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One of the main parts of the advanced driving assistant system (ADAS) is traffic sign 
detection and recognition, which seeks to detect and recognize street signs in real-
time. However, real-world applications demanding high precision and instantaneous 
recall present difficulties for traffic sign identification. The tiny object size and the class 
imbalance are the causes of these difficulties. Recently, researchers have proposed 
several methods to enhance the detection quality, including adding attention 
techniques, spatial enhancing of small objects, and enriching the features using a 
multiscale network. Researchers are addressing the class imbalance by introducing 
different loss functions and cascaded networks. However, because of the existing 
techniques and systems, the current model becomes more complicated. Single-stage 
networks like YOLO are also impacted by the imbalance, which results in a reduced 
recall for tiny objects. We have proposed a new training method for a one-stage 
detection network called the Real Time-Shape Deep Neural Network (Real Time-Shape 
DNN). The YOLO detection head is expanded by our suggested method to include the 
four primary parameters of objectiveness, regression, class, and shape. We added an 
additional parameter to the loss and Non-Maximum Suppression (NMS) to reduce the 
class number. We train the network jointly between classes and shapes. With the 
German Traffic Sign Detection Benchmark (GTSDB) as the benchmark dataset, we 
validate our proposed methods. The findings indicate that our presented method 
increases average precision (AP) for Yolov4 from 69.49% to 76.12% while increasing 
the recall index from 88.07% to 99.30% and for Yolov4-tiny-3l increases the recall index 
from 84.95% to 97.73% while increasing the average precision from 46.45% to 49.44% 
without increasing the complexity of the primary network. In terms of recall and 
precision, the baseline in the German Traffic Sign Detection Benchmark dataset is not 
as good as our proposed method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: 
Object detection; Deep learning, YOLO; 
Artificial intelligence; Traffic sign 
detection and recognition 

 
 
 

                                                           
* Corresponding author. 
E-mail address: hossam@aast.edu (Hossamelden Mohamed Elhawary) 



Journal of Advanced Research in Computing and Applications 

Volume 28, Issue 1 (2022) 12-24 

13 
 
 

1. Introduction 
 

The industrial value and potential of traffic sign detection technology is  substantial. Industry and 
academia have been diligently working in this field for several years. The technology for detecting 
traffic signs is a hot topic that has gained considerable attention. This technology is indispensable in 
applications like position sensing, autonomous vehicles, and road marking detection. In recent years, 
the development of deep learning technology has significantly advanced traffic recognition and 
detection technology. Deep learning has become the primary method for detecting and identifying 
road signs. Typical issues with traffic sign data include tiny size, noise, fluctuating light intensity, and 
imbalance. Similarly, traffic sign data is typically collected from natural scenes. Therefore, traffic sign 
data often consists of a few tiny objects. Size variation is a characteristic that poses considerable 
hurdles to the detection model. 

Depending on their function, traffic signs can be divided into different types. Within each type, 
they can be further subdivided into subtypes with similar generic shapes and appearances but 
differing particulars. This indicates that traffic sign recognition should consist of two phases: 
detection and classification. The detection step utilizes shared information to provide bounding 
boxes that may contain traffic signs belonging to a particular category. In contrast, the categorization 
step utilizes differences to identify the type of sign present. We want to point out that "detection" 
and "classification" have different meanings in the general object recognition community, as shown 
by the ImageNet competition. Classification means giving an image a label instead of an object, while 
"detection" means finding the bounding box of an object in a certain category.  

In recent years, the convolutional neural network (CNN)-based deep learning technique has 
significantly enhanced object detection performance. Generally speaking, traffic sign detection 
consists of two components: location and recognition. CNNs are generally capable of extracting 
image features and classifying images with an extraordinary degree of precision. CNNs are widely 
used in the ImageNet Large-Scale Visual Recognition Challenge (LSVRC) [1] and have become the 
standard approach for classifying images. Location has always been a tricky probl em for object 
detection. The classical selective search approach is based on color, texture, size, etc., and searches 
for more than 2K regions for object detection, which consumes a large amount of time [2] . Region-
based CNN (R-CNN) fully utilizes CNN's robust feature extraction ability [3]. The Faster R-CNN method 
makes direct use of CNNs' feature extraction capabilities to detect and identify objects  [4]. Recently, 
the best method for detecting traffic signs has been an upgraded version of Faster RCNN and YOLO. 
All these approaches have insufficient effectiveness in detecting small objects. As the CNN does 
forward calculations on the image, the size of the image is gradually down-sampled, and the small 
object's features disappear from the high-level features. This makes it hard for the network to find 
small objects. 

