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ABSTRACT 

Polarization Tensor (PT) has been widely used in some of the applications of electric and electromagnetic such as electrical imaging, 
metal detection and electrosensing fish. Furthermore, in these applications, polarization tensors can capture significant information 
such as material, shape and orientation about the related objects (medical images in electrical imaging or metallic target in metal 
detection). Some physical information about the unknown objects can then be characterized from the given first order polarization 
tensor that representing the object. Therefore, it is beneficial to determine an ellipsoid based on the given first order polarization 
tensor due to the possible similarities between the ellipsoid and the unknown object. The main objective of this study is to present 
a method in order to determine the semi axes of the spheroid, which is an ellipsoid with two identical axes. The method is an 
extension of the previous method which is only applicable to two types of spheroid. Using the rotation of the first order polarization 
tensor, we will show that this extended method can be used to determine all semi axes for any types of spheroid, depending on the 
given first order PT. After that, some numerical examples are provided specifically to compare between the first order PT for the 
spheroid with the given first order PT for verifying the results obtained. It is expected that the computed first order PT for the 
spheroid will be almost similar to the given first order PT. 
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1. Introduction 
 

Polarization Tensor (PT) is widely used in in engineering and science. In real world problems, this 
concept appears in many areas such as in electrical imaging [1], metal detection [2-5] and also to 
study electrosensing fish [6-10]. In addition, PT is also practised by engineers for the purpose of 
detecting and clearing land mines from contaminated area [11]. Generally, Polarization Tensor (PT) 
is used to describe the disturbance in electric and electromagnetic fields due to the presence of 
conduction objects. The disturbance caused by the conducting objects can be expressed by an 
asymptotic formula, where, the dominant term of the formula can be represented in terms of PT 
called as generalized polarization tensor (GPT), as stated by Ammari and Kang [1]. Since the GPT can 
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be obtained based on the information about the conducting objects, the GPT itself can then be used 
to characterize the objects. In electrical imaging, this knowledge is adapted to improve image 
reconstruction while in metal detection, the GPT is computed and used to describe some metallic 
detected objects.  

Moreover, in some applications, it is also useful to fit the GPT of an object to an ellipsoid so that 
both the object and the ellipsoid have the same GPT. In [12], for some known objects, an ellipsoid 
that has the same first order PT (the simplest form of GPT) has been determined in order to develop 
an experiment for electrosensing fish in discriminating two different objects that have the same first 
order PT. Table 1 taken from [12], shows a few objects with their first order PT in matrix form together 
with the semi axes of the ellipsoids that have the same first order PT. 

 
Table 1 
The values of the semi axes a, b and c for an ellipsoid, computed when the first order PT for each object is 

given at conductivity 710k  , obtained from [12] 
Object Dimension (cm) Semi axes a, b and c (cm) of the 

ellipsoid  

( 
𝒙

𝒂
 )

𝟐

+ ( 
𝒚

𝒃 
)

𝟐

+ ( 
𝒛

𝒄
 )

𝟐

= 𝟏 

The first order PT 

Cone diameter = 3 
height = 3 
 

a = b = 1.28, c = 1.40 
10−4 [

0.28 0 0
0 0.28 0
0 0 0.31

] 

Cylinder diameter = 3 
height = 3 
 

a = b = 1.69, c = 1.99 
10−4 [

0.67 0 0
0 0.67 0
0 0 0.82

] 

Hemisphere diameter = 3 
height = 3 
 

a = b = 1.50, c = 0.82 
10−4 [

0.31 0 0
0 0.31 0
0 0 0.15

] 

Pyramid length =3 
width = 3 
height =3 

a = b = 1.56, c = 1.24 
10−4 [

0.42 0 0
0 0.42 0
0 0 0.32

] 

 
In the above table from [12], given the first order PT, the semi axes are computed based on the 

method proposed in [13]. On the other hand, in their study, Lanneau et al., [14] have used the result 
in [13] to approximate the dimension of the sphere that has the same first order PT with a cube used 
in their experiment. After that, a few simulations have been performed by [14] to investigate how 
underwater robot performs electrical imaging in detecting objects. 

