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Curve interpolation is a crucial aspect in several applications; however, traditional 
approaches often face difficulties in handling data uncertainty and imprecision. This 
study presents a new interval-valued fuzzy Bézier curve interpolation model designed 
to address these difficulties effectively. In this paper, interval-valued fuzzy Bézier curve 
interpolation is introduced. The interval-valued fuzzy control points is defined as the 
data points to utilizes Bézier blending algorithms to provide smooth and accurate 
interpolations. In addition, a visualization method is presented to aid in understanding 
the interpolated curves, improving the interpretation of the results. The model's 
practical effectiveness is demonstrated through numerical examples. This study 
enhances curve interpolation techniques by utilizing an interval-valued fuzzy Bézier 
curve interpolation model. It provides a strong solution for dealing with uncertainty 
and imprecision in different fields. 
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1. Introduction 
 

Zadeh [1] proposed fuzzy set theory as a means of dealing with uncertainty. Zadeh [2] later 
introduced interval-valued fuzzy sets (IVFS), which built upon the concept of fuzzy sets. IVFS utilize 
interval representations to express membership values as opposed to single values, hence 
demonstrating greater efficacy in capturing uncertainty when compared to conventional fuzzy sets. 
Exploration of IVFS has become more varied. Son [3] developed the concept of interval-valued fuzzy 
soft sets, which provide a flexible representation of membership degrees. Bustince [4] highlighted 
their importance in the field of soft computing, particularly for specific problem-solving. 
Furthermore, Verma [5] expanded the concept to hesitant interval-valued fuzzy sets, introducing 
innovative procedures and features.  

These works demonstrate the versatility and effectiveness of IVFS in several fields, such 
approximate reasoning [6,7], medical diagnosis [8], multivalued logic [9], decision making [10,12], 
and image processing [13,14]. Given the extensive research and application of IVFS, it is essential to 

 
* Corresponding author. 
E-mail address: izatemir@utm.my (Mohammad Izat Emir Zulkifly) 
 
https://doi.org/10.37934/arca.36.1.6169 



Journal of Advanced Research in Computing and Applications 
Volume 35, Issue 1 (2024) 61-69 

 
 

62 

integrate them into diverse applications, such as fuzzy geometric modeling. Computer-aided design 
(CAD) technologies are widely utilized for geometric modeling. The process entails utilizing 
mathematical representations of geometric elements to depict and manipulate visuals on a computer 
screen [15]. Geometric modeling is important because it allows for efficient visualization, simplifies 
design modifications, and enables testing before production, resulting in savings in both cost and 
time. Bézier techniques are essential because they transform intricate mathematical concepts into a 
more comprehensible geometric format. 

The Bézier curve, a fundamental element of geometric modeling, was first introduced by Pierre 
Bézier [16]. It was later enhanced by Paul de Casteljau [17] who incorporated Bernstein polynomials 
in defining curves and surfaces as well as the de Casteljau algorithm. Forrest [18] established the 
correlation between Bernstein polynomials and Bézier curves. Analyzing Bernstein polynomials from 
a geometric standpoint entail representing them as functional Bézier curves.  

In their study, Wahab et al., [19] introduced a geometric modeling approach that is based on the 
principles of fuzzy numbers theory. Their concept suggested the use of fuzzy control points to create 
fuzzy curves and fuzzy surface models in the field of Computer-Aided geometric Design (CAGD). The 
study investigated the attributes associated with fuzzy control points estimation using fuzzy Bézier, 
fuzzy B-spline, and fuzzy NURBS techniques. Afterwards, a number of researchers have embraced a 
comparable structure, merging fuzzy set theories with geometric models, as demonstrated by several 
authors [20-23]. 

In order to develop essential theorems, this study aims to analyze and describe the concept of 
interval-valued fuzzy numbers. The following section will present a clear definition of interval-valued 
fuzzy control points. The control points will be combined with Bézier basis functions to create the 
interpolation model for interval-valued fuzzy Bézier curves. The practical usefulness of interval-
valued fuzzy Bezier curve interpolation is not well-documented, with only a few real-world 
applications and case studies available. 
 
1. Preliminaries  
 

This section provides fundamental definitions of interval-valued fuzzy sets, including interval-
valued fuzzy numbers, interval-valued fuzzy relations and interval-valued fuzzy points. 
 
Definition 1 [1]. Let A be a fuzzy set defined on a universe X denoted as 
 

                       (1) 
 
where  is the membership function. The membership value  quantifies the 
extent to which the degree of belongingness of A. Figure 1 shows an example of fuzzy set A. 
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Fig. 1. Fuzzy set A 

 
Definition 2 [2]. Let an interval-valued fuzzy set (IVFS)  in X given as 
 

            (2) 

 
where  and  are the lower and upper bound of the membership degree respectively on 

which fulfil the following condition 
 

              (3) 
 

The concept of interval-valued fuzzy numbers has emerged from the combination of fuzzy set 
theory and possibility theory. The concept of fuzzy numbers was first introduced by Gorzałczany [6]. 
Definition 3 and Definition 4 provides explanations for the interval-valued fuzzy number and the 
normal triangular interval-valued fuzzy number, respectively. 

 
Definition 3 An interval-valued fuzzy number (IVFN)  is defined as follows: 
 
i. normal where there is any  such that  

ii. convex for the memberships  and  where 

 and  for 

 

iii.  and  are upper semi-continuous 

iv. the support of  and  are bounded that is the closure of  and 

 are bounded. 