Currently, researchers are attempting to improve the extracted feature map by adding more 
modules to the CNN and more scales, either spatial or feature scales, such as Spatial Pyramid Pooling 
[5] and Feature Pyramid Network [6] (FPN), which may include a trade-off between accuracy and 
speed. Another approach would be to develop a new learning mechanism that employs distinct loss 
functions. Traffic signs have small object sizes and imbalances between classes, causing the present 
work to have difficulty identifying them and produce more false positives. The remainder of the paper 
is structured as follows: Section 2 discusses relevant research. In Section 3, we describe the proposed 
method based on shapes based on YOLO architecture. In Section 4, the results and discussion will be 
given. Finally, the conclusion will be provided in Section 5. 
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2. Related Work 
 
Modern traffic sign detection algorithms are primarily based on CNN. In [7], the color feature of 

the traffic sign is employed to extract possible regions and the fine results are generated by faster -
RCNN from the possible regions. In reference, the region proposal network (RPN) network is utilized 
twice sequentially to identify coarse to fine traffic indicators [8]. Meng et al., [9] trained a tiny object-
sensitive network enhanced by a single-shot multibox detector (SSD) by subgraph division. From 
different points of view, these studies improve the accuracy of traffic sign detection, but they don't 
meet the requirement for real-time detection. 

In recent years, traffic sign detection algorithms based on deep learning have produced high-
quality results. Object detection is generally categorized as either single-stage or two-stage. Single-
stage algorithms have a fast detection rate, such as the YOLO series [10-13] and SSD series [14]. The 
accuracy of two-stage object detection algorithms, such as the R-CNN series [3,4,15], is quite high. 
Traffic sign detection jobs must distinguish not only between the major categories of traffic signs 
(instructions, prohibitions, and warnings), but also between the minor categories (the meaning of 
each traffic sign), or their practical utility will be severely reduced. Yang et al., [16] present an 
attention approach that relies on local context information to enhance the model's traffic sign 
identification. Wang et al., [17] developed a high-accuracy, high-speed detector based on faster R-
CNN and MobileNet, which refines the localizations of miniature traffic signs using colour and shape 
information. 

The YOLO (You Only Look Once) [10] approach is a traditional single-stage-based method that can 
nearly achieve real-time detection. The regional proposal technique obtains more detection precision 
at the expense of slower running speed, while the single-stage-based operating speed is faster. 
However, the detection performance of the comparative area proposal method is poor. Zhang et al., 
[18] proposed an enhanced one-stage traffic sign detector based on YOLO-v2 by modifying the 
number of convolutional layers in the traditional YOLO-v2 network to make it efficient for the China 
Traffic Sign Dataset. Using the improved YOLOv2 algorithm, real-time detection was performed in 
the Chinese traffic sign data set (CTSD) [19]. However, the imbalance has an effect on one-stage 
networks like YOLO, resulting in lower recall performance for minor classes and remaining a difficult 
obstacle. 

 
3. Methodology 

 
Generally, we choose using GTSDB [20] dataset with the class distribution illustrated in Figure 

1(a) for training set and Figure 1(b) for validation set. Unbalanced datasets make it difficult for one-
stage deep networks such as YOLO to detect minor classes. In this paper, the Real Time Shape Based 
Deep Neural Network Real (Real Time–Shape DNN) training and inference method was proposed for 
a single-stage detection network. The suggested Real Time-Shape DNN is designed to learn 
concurrently the shape and class of each box. This allows classes with fewer samples to combine with 
classes with more samples, making it easier for the network to learn the common features of the 
group of classes during training and verify whether the predicted class is present in the group of 
shapes during inference. 
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(a) 

 

 
(b) 

Fig. 1. Frequency distribution per class for (a) GTSDB training set and     
(b) validation set  

 
3.1 The Proposed Concept 
 

Therefore, the shape parameter is added to the layer before the YOLO head to extend it. We 
select the class's shape as the additional parameter and alter the YOLO head to handle the extra 
parameter. Then, we jointly trained the network's classes and its shape. Thus, we ensure greater 
recall per shape parameter while maintaining the same precision per class. The output of the shape 
parameter helps in the elimination of false positives within the class, hence increasing the overall 
recall while virtually retaining precision and inference speed. 