In this research, an extended method for fitting the first order PT by a spheroid will be developed. 
In general, this research is interested in studying the first order PT when the electric fields is disturbed 
due to the presence of a conducting spheroid.  For this study, the PT is referred as the PT for spheroid 
which is an ellipsoid with two semi axes of equal size. Specifically, the study includes the first order 
PT for prolate and oblate spheroids. Prolate spheroid has a unique axis that is longer than the other 
equal axes whereas the oblate spheroid has a unique axis that is shorter than the other identical axes. 
 
2. Mathematical Formulation 
 

According to Ammari and Kang [1], method of asymptotic expansion can be used to represent 
the disturbance on an electric field due to the presence of conductive object, 𝐵. The dominant term 
of the expansion is the terminology called as generalized polarization tensor (GPT). The simplest form 
of GPT is called as the first order PT and directly can be determined based on only the geometry and 
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the conductivity of 𝐵. In this paper, we focus on the first order PT when 𝐵 is spheroid. The explicit 
formula of the first order PT for spheroid considered here actually comes from the first order PT for 
ellipsoid. The simpler explicit formula of the first order PT when B is an ellipsoid is also provided in 
[1]. Let 𝐵 be an ellipsoid with semi principal axes 𝑎, 𝑏 and 𝑐 represented by the general formula 

 (
𝑥2

𝑎2)2 + (
𝑦2

𝑏2)2 + (
𝑧2

𝑐2)2 = 1  in the Cartesian coordinates system where 𝑎, 𝑏, 𝑐 > 0. In [15], the first 

order PT for 𝐵 with conductivity 𝑘, can be written as  
 

𝑀(𝑘, 𝐵) =   [ 
𝑀1 0 0
0 𝑀2 0
0 0 𝑀3

]                                                                                                              (1) 

 

where 𝑀𝑖 = (𝑘 − 1)|𝐵| 
1

(1−𝑑𝑖)+𝑘𝑑𝑖
 for 𝑖 = 1,2,3 and |𝐵| is the volume of 𝐵 , 𝑑𝑖 are the depolarization 

factors for ellipsoid defined in [16, 17] as 
 

𝑑1(𝑎, 𝑏, 𝑐) =
𝑎𝑏𝑐

2
∫

1

(𝑎2+𝑦)3 2⁄ √(𝑏2+𝑦)(𝑐2+𝑦)

∞

0
𝑑𝑦,                                                                                      (2) 

𝑑2(𝑎, 𝑏, 𝑐) =
𝑎𝑏𝑐

2
∫

1

(𝑏2+𝑦)3 2⁄ √(𝑎2+𝑦)(𝑐2+𝑦)

∞

0
𝑑𝑦,                                                                                      (3) 

𝑑3(𝑎, 𝑏, 𝑐) =
𝑎𝑏𝑐

2
∫

1

(𝑐2+𝑦)3 2⁄ √(𝑎2+𝑦)(𝑏2+𝑦)

∞

0
𝑑𝑦,                                                                                      (4) 

The following propositions which can be found in [16] are the properties of depolarization factors for 
ellipsoid. 
 

Proposition 1 Depolarization factors (𝑑1, 𝑑2, 𝑑3) for ellipsoid  (
𝑥2

𝑎2)2 + (
𝑦2

𝑏2)2 + (
𝑧2

𝑐2)2 = 1 satisfy 𝑑1 +

𝑑2 + 𝑑3 = 1. 
 

The integrals in equation (2), (3) and (4) can be further simplified for spheroids, as given in the 
next proposition. 

 
Proposition 2 Let  𝑎, 𝑏 and 𝑐 be the semi principal axes of an ellipsoid and 𝑑1 is one of the 
depolarization factors for the ellipsoid, as defined by (2). 

i. If 𝑎 > 𝑏 = 𝑐 then 𝑑1 =
1−𝜓2

𝜓2 (
1

2𝜓
ln (

1+𝜓

1−𝜓
) − 1) , where 𝜓 = √1 − (

𝑏

𝑎
)

2

 

ii. If 𝑏 < 𝑎 = 𝑐 then 𝑑1 =
1

𝜑2 (1 −  
√1−𝜑2

𝜑
sin−1 𝜑) , where 𝜑 = √1 − (

𝑎

𝑏
)

2

 

 
The first order PT can be classified as either a positive or negative definite matrix depending on 

the object conductivity, 𝑘 and this proven by [1]. Specifically, if B is an ellipsoid, given the first order 
PT, the conductivity 𝑘 can then be determined and this is proven by [18]. The combination of these 
two theoretical results is stated in the next Proposition 3.  

