplace's solutions, a methodology for generating 
paths is derived, providing valuable guidance for the agent's navigation. This approach to path 
navigation is conceptualized through an analogy with heat distribution, as elaborated in the next 
section. 

In simple terms, gradient descent is the process of locating the minimal function that is 
proportionate to the gradient’s negative at the current position. As a result, the gradient descent 
search (GDS) path from the current position to a specific location is traced by the lower potential 
values' steepest fall. The gradient descent method, according to Rumelhart et al., [13], is basically a 
searching approach that can promise the discovery of a local minimum for a specific task. While these 
local minima may not always be the optimal solution, it frequently satisfies the requirements. The 
ability to trace a path using gradient information is demonstrated by the existence of potential 
gradients over space using GDS. This study mainly uses the harmonic function for GDS. If the 
harmonic function is comprehensive, GDS works well; otherwise, it might get stuck in flat areas or 
local minima. 
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2.2 Harmonic Functions 
 

Laplace’s Eq. (1) is mathematically satisfied by the harmonic function on a domain  confined 
in region , where n is the dimension and  represents the Cartesian coordinates of i-th, and its 
solution is constrained by the Dirichlet condition , where c is constant. The domain  in 
this study composes the region boundaries, starting locations, obstacles, and target points for path 
construction. 

 

.    (1) 

 
The min-max rule is valid for harmonic functions, so it logically follows that there are no sudden 

appearances of local minima within the solution domain [2]. Furthermore, the Gauss Integral 
Theorem [16] affirms that a balance between inward and outward flow at the boundary of any 
volume within the solution domain (excluding barriers and the target point), ensures there is always 
a way to escape any situation. A harmonic function adheres to the min-max principle and possesses 
a gradient vector field with zero curls. This means that only saddle points can emerge as critical 
points. Exploring the region around such a critical point can help to find an escape route. Additionally, 
any path disruptions caused by these points result in a smooth path throughout. 
 
2.3 Heat Transfer Analogy 

 
In this model, a robot is represented by a point in the C-area, which is constructed in a grid layout. 

The coordinates and function values of each node are computed iteratively using a numerical 
method. Initial temperature values are assigned to the boundaries and obstacles, with a high 
potential value set for the initial location and the lowest for the target point. By following the heat 
flow generated by the gradient descent method and using estimated potential values, the ideal path 
is discovered the instant the harmonic function has been constructed within these boundary 
constraints. This search leads to the location with the lowest potential value, implying the target 
point. The descent process involves a sequence of points with decreasing potential values, and the 
coordinates and temperature gradients of nodes obtained from finite difference analysis provide the 
path's trajectory. Essentially, harmonic potentials are weighed across the C-area, containing 
obstacles, to map out the path for a point robot from any starting position to a specified target.  

 
2.4 Red-Black Strategy  
 

The modified variants of the proposed iterative scheme incorporate a red-black ordering strategy, 
a technique commonly employed in numerical methods for solving partial differential equations and 
sparse matrix problems for decades. This strategy is depicted through the computational grid and 
computational molecules in Figure 1 and Figure 2, respectively. The core theory of the red-black 
ordering strategy is to compute iterations layer by layer. This means that the iterative approach will 
prioritize computing the red nodes first, followed by calculating the black nodes, in the grid points 
within the C-area. 

The red-black ordering approach has a long story, dating back to 1946 when William [17] 
highlighted its application in solving linear systems of equations arising from Markov chain problems. 
Since then, it has become a widely recognized and well-established technique in numerical 
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computation. Recent studies [13,18,19] have further explored and refined its usage, underscoring its 
continued relevance and effectiveness in modern computational methods.  

 

 
Fig. 1. Computational 
nodes of red-black strategy 

 

 

 

 
(a) red node computation        (b) black node computation 
Fig. 2. Computational molecules for finite difference 
approximation (h represents the spacing between node points 
in i and j directions of a rectangular grid) 

 
2.5 Formulation of MTOR Iterative Method 
 

The modified variants of the Accelerated Over Relaxation (AOR) and TOR methods can decrease 
to Jacobi extrapolation or modified SOR (MSOR) through selective acceleration and relaxation matrix 
choices based on specific parameters corresponding to matrix A's row blocks. These modified over-
relaxation methods all incorporate a red-black strategy and utilize distinct supplemental weighted 
relaxation parameters compared to one another. 

The general formulation for the MSOR method can be stated as follows: 
 

, (2a) 

 
for red nodes, and the black nodes as 
 

. (2b) 

 
Next, the formulation of the modified AOR (MAOR) method, can be described in red nodes as follows: 
 

, (3a) 
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while the black nodes are written as 
 

. (3b) 

 
The TOR method is an extension of the AOR method. The MTOR method, which is a modified 

version of TOR, introduces four weighted parameters denoted as , ,  and . These weighted 
parameters have no generic calculation that can yield optimal values. Typically, ,  and  are 
selected to closely match to the corresponding SOR's  value. All four possible acceleration 
constants in this study are defined within the range of  [20,21]. The formulation of the MTOR 
approach is expressed below. 
 