 
𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 

𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤 
𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ 

(1) 



Journal of Advanced Research in Computing and Applications 

Volume 28, Issue 1 (2022) 12-24 

16 
 
 

Fig. 2. Yolov4 and Yolov4-tiny-3l architecture 

 
The architecture of Yolov4 [12] consists of four main parts, as shown in Figure 2: the input, the 

backbone, the neck, and the dense prediction. The input of the network is an image 608 × 608 × 3  
in 64 patches for training. The backbone used in Yolov4 is CSPDarknet53 and in Yolov4-tiny-3l is 
CSPDarknet53-tiny where they use the CSPBlock module in cross-stage partial network to divide the 
feature map into two parts and combine them by cross-stage residual edge to improve the network 
correlation. In Yolov4-tiny-3l LeakyReLU is used instead of the Mish activation function. In Yolov4, an 
additional module with modified PANet path-aggregation is used for the Neck Spatial Pyramid 
Pooling (SPP), whereas in Yolov4-tiny-3l Feature Pyramid Network (FPN) is used as the neck, taking 
from three different feature scales: 19 × 19,  38 × 38 and 76 × 76. The output channels are 
𝐵 × (4 + 1 + 𝐶) each. where 𝐵 is the number of boxes in each scale, and each box has normalized 
offset coordinates, 𝑡𝑥, 𝑡𝑦, 𝑡𝑤 , 𝑡ℎ, a single objectiveness score, and 𝐶 is the number of classes. Finally, 

the dense prediction uses Yolov3 [13] heads with anchors to predict the boundary boxes, 
objectiveness, and class score for each scale. For each scale, the YOLO head divides the input image 
into 𝑆 × 𝑆 grid cells, predicting boundary boxes, objectiveness scores, and C class probability. The 
boundary box is calculated using Eq. (1) where the cell is offset from the top left corner of the image 

by (𝑐𝑥 , 𝑐𝑦) and the box's prior width and height are (𝑝𝑤 , 𝑝ℎ) where the box prior is predefined for  

each scale. The normalized offset coordinates for the ground truth can be calculated by inverting Eq. 
(1). 

 
𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑟𝑒𝑔 + 𝑙𝑜𝑠𝑠𝑜𝑏𝑗 + 𝑙𝑜𝑠𝑠𝑎𝑡𝑡𝑟 + 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 (2) 

 
In Yolov4 and Yolov4-tiny-3l, the loss function has three primary terms for computing the loss 

function: regression loss 𝑙𝑜𝑠𝑠𝑟𝑒𝑔, objectiveness loss 𝑙𝑜𝑠𝑠𝑜𝑏𝑗 , and class loss 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠. To overcome 

the unbalance in the dataset, the shape parameter loss 𝑙𝑜𝑠𝑠𝑠ℎ𝑎𝑝𝑒 is used. as an addition to the loss 

function Eq. (2). 
 

𝑙𝑜𝑠𝑠𝑟𝑒𝑔 = 1 − 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ +

𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+

16

𝜋4

(arctan
𝑤𝑔𝑡

ℎ𝑔𝑡 − arctan
𝑤
ℎ

)
4

1 − 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ +

4
𝜋2 (arctan

𝑤𝑔𝑡

ℎ𝑔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛
𝑤
ℎ

)
 (3) 

 
The regression loss is using the CIoU [21] loss function Eq. (3) to consider the three important 

factors; the overlapping area, the distance between central points and the aspect ratio where 

𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ is the intersection over union between the ground truth bounding box and prediction 

bounding box, ρ2(𝑏, 𝑏𝑔𝑡) is the Euclidean distance between the predicted box center 𝑏 and the 
ground truth center 𝑏𝑔𝑡 . 𝑐 is the diagonal distance of the intersection area between the ground truth 
and the predicted bounding box. 
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𝐶𝑖𝑗 = 𝑃𝑖𝑗 ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (4) 

  