 
Proposition 3  Let 𝑀 be the first order polarization tensor for an ellipsoid. 𝑘 >1 if and only if 𝑀 is a 
positive definite. Meanwhile, 𝑀 is negative definite matrix if and only if 0 < 𝑘 <1. 
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As spheroid is an ellipsoid with two equal semi axes, equation (1) can then be further simplified. 
Proposition 4 which are adapted from [19] describes the first order PT for a prolate spheroid whereas 
the results in Proposition 5 obtained also from [19] summarizes the first order PT for an oblate 
spheroid.  

 

Proposition 4 Let 𝑀(𝑘, 𝐵) be the first order PT for spheroid 𝐵 represented by  (
𝑥2

𝑎2)2 + (
𝑦2

𝑏2)2 +

(
𝑧2

𝑐2)2 = 1 at any conductivity  𝑘 , where 𝑘 > 0 and 𝑘 ≠ 1 while 𝑎, 𝑏 and 𝑐 are the semi principal axes 

of  𝐵. 
i. 𝑎 > 𝑏 = 𝑐 if and only if 𝑀1 > 𝑀2 = 𝑀3 

ii. 𝑏 > 𝑎 = 𝑐 if and only if 𝑀2 > 𝑀1 = 𝑀3 
iii. 𝑐 > 𝑎 = 𝑏 if and only if 𝑀3 > 𝑀1 = 𝑀2 

Proposition 5 Let 𝑀(𝑘, 𝐵) be the first order PT for spheroid 𝐵 represented by  (
𝑥2

𝑎2)2 + (
𝑦2

𝑏2)2 +

(
𝑧2

𝑐2)2 = 1 at any conductivity  𝑘 , where 𝑘 > 0 and 𝑘 ≠ 1 while 𝑎, 𝑏 and 𝑐 are the semi principal axes 

of 𝐵. 
i. 𝑎 < 𝑏 = 𝑐 if and only if 𝑀1 < 𝑀2 = 𝑀3 

ii. 𝑏 < 𝑎 = 𝑐 if and only if 𝑀2 < 𝑀1 = 𝑀3 
iii. 𝑐 < 𝑎 = 𝑏 if and only if 𝑀3 < 𝑀1 = 𝑀2 

For this research, we will focus on prolate spheroid with semi axes  𝑎 > 𝑏 = 𝑐 , 𝑏 > 𝑎 = 𝑐 and 
𝑐 > 𝑎 = 𝑏 as well as oblate spheroid with semi axes < 𝑏 = 𝑐 , 𝑏 < 𝑎 = 𝑐 and 𝑐 < 𝑎 = 𝑏 . Based on 
Proposition 4 and 5, 𝑀(𝑘, 𝐵) in (1) for spheroid B with semi axes 𝑎 > 𝑏 = 𝑐 and 𝑏 < 𝑎 = 𝑐 can be 
reduced to  

 

𝑀(𝑘, 𝐵) =   [ 

𝑀1 0 0
0 𝑀2 0
0 0 𝑀2

].                                                                                                                           (5) 

 
As 𝑑2 = 𝑑3 (see [20]), by using Proposition 1,  
 

𝑑2 =
1−𝑑1

2
                                                                                                                                                            (6) 

 
and we will obtain  
 

𝑀1 =
(𝑘−1)|𝐵|

(1−𝑑1)+𝑘𝑑1
,                                                                                                                                                (7) 

𝑀2 =
2(𝑘−1)|𝐵|

1+𝑑1+𝑘(1−𝑑1)
.                                                                                                                                           (8) 

  
Therefore, 𝑀(𝑘, 𝐵) for spheroid 𝐵 with semi axes 𝑎 > 𝑏 = 𝑐 and 𝑎 < 𝑏 = 𝑐 later can be solved 
analytically using (5) along with (7), (8) and appropriate  𝑑1, given in Proposition 2. 