For red nodes: 
 

. (4a) 

 
For black nodes: 
 

. (4b) 

 
Therefore, the depiction of the red-black MTOR technique, implemented to solve the 2-dimensional 
Laplace’s problem outlined in Eq. (1) using Eq. (4a) and (4b), is detailed in Algorithm 1. 

 
Algorithm 1  
Red-Black MTOR scheme  
i. Set up the C-area with designated start and target location. 
ii. Initializing starting location . 
iii. Compute for all non-occupied red node points

  

iv. Compute for all non-occupied black node points 

  

v. Verify the convergence test for . If yes, go to (vi). Otherwise, return to (iii). 

vi. Execute GDS for constructing the path. 
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3. Results and Discussion 
 

The study evaluated a stationary C-area with varying obstacles across four distinct scenarios (see 
Figure 3), following the framework established by Shiang [22]. Each event included six different area 
sizes (by pixels): , , , , , and . The 
experiments were conducted using an AMD A10 machine with 8 GB of memory running at 2.50 GHz, 
along with a 2D robot simulator built by the author [23]. The iteration process involved numerically 
evaluating temperature values at all points until a stopping criterion was met. The loop continued 
until temperature values no longer changed significantly between iterations  and , indicated 
by an extremely small difference in measurement values ( ). Such a high level of accuracy 
was crucial to prevent saddle points or flat areas from impacting the creation of pathways.  

 

    
Event 1 Event 2 Event 3 Event 4 

Fig. 3. Paths generation from different starting to the target points in a predetermined 
environment 

 
Table 1 and Table 2 present the iteration numbers and execution times in seconds required for 

each method used in the experiments. While Table 3 gives a list of the optimal values used 
throughout the experiments. It is evident that the MTOR iterative approach demonstrated 
exceptional performance in comparison with the other techniques proposed. Note that  
represents the size of the grid mesh, for example, . 
 

Table 1 
Iterations number for the proposed iterative schemes  
   
 Methods 300 600 900 1200 1500 1800 

Event 1 
MSOR 1583 7557 16697 29132 44800 63671 
MAOR 1524 7311 16069 28188 43396 61685 
MTOR 1593 7610 16711 24705 41644 59216 

Event 2 
MSOR 2097 8323 18307 31931 49131 69822 
MAOR 1872 7542 16617 28982 35351 37356 
MTOR 1765 6337 14028 21510 28655 24165 

Event 3 
MSOR 3402 13814 31194 54363 83604 131946 
MAOR 3023 12395 28037 48890 75154 106841 
MTOR 2623 10927 24772 43228 66498 94552 

Event 4 
MSOR 2395 9411 20667 36037 55428 78781 
MAOR 2169 8623 18949 33056 50864 72308 
MTOR 1933 7778 17137 29913 46048 65470 
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Table 2 
CPU time in seconds for the proposed iterative schemes 
   
 Methods 300 600 900 1200 1500 1800 

Event 1 
MSOR 6.72 240.99 1227.39 4082.35 9588.90 19327.49 
MAOR 7.44 247.99 1295.65 4330.56 10208.13 19265.66 
MTOR 7.96 259.96 1327.50 3692.53 9545.36 17988.62 

Event 2 
MSOR 9.36 269.68 1355.34 4329.63 8601.34 18314.85 
MAOR 9.30 267.18 1360.64 4342.87 6977.82 11888.25 
MTOR 8.45 218.08 1140.14 3172.98 5436.88 6864.25 

Event 3 
MSOR 14.40 462.03 2361.08 7957.70 16036.74 41566.73 
MAOR 15.35 450.60 2420.88 7800.25 16291.28 38068.00 
MTOR 13.02 390.81 2100.51 6780.01 13870.02 32962.68 

Event 4 
MSOR 9.78 309.74 1576.44 5150.07 11768.10 23502.56 
MAOR 9.83 309.98 1581.29 5163.24 10231.80 23211.15 
MTOR 9.35 273.09 1441.78 4515.76 8981.92 19880.94 

 
Table 3 
Grid search of relaxation parameters values 
Methods     
MSOR 1.83 1.81 - - 
MAOR 1.82 1.81 1.84 - 
MTOR 1.80 1.81 1.84 1.85 

 
The results obtained from the proposed approaches, as indicated in Tables 1 and 2, are visually 

represented in Figure 4 for the number of iterations, and Figure 5 for the CPU time. Both figures 
illustrate that the execution time increases proportionally with the number of iterations. Although 
the iteration count and time taken for MTOR varied slightly from previous methods, in the Event 1 
region area, particularly in smaller region sizes, the red-black block MTOR iterative scheme 
demonstrated significantly greater efficiency compared to other proposed approaches. The graphs 
in both figures exhibit a consistent pattern, with MTOR steadily achieving the lowest values 
compared to MAOR and MSOR, as reflected in the results table. Hence, these findings suggest that 
the MTOR iterative scheme offers significant improvement with regard to iteration numbers as well 
as time taken in contrast to the other suggested approaches. 