𝑙𝑜𝑠𝑠𝑜𝑏𝑗 = − ∑ ∑ 𝐼𝑖𝑗
𝑜𝑏𝑗

[�̂�𝑖𝑗𝑙𝑜𝑔(𝐶𝑖𝑗) + (1 − �̂�𝑖𝑗)𝑙𝑜𝑔(1 − 𝐶𝑖𝑗)]

𝐵

𝑗=0

𝑆2

𝑖=0

− 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑(1 − 𝐼𝑖𝑗
𝑜𝑏𝑗

)[�̂�𝑖𝑗𝑙𝑜𝑔(𝐶𝑖𝑗) + (1 − �̂�𝑖𝑗)𝑙𝑜𝑔(1 − 𝐶𝑖𝑗)]

𝐵

𝑗=0

𝑆2

𝑖=0

 

(5) 

 
The objectiveness loss 𝑙𝑜𝑠𝑠𝑜𝑏𝑗 uses the cross-entropy loss for the grid cells with and without 

objects as shown in Eq. (5) where 𝐶𝑖𝑗 , �̂�𝑖𝑗 are the predicted and ground truth objectiveness 

confidence score, 𝐼𝑖𝑗
𝑜𝑏𝑗

 is equal to one if there is an object in the 𝑗𝑡ℎ bounding box and 𝑖𝑡ℎ grid cell 

otherwise it will be zero and λ𝑛𝑜𝑜𝑏𝑗 is weight parameter for non-objects. The object in the 𝑖𝑡ℎ grid 

cell and 𝑗𝑡ℎ box is considered as an object if the objectiveness confidence score is greater than a 
certain threshold otherwise it will be considered as not an object. The objectiveness confidence score 

is calculated as shown in Eq. (4) where the 𝐶𝑖𝑗 is the objectiveness confidence score of the 𝑗𝑡ℎ box in 

the 𝑖𝑡ℎ grid cell, 𝑃𝑖𝑗  is the objectiveness probability in 𝑗𝑡ℎ box and 𝑖𝑡ℎ grid cell and 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ is the 

intersection over union between the ground truth bounding box and the predicted bounding box.  
 

𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 = − ∑ ∑ 𝐼𝑖𝑗
𝑜𝑏𝑗

∑ [�̂�𝑖𝑗(𝑐)𝑙𝑜𝑔 (𝑝𝑖𝑗(𝑐)) − (1 − �̂�𝑖𝑗(𝑐)) 𝑙𝑜𝑔 (1 − 𝑝𝑖𝑗(𝑐))]

𝐶

𝑐=0

𝐵

𝑗=0

𝑆2

𝑖=0

 (6) 

 
Finally, the class loss 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 is as in Eq. (6), the binary cross-entropy with logistic activation 

where 𝑝𝑖𝑗(𝑐), �̂�𝑖𝑗(𝑐) are the predicted probability and the ground truth label of class 𝑐 of the 𝑗𝑡ℎ box 

and 𝑖𝑡ℎ grid cell and 𝐶 is the total number of classes. 
 

𝑙𝑜𝑠𝑠𝑠ℎ𝑎𝑝𝑒 = − ∑ ∑ 𝐼𝑖𝑗
𝑜𝑏𝑗

∑ [�̂�𝑖𝑗(𝑎)𝑙𝑜𝑔 (𝑣𝑖𝑗(𝑎)) − (1 − �̂�𝑖𝑗(𝑎)) 𝑙𝑜𝑔 (1 − 𝑣𝑖𝑗(𝑎))]

𝐴

𝑎=0

𝐵

𝑗=0

𝑆2

𝑖=0

 (7) 

 
We added extra parameter to the neck and the dense prediction as shown in Figure 2 by 

extending the channel to be 𝐵 × (4 + 1 + 𝐶 + 𝐴) where 𝐴 is the number of the added shape 
parameters, and makes the total loss as in Eq. (2) where 𝑙𝑜𝑠𝑠𝑠ℎ𝑎𝑝𝑒 is the shape loss. In this study we 

choose to group the classes with shape, but it can be any parameter. The shape loss as in Eq. (7) is 
also using binary cross-entropy with logistic activation function for each added shape 𝑎 where 

𝑣𝑖𝑗(𝑎), 𝑣𝑖𝑗(𝑎) are the predicted and ground truth shape repeatedly in the 𝑗𝑡ℎ box and 𝑖𝑡ℎ grid cell. 