Reversely, if given the first order PT in the form of (5), a spheroid with semi axes 𝑎 > 𝑏 = 𝑐 and 
𝑎 < 𝑏 = 𝑐 respectively, depending on either 1 2M M  or 1 2M M , can be determined. The method to 

achieve this can be found in [19], which simplifies the method in [13] for ellipsoid. The algorithm 
developed in [19] which describes the method on fitting the first order PT to a spheroid with semi 
axes 𝑎 > 𝑏 = 𝑐 and 𝑎 < 𝑏 = 𝑐 is based on the flow chart in Figure 1.  
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3. Rotation of the First Order PT for Spheroid 
  

From the flow chart in the previous section, for spheroid  (
𝑥2

𝑎2
)2 + (

𝑦2

𝑏2
)2 + (

𝑧2

𝑐2
)2 = 1, only prolate 

spheroid with semi axes 𝑎 > 𝑏 = 𝑐 and oblate spheroid with semi axes 𝑎 < 𝑏 = 𝑐  can be determined 
from a given first order PT in the form of (5). If the first order PT for the spheroid is in the form 

   

1

2

1

0 0

( , ) 0 0

0 0

M

M k B M

M

 
 


 
  

                                                                                                                            (9) 

or 

1

1

3

0 0

( , ) 0 0

0 0

M

M k B M

M

 
 


 
  

 ,                                                                                                                          (10) 

 
a slight modification can be done to the method described in Figure 1 to determine a spheroid with 
semi axes 𝑏 > 𝑎 = 𝑐 or 𝑐 > 𝑎 = 𝑏 for prolate as well as oblate spheroid with semi axes 𝑏 < 𝑎 = 𝑐 
or 𝑐 < 𝑎 = 𝑏. In this case, the result in the next proposition, obtained from [1], will be used.   

Proposition 6  Let B and 𝐵′ be two domains such that 𝐵 = 𝑅𝐵′ where 𝑅 is a unitary transformation 
and 𝑅𝑇 is the transpose of 𝑅. Let 𝑀(𝑘, 𝐵) and 𝑀(𝑘, 𝐵′)  be the first order PT associated with 𝐵 and 
𝐵′ at any 𝑘 where 0 < 𝑘 ≠ 1 < +∞. Then 𝑅𝑇𝑀(𝑘, 𝐵)𝑅 = 𝑀(𝑘, 𝐵′). 
 

By using the rotation in three dimensions as the unitary matrix transformation, we can say that 
𝑀(𝑘, 𝐵′) is the result after 𝑀(𝑘, 𝐵) is transformed in which 𝑀(𝑘, 𝐵) is the first order PT for the 
spheroid B before it is being rotated and 𝑀(𝑘, 𝐵′) is the first order PT for the spheroid B after it is 
being rotated to 𝐵′. The used of 𝑅 in Proposition 6 can be defined as the following matrices 

 

𝑅𝑦(𝜃𝑜) = [ 
cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

]                                                                                                                  (11) 

 

 𝑅𝑧(𝜃𝑜) = [ 
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
]                                                                                                                  (12) 

 
where, they are respectively the usual rotation matrix for 𝜃 around the 𝑦-axis and 𝑧-axis in counter 
clockwise direction. 

Suppose that the first order PT for spheroid at a fixed conductivity k in the form of (9) is given. 
From Proposition 4 and Proposition 5, we know that the semi axes for the prolate spheroid when  
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Fig. 1. A flow chart from [19] explaining how to determine the semi axes a, b and c                                               

of a spheroid, where, either 𝑎 > 𝑏 = 𝑐 and 𝑎 < 𝑏 = 𝑐 from a given first order PT  

2 1M M  are 𝑏 > 𝑎 = 𝑐 while when 2 1M M , the semi axes for the oblate spheroid are 𝑏 < 𝑎 = 𝑐. 

