

Journal of Advanced Research in Computing and Applications 9, Issue 1 (2017) 14-20

14

Journal of Advanced Research in

Computing and Applications

Journal homepage: www.akademiabaru.com/arca.html

ISSN: 2462-1927

PoMSA: An efficient and precise position-based multiple

sequence alignment technique

Sara Shehab
1,∗

, Sameh Shohdy
1
, Arabi E Keshk

1

1
Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shebeen El-Kom 32511, Egypt

ARTICLE INFO ABSTRACT

Article history:

Received 5 June 2017

Received in revised form 10 July 2017

Accepted 15 July 2017

Available online 4 December 2017

Analyzing the relation between a set of biological sequences can help to identify and

understand the evolutionary history of these sequences and the functional relations

among them. Multiple Sequence Alignment (MSA) is the main obstacle to proper

design and develop homology and evolutionary modeling applications since these

kinds of applications require an effective MSA technique with high accuracy. This

work proposes a novel Position-based Multiple Sequence Alignment (PoMSA)

technique -- which depends on generating a position matrix for a given set of

biological sequences. This position matrix can be used to reconstruct the given set of

sequences in more aligned format. On the contrary of existing techniques, PoMSA

uses position matrix instead of distance matrix to correctly adding gaps in sequences

which improve the efficiency of the alignment operation. We have evaluated the

proposed technique with different datasets benchmarks such as BAliBASE, OXBench,

and SMART. The experiments show that PoMSA technique satisfies higher alignment

score compared to existing state-of-art algorithms: Clustal-Omega, MAFTT, and

MUSCLE.

Keywords:

Multiple Sequence Alignment,

computational biology, bioinformatics,

Heuristic algorithm Copyright © 2017 PENERBIT AKADEMIA BARU - All rights reserved

1. Introduction

The recent huge growth of Bioinformatics usage in different applications requires the

development of novel and efficient algorithms that can meet today and future needs in this area.

Multiple Sequence Alignment (MSA) is an essential tool for a wide range of these applications

where more than two homologous nucleic acid or amino acid sequences need to be aligned to

maximize the overall similarity between those sequences.

Practically, the alignment process involves adding one or more gap(s) in different places for

each sequence till getting the highest possible matching between the whole sequences set. In

recent years, a large amount of research has been devoted to addressing the aforementioned

challenge through various techniques, methods, and algorithms: for example, progressive

∗

 Corresponding author.

E-mail address: sara.shehab@ci.menofia.edu.eg (Sara Shehab)

Penerbit

Akademia Baru

Open

Access

Journal of Advanced Research in Computing and Applications

Volume 9, Issue 1 (2017) 14-20

15

Penerbit

Akademia Baru

algorithms [1- 3], Iterative methods [4- 5], dynamic programming techniques [6], Genetic

algorithms [7- 8], Consensus methods [9- 10]; see [11] for a review.

In this paper, we propose a Position-based Multiple Sequence Alignment (PoMSA) heuristic

algorithm for precise align a set of DNA sequences. The proposed algorithm depends on building a

position matrix which helps to effectively add gaps into the given sequences. We have also

enhanced PoMSA algorithm by proposing a partitioning scheme that improves the overall

performance of the alignment operation.

Further, this work shows a set of extensive experiments to evaluate the proposed algorithm

effectiveness. The experiments include a comparison with. The state-of-Art algorithms such as

Clustal-Omega, MAFFT, and MUSCLE. The experiments show that PoMSA algorithm provides higher

matching score compared to these algorithms. Moreover, the experiments show the impact of

applying different optimizations to our algorithm (i.e., Different thresholds and partitioning).

2. Related Works

In literature, several algorithms have been presented as solutions for MSA problem. These

algorithms have been divided by the methodology each algorithm uses for solving such a problem.

For instance, Carillo and Lipman have proposed a Carillo- Lipman MSA algorithm which is based on

Dynamic Programming (DP) [1]. Generally, DP algorithms aim at dividing the whole problem into

sub-problems and separately solve each sub-problem with the aid of pre-solved sub-problems. In

Carillo-Lipman algorithm, the MSA problem is divided into several pair-wise alignment sub-

problems where the main goal is to find the global alignment solution to the whole problem space.