During evaluation, we use the extra added parameter shape to filter out all the predicted classes 
that do not belong to the shape category. First, we calculate the confidence score of the class is 
calculated as 𝑜𝑏𝑗𝑖𝑗

𝑠𝑐𝑜𝑟𝑒 ∗ (0.1 ∗ 𝑣𝑖𝑗(𝑐 → 𝑎) + 0.9 ∗ 𝑝𝑖𝑗(𝑐)) where the 𝑜𝑏𝑗𝑖𝑗
𝑠𝑐𝑜𝑟𝑒 is the objectiveness 

score of the 𝑗𝑡ℎ box and 𝑖𝑡ℎ grid cell, 𝑣𝑖𝑗 is the predicted score of shape, 𝑐 → 𝑎 is a mapping function 

that map the class index to the shape index and 𝑝𝑖𝑗(𝑐) is the predicted score of the class 𝑐. Then we 

modified the DIoU non-maximum suppression (NMS) to sort detection based on the calculated class 
confidence score. Second, all the boxes of classes and shapes with a DIoU value greater than 0.6 are 
eliminated. 
 
 



Journal of Advanced Research in Computing and Applications 

Volume 28, Issue 1 (2022) 12-24 

18 
 
 

3.2 Dataset 
         

We validate our method using GTSDB. GTSDB has 741 images and 1213 annotated traffic signs, 
with each image cropped to a size of 1360×800 pixels and divided into 506 for training and 235 for 
validation, with 43 class categories. We use all 43 class categories for training and then filter out 
those with no instances in the validation set, leaving 38 categories used in validation. Even though 
the dataset is unbalanced, we have not applied any augmentation techniques to rectify this. Simply, 
we use it unbalanced. Only online color jitter has been used throughout training. Each traffic sign 
class is mapped to one of the following five shapes: circle, triangle, diamond, flipped triangle, and 
octagon, with the majority of classes being circular-shaped. 

 
3.3 Parameter setup 
 

The training hyper-parameters that have been used are shown in Table  all training was using two 
GPUs but inference was using only one GPU. 

 
Table 1  
Training Hyper Parameters 
Parameter Yolov4-tiny-3l Yolov4 

Pre-trained Model COCO until layer 29 COCO until layer 137 
Max batches 21758 21758 
Learning Rate 0.0013 0.0005 
Steps 17406, 19582 17406, 19582 
Scales per step 0.1, 0.1 0.1, 0.1 
Optimizer SGD 
Momentum 0.9 0.949 
Weight decay 0.0005 0.0005 
batch 64 64 
Subdivisions 2 32 
Width × Height 608 × 608 
Classes 43 
IoU normalizer 0.07 
IoU Loss CIoU 
Ignore box threshold 0.7 
NMS DIoU NMS beta 0.6 

 
3.4 Performance Measure 

 

                    𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐴𝑃 =
1

𝑁
∑ 𝑃

𝐶

, 𝐴𝑅 =
1

𝑁
∑ 𝑅

𝐶

, 𝐴𝑈𝐶 =  ∑ 𝑃𝑅𝑖

101

𝑖=1

 

 

(8) 

 
In this study, precision (P), recall (R), average precision (AP), average recall (AR), and area under 

the curve (AUC) are used as formula in Eq. (8), where C is the number of classes, N is the total number 
of images, and PR is the precision recall for 101 recall levels. We use an IoU threshold of 0.5 and a 
confidence threshold of 0.25. 
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(a) 

 
(b) 

Fig. 1. Precision Recall curve at 0.5, 0.7 and 0.9 IoU compare 
between baseline and ours for Yolov4 and Yolov4-tiny-3l 
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4. Results and Discussion 
 

All our experiments were trained using 2x NVIDIA GPUs V100 with 16GB HBM2 memory. CPU   
IBM POWER9 PowerNV 8335-GTH. We evaluate using Microsoft Common Objects in Context (MS 
COCO) evaluation metrics as proposed in [22]. We use our modified darknet framework to implement 
our proposed idea. We evaluate our proposed idea on YOLOv4-tiny-3l and YOLOv4 with precision (P), 
recall (R), average recall (AR), average precision (AP), frames per second (FPS), and Billion Floating-
point Operations (BFLOPS) in the quantitative evaluation in this section to show the performance  
comparison. 

