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The composition of self-compacting concrete (SCC) contains 60–70% coarse and fine 
aggregates, which are replaced by construction waste, such as recycled aggregates 
(RA). However, the complexity of its structure requires a time-consuming mixed 
design. In order to solve this problem this writing evaluates and contrasts the 
performance of various deep learning models (Levenberg–Marquardt (LM), Bayesian 
regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB) in 
predicting the tensile strength of SCC incorporating RA. Experimental data sourced 
from existing literature were used to create test, training, and validation sets. A range 
of artificial intelligence models and optimization algorithms were explored to train 
these networks, with adjustments made to their architectures and parameters. The 
models were assessed using the mean squared error (MSE) and the correlation 
coefficient (R). The results demonstrated that all three models achieved optimal 
accuracy; however, the BR model outperformed the others, with an R value of 0.91 
and an MSE of 0.2087, surpassing the performance of LM and SCG. Thus, BR was 
identified as the most effective model for predicting the tensile strength (TS) of SCC 
with RA at 28 days. The results revealed patterns that offer valuable insights into the 
relative efficacy of the models, advancing the understanding of how deep learning 
can be applied to predict concrete properties. This study serves as a strong reference 
point for researchers and building industry professionals. 
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1. Introduction 
 

Concrete most influential mechanical property is the tensile strength (TS), critically impacting its 
performance in structural applications. Moreover, this becomes more critical in the case of self-
compacting concretes (SCC) with recycled aggregates (RA).  Accurate prediction of this property is 
essential for ensuring the safety and durability of structures built with this innovative material. SCC 
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is regarded as innovative due to its (1) ease of use in confined spaces where concrete placement is 
challenging, (2) reduction of noise pollution, and (3) enhanced fillability and construction speed [1-
3]. In recent years, deep learning (DL) models have been applied to predict the TS of RA-SCC, 
leveraging their capacity to identify specific features, extract complex patterns, and learn nonlinear 
relationships from large datasets. However, few studies have focused explicitly on using DL 
techniques to predict the TS of SCC with RA. This research aims to compare various deep learning 
models to identify the most effective approach for calculating the TS of RA-SCC using artificial 
neural networks (ANN), before this concrete were made, only knowing the mix that will be used. 

 
1.1 Hypothesis 

Deep learning models, such as ANN, can predict the TS of SCC with RA with greater accuracy 
than traditional methods. Furthermore, optimizing specific architectures and parameters is 
anticipated to enhance the performance and robustness of deep learning models in this context. 
 
2. Methodology  
2.1 Data collection  
 

The data were gathered from a range of research papers. Table 1 presents 381 different 
concrete mixes that encompass the TS of SCC with RA, utilizing various variables such as water (W), 
cement (C), admixtures (A), coarse aggregates (CA), fine aggregates (FA), and superplasticizer (SP). 
The database incorporates reference numbers for the total number of research articles, author 
citations, the amount of data provided for each article (#data), and the percentage of the overall 
dataset (%data). 
 