 
Definition 4 According to Chen [24], a normal triangular interval-valued fuzzy number  can be 
represented by two fuzzy numbers  and : 
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             (5) 
 

where  and  while  is a crisp value and  and  are the heights 

of  and . The IVFN can be shown in Figure 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The normal triangular interval-valued fuzzy number 
 

Fuzzy relation has been examined in [25] and [26]. The interval-valued fuzzy relation (IVFR) is 
introduced as a transformer that links the definition of the interval-valued fuzzy number (IVFN) to 
the description of interval-valued fuzzy data points. 

 
Definition 5 [27]. Consider X and Y as non-empty sets and R as interval-valued fuzzy relation. Let 

 be universal sets, then 
 

            (6) 

 

where  and . 
 
Definition 6 [27]. Let , then for every  denoted as 
 

          (7) 
 

where there are operations on the supremum and infimum in IVFR  respectively as below 
 

         (8) 
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2. Interval-Valued Fuzzy Bézier Curve Interpolation Model 
 

The data points that are used to determine the shape of a Bézier curve is defined as control point. 
The control points is represented as  . The concept of fuzzy control point has been 
defined in Wahab et al., [19]. 

 
2.1 Interval-Valued Fuzzy Bézier Control Point 

 
The interval-valued fuzzy Bézier control point (IVFCP) can be expressed using the definitions of 

interval-valued fuzzy set, interval-valued fuzzy number and interval-valued fuzzy relation as follows. 
 

Definition 8 Let the interval-valued fuzzy set (IVFS) of  in space S such that the set of interval-
valued fuzzy control point (IVFCP) is denoted as 
 

                        (10) 

 
where there exists membership functions of lower left and right, crisp value, and upper left and right 
bound respectively , , ,  and . 
 

The geometric model integrates the interval-valued fuzzy control point with the basis function of 
Bézier curve interpolation. The set of interval-valued fuzzy Bézier control points in Eq. (10) includes 
the lower left, , upper left, , crisp value, , lower right, , and upper right, . 
 
2.2 Interval-Valued Fuzzy Bézier Curve 
 
Definition 9 Consider  be a IVFCP with , hence the interval-valued fuzzy 
Bézier curve (IVFBC) is defined as 
 

                      (11) 

where Bernstein polynomials denoted as  and the binomial coefficients are 

. 

 
The interval-valued fuzzy cubic Bézier curve in Eq. (11) is parametric function written as 

 which consists of membership curve. The IVFBC consists of  
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                       (14) 

 

                       (15) 

 

                       (16) 

 
where the IVFBC is composed of five components : , , ,  and  which represents 

as lower left IVFBC, upper left IVFBC, crisp IVFBC, lower right IVFBC and upper right IVFBC 
respectively. 
 
2.3 Interval-Valued Fuzzy Interpolation Curve 

 
Interval-valued fuzzy interpolation curve can be derived by using the data points from Eq. (12) to 

Eq. (16) and apply the equation below. 
 

                           (17) 
 

                      (18) 
 

                     (19) 
 

                    (20) 
 

There are four points in the Eq. (17) to Eq. (20). To solve this, the matrix equation is used as 
follows. 

 

                 (21) 
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3. Numerical Example and Algorithm of Interval-Valued Fuzzy Bézier Curve 
 

Table 1 provides a numerical example and algorithm for an Interval-valued Bézier curve with 
degree . 
 

Table 1 
Example of IVFBC with degree 3 

IVFBCP/ 
Membership Degree 0.8 0.5 0.7 0.9 

 3 8 13 18 

 5 10 15 20 

 8 13 18 23 

 11 16 21 26 

 13 18 23 28 

 
Table 1 presents an example of IVFCP with its corresponding degree of membership degree lower 

left, upper left, crisp value, lower right and upper right. While Figure 3 is the illustrated curve where 
the IVFCP is blended with the basis function of  Bézier in the geometric model as in Eq. (11). Figure 3 
displays the lower left IVFBC represented by a yellow curve, next to it is the upper left IVFBC depicted 
by a blue curve. Thr crisp IVFBC is located at the centre and is coloured green. The lower right IVFBC 
and upper right IVFBC can be identified by their red and orange curves on the right side.  

 

 
Fig. 3. Interval-valued fuzzy Bézier curve interpolation 

 
The algorithm resulting in IVFBC is as follows: 

Step 1 : The interval-valued fuzzy control points (IVFCP) is determined using  . 
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Step 2 : The interval-valued fuzzy control point is blended with the basis function of Bézier curve 

interpolation in the geometric model using  where the membership 

functions of lower and upper bound is determined. 
Step 3 : The data points or IVFCP of the basis function are transformed into a curve known as IVFBC. 
 
4. Conclusions 
 

This paper presents a novel interpolation model based on interval-valued fuzzy Bézier curves, 
which efficiently deal with uncertainty present in data. Moreover, the study presents a visualization 
technique that improves the clarity of the interpolated curves, offering an important understanding 
of the underlying trends and patterns. Through numerical examples presented in this paper, the 
model shows the underlying curve within intervals of uncertainty data problem. This research 
enhances curve interpolation methods by utilizing interval-valued fuzzy data, providing a reliable 
approach for managing uncertain and imprecise data. In the future, researchers can investigate the 
specific uses of the suggested model, improve computational methods, and expand the model to 
include more sources of uncertainty. This will contribute to the progress of curve interpolation and 
its applications in data analysis, image processing, economic forecasting, engineering design and 
decision-making. 
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