 
4.1 Results 
 

Table 2 
 Evaluation comparison between our and baseline confidence threshold of 0.25 on GTSDB  

AP AR FPS BFLOPS 
Yolov4-tiny-3l 46.45% 84.95% 422 17.469 
Our Yolov4-tiny-3l 49.44% 97.73% 400 17.5 
Yolov4 69.49% 88.07% 77 127.915 
Our Yolov4 76.12% 99.30% 77 127.977 

 
As shown in Table 2, our modified model in both Yolov4 and Yolov4-tiny-3l obtains a superior 

average recall at IoU 0.5 with about the same FPS, where it improves yolov4-tiny-3l from 84.95 % to 
97.73 % while increasing the average precision from 46.45 % to 49.44 %. Regarding Yolov4, our model 
raises the average recall from 88.07 % to 99.30 %, while increasing the average precision from 69.49 
% to 76.12 % at an IoU of 0.5. 

The dashed line in Figure 3 represents the baseline model, while the solid line represents our 
model. With a recall index of less than 0.2, our method improves the precision for Yolov4 in Figure 
3(a) by 7%. From recall index 0.25, the improvement in precision is 3% and increases to a high of 9% 
at recall index 0.65, before remaining at 7% for both IoU values of 0.5 and 0.7 at recall index 0.8. 
However, for IoU 0.9, the gain in precision is 9% until the recall index hits 0.1, while the improvement 
of 7% is maintained. Precision fluctuates between 4% and 8% improvement from recall index 0.1 to 
0.8, reaches a minimum of 1% improvement at recall index 0.85, and then plateaus at 4% 
improvement until recall index 1.0. In contrast, Figure 3(b) demonstrates that our model improves 
the precision of yolov4-tiny-3l by 6% and 4% from the recall index 0.0 to 0.25, whereas it did not 
improve from the recall index 0.3 to 0.6. Furthermore, our model continues to improve from the 
recall index above 0.6 to 1.0 with a maximum improvement of 6% at the recall index of 0.75 and a 
minimum improvement in precision of 2% for both IoU values of 0.5 and in contrast to the IoU 0.9, 
which exhibits a maximum improvement of 8% in precision between recall indices of 0.4 and 0.65, 
our model exhibits no improvement over the baseline. Then, our model increases from a recall index 
of 0.65 to 1.0 with a consistent 3% increase from a recall value of 0.75 to 1.0. 

As shown in Table 3, the precision and recall per class for IoU 0.5 where shape C represents a 
circle, T represents a triangle, FP represents a Flip Triangle, O represents an octagon, and D 
represents a diamond. In Yolov4-tiny-3l (YT3L), our method has 21 class greater precision with two 
ties and 15 class higher recall with 21 ties compared to the baseline (BL), which has 15 class higher 
precision and two classes higher recall.  Yolov4 baseline (BL) is higher in precision by 6 classes 
compared to our method, which is superior in precision by 26 classes with 6 ties and in recall index 
by 10 classes with 28 ties. 
 



Journal of Advanced Research in Computing and Applications 

Volume 28, Issue 1 (2022) 12-24 

21 
 
 

4.2 Discussion 
 

 
 

Fig. 2. Detection result comparison between left the baseline and right our method for four sample images 

 
In Figure 4(a), the baseline model yolov4-tiny-3l predicts that the traffic sign belongs to the class 

id 5 circular group. Our method not only eliminates it but also predicts the proper class 13, as the 
additional shape parameter enables the network to assign a lower score for any circular shape and a 
higher score for any diamond shape, resulting in improved precision and recall. In Figure 4(b), 
although while the baseline of yolov4-tiny-3l recognizes it as class id 39, which corresponds to the 
circle shape, our method successfully eliminates the false detection because the circle-shaped object 
has a low score, our method was unable to predict any triangular shapes that match the object class.  