Geometrically, the spheroid with semi axes 𝑏 > 𝑎 = 𝑐 can be obtained by rotating 90° 
counterclockwise along the z-axis the spheroid with semi axes 𝑎 > 𝑏 = 𝑐. On the other hand, the 
spheroid with semi axes 𝑏 < 𝑎 = 𝑐 can be obtained by rotating 90° counterclockwise along the z-axis 
the spheroid with semi axes 𝑎 < 𝑏 = 𝑐. Thus, according to Proposition 6, the first order PT for the 
spheroid with semi axes 𝑏 > 𝑎 = 𝑐 can be obtained using the first order PT for the spheroid with 
semi axes 𝑎 > 𝑏 = 𝑐 while the first order PT for the spheroid with semi axes 𝑏 < 𝑎 = 𝑐 can be 
obtained using the first order PT for the spheroid with semi axes 𝑎 < 𝑏 = 𝑐 by the formula  

 

(90 ) ( , ) (90 ) ( , )
T

z zR M k B R M k B                                                                                     (13)   
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where, ( , )M k B  and ( , )M k B  are respectively the first order PT for the spheroid with semi axes 𝑎 >

𝑏 = 𝑐 and 𝑏 > 𝑎 = 𝑐, or ( , )M k B  and ( , )M k B  are respectively the first order PT for the spheroid 

with semi axes 𝑎 < 𝑏 = 𝑐  and 𝑏 < 𝑎 = 𝑐. 
The following are steps  proposed in order to find the values of 𝑏 > 𝑎 = 𝑐 or 𝑏 < 𝑎 = 𝑐  from the 

given first order PT in the form of (9), denoted by M. 
1. Change the given first order PT into the form (5). This can be done using the matrix 

multiplication (90 ) (90 )
T

z zR M R   , obtained after rearranging (13), since 

1

(90 ) (90 )
T

z zR R


       . In this step, the values of 1M  and 2M  in (5) will be replaced 

respectively with the values 2M  and 1M  from (9).  

2. Compute the values for the semi axes a and b using the method as in Figure 1 which will result 
𝑎 > 𝑏 = 𝑐 or 𝑎 < 𝑏 = 𝑐. 

3. Interchange the values of a and b so that 𝑏 > 𝑎 = 𝑐 or 𝑏 < 𝑎 = 𝑐 depending on the values of 

1M  and 2M  for the first order PT in the form of (9). 

On the other hand, if the first order PT for spheroid at a fixed conductivity k in the form of (10) is 
given, based on Proposition 4 and Proposition 5, the semi axes for the prolate spheroid when 

3 1M M  are c > a = b while when 3 1M M , the semi axes for the oblate spheroid are 𝑐 < 𝑎 = 𝑏. 

Geometrically, the spheroid with semi axes 𝑐 > 𝑎 = 𝑏 can be obtained by rotating 90° 
counterclockwise along the y-axis the spheroid with semi axes 𝑎 > 𝑏 = 𝑐 and the spheroid with semi 
axes 𝑐 < 𝑎 = 𝑏 can be obtained by rotating 90° counterclockwise along the y-axis the spheroid with 
semi axes 𝑎 < 𝑏 = 𝑐. Thus, according to Proposition 6, the first order PT for the spheroid with semi 
axes 𝑎 > 𝑏 = 𝑐 and 𝑎 < 𝑏 = 𝑐 each can be respectively used to determine the first order PT for the 
spheroid with semi axes 𝑐 > 𝑎 = 𝑏 or 𝑐 < 𝑎 = 𝑏 from the formula  
 

(90 ) ( , ) (90 ) ( , )
T

y yR M k B R M k B                                                                                     (14) 

 
and this time, ( , )M k B  and ( , )M k B  are respectively the first order PT for the spheroid with semi 

axes 𝑎 > 𝑏 = 𝑐 and 𝑐 > 𝑎 = 𝑏, or ( , )M k B  and ( , )M k B  are respectively the first order PT for the 

spheroid with semi axes 𝑎 < 𝑏 = 𝑐  and 𝑐 < 𝑎 = 𝑏. 
Similarly, the steps to find the values of 𝑐 > 𝑎 = 𝑏 or 𝑐 < 𝑎 = 𝑏  from the given first order PT in 

the form of (10), denoted by M, are proposed as follows: 
1. Change the given first order PT into the form (5). This can be done using the matrix 

multiplication (90 ) (90 )
T

y yR M R   , obtained after rearranging (14), since 

1

(90 ) (90 )
T

y yR R


       . In this step, the values of 1M  and 2M  in (5) will be replaced 

respectively with the values 3M  and 1M  from (10).  