Table 1 
Description of data collected 
No Reference mixture % data No Reference mixture % data 
1 Ali and Al-Tersawy [4] 18 4.73 22 Nieto et al., [5] 22 5.78 
2 Aslani et al., [6] 15 3.94 23 Nili et al., [7] 10 2.63 
3 Babalola et al., [8] 14 3.68 24 Pan et al., [9] 6 1.57 
4 Bahrami et al., [10] 10 2.63 25 Revathi et al., [11] 5 1.31 
5 Behera et al., [12] 6 1.57 26 Revilla-Cuesta et al., [13] 5 1.31 
6 Chakkamalayath et al., [14] 6 1.57 27 Sadeghi-Nik et al., [15] 12 3.15 
7 Duan et al., [16] 10 2.63 28 Señas et al., [17] 6 1.57 
8 Fiol et al., [18] 12 2.33 29 Sharifi et al., [19] 6 1.57 
9 Gesoglu et al., [20] 24 6.3 30 Sherif and Ali [21] 15 3.94 
10 Grdic et al., [22] 3 0.79 31 Silva et al., [23]  5 1.31 
11 Güneyisi et al., [24] 5 1.31 32 Singh et al., [25]  12 3.15 
12 Guo et al.,  [26] 11 2.89 33 Sun et al., [27] 10 2.63 
13 Katar et al., [28] 4 1.05 34 Surendar et al., [29] 7 1.84 
14 Khodair et al., [30] 20 5.25 35 Tang et al., [31]  5 1.31 
15 Kou & Poon [32] 13 3.41 36 Thomas et al., [33] 4 1.05 
16 Krishna et al., [34] 5 1.31 37 Tuyan et al., [35] 12 3.15 
17 Kumar et al., [36] 4 1.05 38 Uygunoğlu et al., [37] 8 2.10 
18 Long et al., [38] 4 1.05 39 Wang et al., [39] 5 1.31 
19 Mahakavi and Chithra [40] 25 6.56 40 Yu et al., [41] 3 0.79 
20 Manziz [42] 4 1.05 41 Zhou et al., [43]  6 1.57 
21 Martínez-García et al., [44] 4 1.05  Total 381 100 
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Table 2 displays the statistical characteristics, including minimum, maximum, mean, median, 
mode, and standard deviation, of specific input variables (W, C, A, CA, W, FA and SP). These 
variables were utilized to model the TS of SCC with RA using DL techniques. 
 

Table 2 
Minimum, mean and maximum values of input and output variables 
Variables Abbreviation   Minimum Mean Maximum 

Input 

Cement C 78.00 368.73 550.00 
Additives A 0.00 138.27 515.00 
Water W 45.50 167.29 246.00 
Fine aggregates FA 532.20 844.71 1200.00 
Coarse aggregates CA 328.00 196.05 1170.00 
Superplasticizers SP 0.00 5.07 16.00 

Output Tensile strength TS 0.96 3.52 7.20 
 
2.2 Data visualization 
 

Relationships among the input characteristics (independent variables), which will be the 
different components of the concrete (C, W, FA, CA, SP), and the output variable, TS of SCC with RA, 
were analyzed to assess the relationships among the different characteristics. This statistical 
evaluation aids in optimizing predictive models [45] by enhancing the accuracy of predictions. To 
achieve this, a Pearson correlation matrix was constructed to examine the correlations between the 
independent variables. Notably, none of the correlations exceeded 0.80, indicating the absence of 
multicollinearity [46,47]. 
 

Table 3 
Division of the data for model testing 
Step Percentage % No. of samples 
Levenberg-Marquardt Algorithm (LM) 
Training 60 229 
Validation 10 38 
Test 30 114 
Total 100 381 
Bayesian Regularization (BR) 
Training 70 267 
Validation - 0 
Test 30 114 
Total 100 381 
Back propagation scaled conjugate gradient (SCGB) 
Training 60 229 
Validation 10 38 
Test 30 114 
Total 100 381 

 
2.3 Artificial Neural Networks (ANNs) 

 
DL is a subgroup of machine learning (ML) that enables the calculation of multilayer neural 

networks. The primary distinction between ML and DL lies in their approaches to feature extraction 
and classification: DL performs both tasks automatically, while in ML, feature extraction must be 
conducted separately, with the machine handling classification and prediction [48]. 
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Artificial neural networks (ANNs) are mathematical or computational models inspired by the 
complex biological neural networks of the human brain [49]. They are utilized to process 
information and execute machine learning tasks, particularly in artificial intelligence applications 
that tackle problems of greater complexity [50]. Each ANN operates using its own specific algorithm 
tailored to its type. In the context of this article, three algorithms were analyzed and compared: 
LM, BR, and SCGB 
 
2.3.1 Levenbert-Marquardt Algorithm 

 
This algorithm serves as a training method for ANNs, providing information and control before 

an event occurs. It consists of a series of iterations designed to locate the minimum of a 
multivariate function represented as the sum of squares of nonlinear real-valued functions [51,52]. 
Although this approach generally demands greater memory resources, it usually results in faster 
implementation times. 
 