Most the state-of-art MSA algorithms are based on a heuristic search method called progressive

alignment. The main goal of these algorithms is to use a clustering method to build a guide tree by

adding target sequences to this tree in a sequential way that construct MSA for the given unaligned

sequences [15]. For instance, Clustal-Omega depends on guided tree and Hidden Markov Model

(HMM) profile-profile technique to align a set of more than two sequences. This Clustal-Omega tool

has mainly been proposed to align protein sequences. Further, Fast Fourier Transform (MAFFT) is

another tool with the same concept as Clustal-Omega. However, it has been proposed for DNA

sequences [16]. Both algorithms take less time to produce the aligned set of sequences but it is less

accurate compared to several other tools such as T-Coffee [2]. T-Coffee is slower than both Clustal-

Omega and MAFFT but it is more accurate.

3. Design

3.1 Position-based Multiple Sequence Alignment (PoMSA)

In this section, we provide an explanation of the proposed PoMSA algorithm in details. Given S

is the set of sequences, S is inserted into a matrix M where the number of rows is fixed and equals

to the number of sequences S. Initially, the number of columns equals to the length of largest

sequence length L. If a certain sequence length li is less than L, n gaps are added to the end of this

sequence where n = L-li (i.e., adjustment step).

PoMSA scans the position matrix column by column. Assuming a pre-determined threshold ɛ, If

the number of a certain sequence base (i.e., adenine (A) , cytosine (C) , guanine (G), thymine (T))

per column ci equals or larger than ɛ, this means that we need to set this base as the dominant base

for this column. The sequences that have another base in this column should move the unmatched

based in a way that increases the overall matching in this column. For unmatched cases, if the

previous column cj-1 contains a base that equals to current column cj dominant base, a single gap

Journal of Advanced Research in Computing and Applications

Volume 9, Issue 1 (2017) 14-20

16

Penerbit

Akademia Baru

should be inserted into column cj-1 and next bases should be shifted one step forward for this

sequence. To keep sequences adjusted a single gap should be added to the end of unchanged

sequences. If the next column cj+1 have a dominant base, a single gap is added at the end of such a

sequence and a single gap should also be added at column ci for all other sequences.

Figure 1 shows a detailed alignment example using our proposed PoMSA algorithm. In the given

examples, PoMSA algorithm requires four steps to get the aligned sequences. Figure (2-a) shows

the original set of sequences where each base is represented by a certain character and color. The

bases included in the current alignment step are represented by the gray color. In figure (2-a), we

start with col2 where we have a dominant base (A). Because the fourth sequence has (G) base in

col2, PoMSA algorithm adds a single gap to shift (A) from col1 to col2 as shown by figure (2-b). In

figure (2-b), col5 has a dominant base (G). However, the second sequence has (A) at the same

column and (G) at col6. Thus, a single gap is added to all sequences – except the second one – so

that all of the sequences will have (G) at col6 as shown by figure (2-c). In Figure (2-c), PoMSA

algorithm stops at col7 with a new dominant base (G). The first sequence has (A) at col7 and (G) at

col6. So, a single gap is added at col6 in the first sequence as shown by figure (2-d). Finally, PoMSA

algorithm also finds a dominant (A) at col8. The third sequence has (G) base at this column and (A)

base at col9. Thus, a single gap needs to be added to all other sequences at col8 so that all

sequences will have the base (A) at col9.

Fig. 1. PoMSA algorithm example

Algorithm 1 shows a pseudo code of our proposed PoMSA algorithm. S represents a set of

sequences (line 1). In lines 2 and 3, a position matrix Mij is generated and adjusted so that row

length is equal to the largest sequence length. Starting from column col = 0, the dominant base in

each column col is retrieved using getDominant function (line 6). For each sequence row, if the base

at col does not equal dominant, two more conditions should be checked. First, if the previous base

j-1 equals dominant, a new gap is added to position col-1 and the next bases should be shifted one

place to the right for sequence row (line 9). Moreover, to keep all sequences justified, a single gap

is added to the end of all other sequences (line 10). Second, if the base at col+1 matches dominant,

a single gap is added to the end of current sequence row. For justification, a single gap is added at

position col for all other sequences.

3.2 PoMSA Algorithm Partitioning Scheme

We also propose a partitioning scheme that increases the total alignment score of the given set

of sequences if combined with PoMSA algorithm. Simply, we partition the sequences into P

Journal of Advanced Research in Computing and Applications

Volume 9, Issue 1 (2017) 14-20

17

Penerbit

Akademia Baru

partitions. The splitting points are the j locations where all the sequences have the same base. After

this, each partition is separately processed by the PoMSA algorithm.