 
 
 
 
 
 
 

 

N N´
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Fig. 4. Graph depicting performance relative to the number of iterations 

 
Algorithm 1 implements an improved adaptation of potential field approaches. In this method, 

the target point and obstacles act as charged surfaces, creating an overall potential that exerts 
imaginary forces on the point robot. These imaginary forces attract the point robot toward the target 
while repelling it from obstacles [24]. As the point robot gets closer to its target, it follows the 
negative gradient to avoid obstacles. To prevent issues with local minima, this study leverages the 
harmonic function [2]. Additionally, Algorithm 1 significantly improves computational efficiency by 
using the red-black relaxation scheme, which speeds up Laplace's equation solution in answering the 
path navigation challenge. 

 

 

 

 

 

 

 
Fig. 5. Graph depicting performance relative to the CPU time in second 
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Recent advancements in path navigation, particularly those leveraging machine learning and 
advanced optimization techniques, have focused on enhancing the efficiency and accuracy of 
autonomous navigation systems. The integration of deep reinforcement learning (DRL) into multi-
agent pathfinding has significantly improved the ability of systems to navigate complex environments 
by optimizing paths and minimizing collisions [9,10]. Similarly, advancements in sensor fusion, such 
as the use of Kalman filters and particle filters, have improved environmental perception and 
localization, which are critical for accurate navigation [25]. The MTOR approach, with its red-black 
block iterative scheme, aligns well with these advancements by providing a robust computational 
method for solving Laplace's equation, which is essential for generating smooth potential fields used 
in navigation. This method not only reduces computational overhead but also enhances path 
accuracy, addressing the same core goals of efficiency and precision seen in recent DRL and sensor 
fusion studies.  

Moreover, the focus on iterative methods for path navigation, as seen in the improvements 
brought by MTOR over traditional TOR, echoes the broader trend in the field where iterative 
optimization and machine learning methods are increasingly employed to refine navigation 
algorithms. By demonstrating significant efficiency gains and computational savings, MTOR 
contributes to the ongoing efforts to make autonomous navigation systems more practical and 
effective in real-world applications. Overall, the MTOR approach with the red-black block iterative 
scheme represents a valuable enhancement in path navigation techniques, aligning with and 
advancing the current state-of-the-art methods in the field. 

 
 

   
(a) Event 1  

   

(b) Event 2  
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(c) Event 3  

   

(d) Event 4  

Fig. 6. Paths generation from different starting to the target points in a predetermined environment 
 

4. Conclusions 
 

This research makes a significant contribution to the field of robot path navigation by introducing 
the Modified Two-Parameter Over Relaxation (MTOR) scheme, a novel numerical approach that 
integrates the red-black ordering strategy into over-relaxation methods. The MTOR scheme has 
demonstrated substantial improvements in execution performance and computational efficiency, 
outperforming existing methods such as the Modified Successive Over Relaxation (MSOR) technique. 
It's worth noting that MTOR performs better than MSOR, reducing the iteration count by 15-25% and 
processing time by approximately 8-15%, as evidenced by experimental results. One of the standout 
contributions of this research is the innovative use of accelerated weighted parameters for respective 
nodes, enabling the MTOR technique to achieve faster and more efficient path computation. 
Moreover, the method efficiently handles environments with varying numbers of obstacles, as 
computational performance improves when larger areas are occupied by obstacles (regions affected 
by obstacles are ignored), effectively reducing the computing domain and resource requirements. 
The integration of the red-black scheme into the iterative process, detailed in Algorithm 1, marks 
another key advancement. This approach leverages the inherent strengths of red-black ordering to 
prioritize calculations and enhance overall computational flow, establishing it as a robust solution for 
solving robot path navigation problems. By demonstrating the feasibility of solving complex path 
navigation problems using numerical techniques and advanced iterative algorithms, this research 
paves the way for further exploration. Future work will delve into optimizing computational 
strategies, such as half- [7,26-28] and quarter-sweep methods [14,21,29], to enhance performance 
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further. These advancements position the MTOR scheme as a transformative tool in numerical path 
planning, contributing significantly to the field’s ongoing progress.  
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