On the other hand, none of the model yolov4's baseline predictions mismatch the class shape in 
the validation set. Nevertheless, our technique improves overall precision and recall for yolov4 as 
well. In Figure 4(c), the yolov4 baseline failed to recognize the object class id 24, but our technique 
not only discovered the class id 24 but also did it with 95 percent confidence. In Figure 4(d), the 
baseline yolov4 identifies the object as belonging to class id 42 when it should be class id 33. As seen 
in Table 3, class id 33, our model is more precise than the baseline in yolov4, which explains why our 
model was able to predict the correct class id of 33 with a high degree of confidence (92%) in sample 
4. 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Sample 1 

(b) Sample 2 

(c) Sample 3 

(d) Sample 4 
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Table 3 
Evaluation comparison per class Precision (P) and Recall (R) between ours and baseline (BL) IoU@0.5 on GTSBD 

Class ID 2 3 4 5 6 7 8 9 10 11 12 13 14 

Shape C C C C C C C C C C T D FT 

YT3L 

O
u

r 

P 0.85 0.57 0.23 0.66 0.55 1.00 0.56 0.93 0.86 0.88 0.65 0.98 0.96 

R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 

B
L 

P 0.79 0.62 0.44 0.56 0.37 1.00 0.26 0.80 0.87 0.87 0.69 0.95 0.97 

R 0.97 1.00 1.00 0.97 0.88 1.00 1.00 1.00 1.00 1.00 0.92 0.97 1.00 

Yo
lo

v4 

O
u

r 

P 0.94 0.83 0.77 0.91 0.98 1.00 0.88 0.98 0.90 0.90 0.88 1.00 1.00 

R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

B
L 

P 0.93 0.83 0.60 0.88 0.91 1.00 1.00 0.96 0.84 0.89 0.83 1.00 1.00 

R 0.94 1.00 0.89 0.97 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 

Class ID 15 16 17 18 19 23 24 25 26 27 29 30 31 

Shape O C C C T T T T T T T T T 

YT3L 

O
u

r 

P 0.84 0.84 0.03 1.00 0.62 0.16 0.41 0.08 0.36 0.11 0.17 0.06 0.53 

R 0.90 1.00 1.00 1.00 0.82 1.00 1.00 1.00 1.00 0.71 1.00 1.00 1.00 

B
L 

P 0.89 0.74 0.04 1.00 0.54 0.05 0.26 0.18 0.25 0.20 0.05 0.13 0.29 

R 1.00 0.80 1.00 1.00 0.82 0.75 0.71 1.00 0.90 0.71 0.60 1.00 1.00 

Yo
lo

v4 

O
u

r 

P 1.00 0.97 1.00 1.00 0.75 0.41 0.98 0.13 0.92 0.74 0.51 1.00 0.67 

R 1.00 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00 0.86 1.00 1.00 1.00 

B
L 

P 1.00 1.00 1.00 1.00 0.68 0.23 0.82 0.02 0.90 0.70 0.51 0.13 0.65 

R 1.00 1.00 1.00 1.00 0.82 0.75 1.00 0.33 1.00 0.86 1.00 1.00 1.00 

Class ID 32 33 34 35 36 37 38 39 40 41 42 43  
Shape T C C C C C C C C C C C  

YT3L 

O
u

r 

P 0.02 0.35 0.51 0.67 0.54 0.00 0.13 0.90 0.03 0.64 0.01 0.11  
R 1.00 0.80 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00  

B
L 

P 0.00 0.52 0.23 0.67 0.83 0.00 0.17 0.90 0.00 0.44 0.04 0.04  
R 0.00 0.60 1.00 1.00 1.00 0.00 1.00 0.94 0.00 1.00 1.00 0.75  

Yo
lo

v4 

O
u

r 
P 0.08 0.94 0.92 1.00 0.90 0.08 0.02 0.96 0.70 0.54 0.00 0.71  
R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 

 

B
L 

P 0.00 0.79 0.56 0.83 0.94 0.00 0.00 0.96 0.83 0.50 0.20 0.50  
R 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.97 1.00 1.00 1.00 1.00  

 
 
5. Conclusions  
 

This research provides a shape-based parameter to enhance the YOLO head model. The proposed 
shape parameter enhances the detection network by reducing the total number of classes from 43 
to five. In the loss function-based YOLO architecture for traffic sign detection, the shape term is 
introduced as a term. The addition of shape information as a parameter enhances the precision and 
recall performance of the model. On the GTSDB dataset, the proposed model is validated and 
compared to the baseline technique YOLO and tiny YOLO. It provides significant research value and 
reference value for automatic driving and traffic signal detection. 

In the future, we will examine the benefits of grouping various criteria that can improve our 
system to avoid more false detections, particularly for similar traffic signs such as speed limits.  
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