2.3.2 Bayesian Regularization  

  
BR is a technique for training neural networks that mitigates overfitting by incorporating 

probability distributions into the model parameters. Bayesian regularized artificial neural networks 
(BRANNs) can reduce or even eliminate the need for extensive cross-validation [53]. 
 
2.3.3 Conjugate scaled gradient of back propagation 
 

This algorithm is employed to train type-independent neural networks, optimizing weights and 
biases. It integrates the conjugate gradient method with error backpropagation to enhance both 
efficiency and convergence speed in the DL process [54]. During each iteration, the design 
parameters are updated independently, a crucial factor for the algorithm's success. This feature 
represents a significant advantage of line search-based algorithms [55]. 
 
2.4 Model validation 
2.4.1 Division of the data set  
 

The network was organized into three distinct phases: training, validation, and testing. During 
the training phase, 10 neurons were selected for the hidden layer. The data were randomly 
allocated according to predetermined percentages, with 60% designated for training, 10% for 
validation, and 30% for testing. This allocation resulted in 229 examples for training, 38 examples 
for validation, and 114 examples for testing. Since BR (BR) does not necessitate a validation phase, 
the number of samples used for training and testing was adjusted to 267 and 114, respectively. This 
adjustment is due to the fact that validation typically serves as a form of regularization, while the 
BR algorithm incorporates its own validation mechanism. 
 
2.5 Model evaluation  
 

Training, validation, and testing are the three essential phases of artificial neural networks 
(ANNs). During the training phase, the model undergoes multiple iterations until the desired 
outcomes are achieved. Errors identified in the validation phase are detected during training [56]. 
ANNs typically consist of multiple layers, including an input/output layer that contains the input and 
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output data. Depending on the architecture, there may be one or more hidden layers between 
these layers, composed of neurons interconnected by weights. The output of each neuron is 
determined by its activation function, which can take various forms. Nonlinear activation functions, 
such as sigmoid and step functions, are frequently employed [57]. 

The initial step in constructing an ANN model is selecting the most suitable architecture. 
Subsequently, data are entered into the chosen model, specifying the inputs and outputs. Finally, 
the activation function, the number of layers, the number of hidden layers, and the number of 
neurons in each hidden layer must be selected empirically [58,59]. In this study, a feedforward 
backpropagation neural network was utilized, and three algorithms—LM, BR, and SCGB—were 
employed and compared. The design and execution of the network were performed using MATLAB 
software. 

The LMalgorithm generally requires more memory but takes less time for training. Training 
concludes when generalization ceases to improve, indicated by an increase in the mean square 
error of the validation samples. In contrast, BR, while slower, offers robust generalization 
capabilities for complex, small, or noisy datasets. Adaptive weight reduction facilitates the 
completion of training (regularization). Conversely, the SCGB Gradient backpropagation algorithm 
utilizes less memory than the LM algorithm. Training automatically terminates when generalization 
stops improving, as evidenced by an increase in the mean square error of the validation samples 
[58,60-62]. 

Using the ANN tool for neural network development, the performance of the models was 
assessed through two metrics: the Correlation Coefficient (R) and Mean Squared Error (MSE) 
[63,64] Regression serves as a key evaluation metric for assessing the accuracy of the overall 
network. The correlation between the actual outputs and the predicted targets was quantified 
using R-values, where an R of 1 indicates a strong relationship, while an R of 0 signifies a random 
relationship [65,66]. The Mean Squared Error represents the average squared difference between 
the actual results and the estimated values, with lower values indicating better performance; a 
value of zero indicates no error. 
 
3. Results and Discussion 
 

The model has been implemented using three algorithms as a basis: LM, BR and SCGB 
independently and then their results were compared and analyzed. 
 