Algorithm 2 shows a pseudo code for partitioning operation. The algorithm has the set of

sequences S as input. If all sequences have the same base at position col (line 5), the algorithm

splits the sequences at this point and call the main PoMSA algorithm (i.e., Algorithm 1) starting

from the last split point to this point. In this case, for P partitions, algorithm 2 calls PoMSA

algorithm P times. Finally, all the results retrieved from algorithm 1 should be merged to get the

complete set of aligned sequences alighnedSeqs (line 8).

4. Experimental Results

In this section, we evaluate the performance of the proposed PoMSA algorithm by providing

three sets of experiments with three different goals. First, we evaluate the impact of using

partitioning with the PoMSA algorithm. Second, PoMSA algorithm is evaluated using different

matching threshold ɛ. Third, PoMSA algorithm is compared against three different common MSA

algorithms: Clustal-Omega [11], MAFTT [1], and MUSCLE [4]. To provide a fair comparison, the

experiments have been applied to three different datasets: BAliBASE [13], SMART [5], and

OXBench [14]. Moreover, all the experiments use Sum-of-Pairs (SP) score to measure the alignment

efficiency for different algorithms [1].

4.1 Impact of Using Partitioning with PoMSA

In this experiment, we compare two different versions of our proposed PoMSA algorithm:

PoMSA w partitioning and PoMSA w/o partitioning. Here, we aim at studying the impact of the

proposed partitioning scheme on PoMSA algorithm. The experiment has been conducted using

different sequences files from each given dataset. Figure 2 shows the performance of both PoMSA

versions according to the overall alignment score (SP). The x-axis represents the sequences files and

the y-axis represents the final alignment score. As shown, applying partitioning to PoMSA algorithm

improves the overall alignment score with different sequences datasets. Precisely, using BAliBASE,

OXBench, and SMART datasets, the average improvement is about 4.31x, 0.65x, and 2.39x,

respectively.

Journal of Advanced Research in Computing and Applications

Volume 9, Issue 1 (2017) 14-20

18

Penerbit

Akademia Baru

Fig. 2. Impact of using partitioning with PoMSA algorithm

4.2 Impact of Different Thresholds ɛ

Gaps insertion decisions depend on the number of matched bases through the whole set of

sequences. When the matching percentage exceeds a pre-determined threshold ɛ, one or more

gap(s) could be added to the target sequences at different positions. In this experiment, we

evaluate the using of three different matching threshold ɛ - i.e., 0.75, 0.85 and 0.95. As we aim to

provide an optimum version of our proposed PoMSA algorithm, we have performed this

experiment using PoMSA with partitioning version.

Figure 3 shows the impact of three different thresholds ɛ to PoMSA algorithm on BAliBASE,

OXBench, and SMART datasets. As shown, 0.75 thresholds satisfy the highest alignment score

compared to 0.85 and 0.95 thresholds. Using BAliBASE dataset, 0.75 thresholds satisfies average

improvement of 0.58x, and 0.07x compared to 0.85, and 0.95, respectively. Using OXBench dataset,

the average improvement is 0.37x with ɛ=0.85, and 0.01x with ɛ=0.95. Finally, using SMART dataset,

the average improvement is 0.71x with ɛ=0.85, and 0.06x with ɛ=0.95.

Fig. 3. Three different thresholds ɛ – 0.75, 0.85 and 0.95 – impact over PoMSA algorithm

4.3 PoMSA Evaluation Compared to the State-of-Art Algorithms

Even partitioning and tuning the threshold value of PoMSA algorithm shows a tangible

improvement, optimum version of PoMSA algorithm should be compared with the existing state-of-

art algorithms. Mainly, we have used three different MSA algorithms (i.e., Clustal-Omega, MAFFT,

Journal of Advanced Research in Computing and Applications

Volume 9, Issue 1 (2017) 14-20

19

Penerbit

Akademia Baru

and MUSCLE). Figure 4 shows the performance over target datasets. As shown, Clustal-Omega,

MAFFT and MUSCLE algorithms have disparate performance over different sets of sequences.

However, our proposed PoMSA algorithm has better performance overall given sets.

Fig. 4. Comparing PoMSA with Clustal-Omega, MAFFT, and MUSCLE algorithms

5. Conclusion

In this paper, we propose a novel Multiple Sequence Alignment (MSA) algorithm, i.e., Position-

based Multiple Sequence Alignment (PoMSA). This algorithm depends on building a position matrix

that can be efficiently used to better align a set of sequences. We support our algorithm by

providing a partitioning scheme so that each partition can separately be processed by the algorithm

and satisfies higher matching score. Moreover, we have compared the PoMSA algorithm with a set

of existing algorithms such as Clustal-Omega, MAFFT, and MUSCLE and showed that PoMSA is able

to satisfy higher matching score compared to these algorithms.

References
[1] Katoh, Kazutaka, and Daron M. Standley. "MAFFT multiple sequence alignment software version 7: improvements

in performance and usability." Molecular biology and evolution30, no. 4 (2013): 772-780.

[2] Notredame, Cédric, Desmond G. Higgins, and Jaap Heringa. "T-Coffee: A novel method for fast and accurate

multiple sequence alignment." Journal of molecular biology 302, no. 1 (2000): 205-217.

[3] Pei, Jimin, and Nick V. Grishin. "PROMALS3D: multiple protein sequence alignment enhanced with evolutionary

and three-dimensional structural information." Multiple Sequence Alignment Methods (2014): 263-271.

[4] Edgar, Robert C. "MUSCLE: multiple sequence alignment with high accuracy and high throughput." Nucleic acids

research32, no. 5 (2004): 1792-1797.

[5] Morgenstern, Burkhard. "Multiple sequence alignment with DIALIGN." Multiple Sequence Alignment

Methods (2014): 191-202.

[6] Pruesse, Elmar, Jörg Peplies, and Frank Oliver Glöckner. "SINA: accurate high-throughput multiple sequence

alignment of ribosomal RNA genes." Bioinformatics 28, no. 14 (2012): 1823-1829.

[7] Kaya, Mehmet, Abdullah Sarhan, and Reda Alhajj. "Multiple sequence alignment with affine gap by using multi-

objective genetic algorithm." Computer methods and programs in biomedicine 114, no. 1 (2014): 38-49.

[8] Lee, Zne-Jung, Shun-Feng Su, Chen-Chia Chuang, and Kuan-Hung Liu. "Genetic algorithm with ant colony

optimization (GA-ACO) for multiple sequence alignment." Applied Soft Computing 8, no. 1 (2008): 55-78.

[9] Collingridge, Peter W., and Steven Kelly. "MergeAlign: improving multiple sequence alignment performance by

dynamic reconstruction of consensus multiple sequence alignments." BMC bioinformatics 13, no. 1 (2012): 117.

[10] Wallace, Iain M., Orla O'sullivan, Desmond G. Higgins, and Cedric Notredame. "M-Coffee: combining multiple

sequence alignment methods with T-Coffee." Nucleic acids research 34, no. 6 (2006): 1692-1699.

[11] Wang, Xiao-Dan, Jin-Xing Liu, Yong Xu, and Jian Zhang. "A survey of multiple sequence alignment techniques."

In International Conference on Intelligent Computing, pp. 529-538. Springer, Cham, 2015.

[12] Sievers, Fabian, Andreas Wilm, David Dineen, Toby J. Gibson, Kevin Karplus, Weizhong Li, Rodrigo Lopez et al.

"Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega." Molecular

systems biology 7, no. 1 (2011): 539.

Journal of Advanced Research in Computing and Applications

Volume 9, Issue 1 (2017) 14-20

20

Penerbit

Akademia Baru

[13] Thompson, Julie D., Frédéric Plewniak, and Olivier Poch. "BAliBASE: a benchmark alignment database for the

evaluation of multiple alignment programs." Bioinformatics (Oxford, England) 15, no. 1 (1999): 87-88..

[14] Raghava, G. P. S., Stephen MJ Searle, Patrick C. Audley, Jonathan D. Barber, and Geoffrey J. Barton. "OXBench: a

benchmark for evaluation of protein multiple sequence alignment accuracy." BMC bioinformatics 4, no. 1 (2003):

47.

[15] Thompson, Julie D., Desmond G. Higgins, and Toby J. Gibson. "CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight

matrix choice." Nucleic acids research 22, no. 22 (1994): 4673-4680.

[16] Katoh, Kazutaka, and Daron M. Standley. "MAFFT: iterative refinement and additional methods." Multiple

Sequence Alignment Methods (2014): 131-146.