3.1 Levenberg-Marquardt algorithm 
 

The network was trained repeatedly to identify the most suitable model, utilizing 10 neurons for 
performance evaluation. This process generated lines of varying colors representing training, 
validation, and testing phases. The performance criteria results indicate that the model is effective 
in predicting the TS of SCC with RA. 
 
3.2 Bayesian Regularization 
 

BR approach, the model was trained with an equal number of neurons, acknowledging that this 
algorithm incorporates a built-in validation mechanism during the training process. The results for R 
and MSE performance parameters for both the training and testing phases indicate that the model 
trained with BR demonstrates excellent accuracy in predicting the TS of SCC with RA. 
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3.3 Conjugate Gradient Scaled of back propagation 
 

Training the model using this algorithm with 10 neurons revealed its performance, yielding an 
overall R-value of 0.64. This indicates that the correlation deviates significantly from a linear fit, 
confirming that the model's predictive ability for the TS of SCC with RA is below average. The results 
of the performance parameters, including the R-value MSE for the overall model, as well as for 
training, validation, and testing, suggest that SCGB backpropagation is a less effective algorithm 
compared to LM and BR for predicting the TS of recycled aggregate SCC 
 
3.4 Comparison of the results of the LR, BR and SCGB approaches 
 

Comparisons between the three algorithms were conducted by evaluating the experimental 
outcome against the ANN-predicted values. Figure 1 demonstrates that the quantities predicted for 
the TS values by all three algorithms show a good correlation with the experimental data. However, 
larger deviations between the two lines indicate a greater error between predicted and actual 
results. Figure 2 presents the total R-values and root mean square for the three algorithms. The BR 
approach outperformed the others, particularly when dealing with data heterogeneity, as it allows 
for strong generalization in complex datasets [68]. Overall, BR emerged as the most accurate 
algorithm, with a predictive accuracy exceeding 90% for the TS of SCC with RA, outperforming both 
LM and SCGB. 

 

 
Fig.1. Comparison of experimental and predicted values 
for the ANN algorithms: LM, BR, and SCGB 

(a)

(b)

(c)
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Fig. 2. R and MSE of the LM, BR and SCGB algorithm 

 
3.5 Sensitivity analysis 
 

C (30.07%), FA (22.83%), and A (22.08%) were the primary contributors to the TS of SCC with 
RA. Shang et al., [67] emphasize that C is a crucial factor in predicting TS for SCC with RA. The enter 
variables of SP and CA contributed 9.61% and 13.02% respectively, to the TS evaluation (Figure 3). 
In contrast, W had the least influence on predicting TS for SCC with RA, contributing only 2.39%, a 
result that aligns with previous studies [67]. 

 

 
Fig. 3. Contribution of input variables to the slit TS of SCC with RA in the BR approach

 
4. Conclusion 
 

For the training of the LM, BR, and SCGB models, 381 samples were collected from scientific 
journals and arbitrarily divided into 60% for training (267 samples), 10% for validation (38 samples), 
and 30% for testing (114 samples). However, to make the BR algorithm work, the samples were 
split into 30% for testing and 70% for training, as validation is integrated into the training phase. 
The overall accuracy of each algorithm after training and testing was 85% for LM, 91% for BR, and 
64% for SCGB, with MSE values of 0.2927, 0.2087, and 0.6234, respectively. The SCGB algorithm 
had the lowest R-value and the highest MSE, indicating it was a poor model for predicting the TS of 
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SCC with RA. BR, on the other hand, achieved the lowest MSE (0.2087) compared to LM and SCGB, 
and its correlation coefficient (R = 90%) demonstrated that it is a strong model, suitable for 
predicting the 28-day TS of SCC with RA. Sensitivity analysis revealed that cement (30.07%) was the 
most significant input variable in predicting the 28-day TS of SCC with RA, while water had the least 
influence (2.39%). 
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