2. Compute the values for the semi axes a and b using the method as in Figure 1 which will result 
𝑎 > 𝑏 = 𝑐 or 𝑎 < 𝑏 = 𝑐. 

3. Interchange the values of a and c so that 𝑐 > 𝑎 = 𝑏 or 𝑐 < 𝑎 = 𝑏 depending on the values of 

1M  and 3M  for the first order PT in the form of (10). 
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4. Numerical Examples and Discussion 
 

In this section, we will give a few examples on finding the values of the semi axes of a spheroid 
based on a given first order PT. However, we will only consider the first order PT in the form of (1), 
that is positive definite, with either  𝑀3 > 𝑀1 = 𝑀2 or  𝑀3 < 𝑀1 = 𝑀2. Note that the semi axes of 
the spheroid cannot be directly determined based on the method presented in Figure 1. In this case, 
the extended method to find the semi axes has been presented in the previous section. Here, we use 
the first order PT for a few known objects given in Table 1 as examples and determine a spheroid that 
has the same first order PT with our proposed method for comparison with the spheroid obtained by 
[12]. 

Table 2 shows the values for 1M , 2M  and 3M  for the given first order PT as well as the values of 

all semi axes computed all at conductivity 7

0 10k  , based on the method presented in the previous 

section for semi axes 𝑐 > 𝑎 = 𝑏 or 𝑐 < 𝑎 = 𝑏. Moreover, the error, e in each computation is also 
included to further support our results. Using the values of a, b and c as presented in the table, the 

first order PT for the spheroid those semi axes are computed back at 710k   based on the original 

formula (1)-(4). This first order PT is denoted by M . After letting the given first order PT in the form 

of (1) equal to M̂ , we compute the matrix 
 

11

22

33

ˆ 0 0

ˆ ˆ0 0

ˆ0 0

m

M M m

m

 
 

 
 
  

                                                                                                                             (15) 

 

and define the error, e to be the matrix norm 2 2 3

11 22 33
ˆ ˆ ˆe m m m   .  

 
Table 2  

The values of the semi axes a, b and c computed at 7

0 10k   when the first order PT in the form of (1) is 

given with the listed values for 1M , 2M  and 3M    

1M  2M  3M  a b c e 

0.28 ×10-4 0.28 ×10-4 0.31 ×10-4 1.2841 1.2840 1.3970 3.6002 ×10-8 

0.67 ×10-4 0.67 ×10-4 0.82 ×10-4 1.6870 1.6870 1.9930 8.0546 ×10-8 

0.31 ×10-4 0.31 ×10-4 0.15 ×10-4 1.5040 1.5040 0.8050 4.0359 ×10-8 

0.42 ×10-4 0.42 ×10-4 0.32 ×10-4 1.5610 1.5610 1.2410 4.0991 ×10-8 

 
As expected, it can be seen in the table that the errors, e are very small and equal to 0 at 6 decimal 

places, meaning that the given first order PT is almost similar to the first order PT for spheroid with 
the semi axes a, b and c, given in the table. Moreover, the values for the semi axes obtained are 
similar to the values for the semi axes in Table 1 at 2 decimal places except for c in the third row of 

Table 2 but the value for this c is still near to the value of c in Table 1 when 4

1 2 0.31 10M M     

and 4

3 0.15 10M   . Thus, our proposed method in this study produce outstanding results in 

obtaining the semi axes of the spheroid from a given first order PT when compared with the previous 
literature.     
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5. Conclusion 

In this study, for a spheroid 
2 2 2

1
x y z

a b c

     
       

     
, an extended method in finding the values of the 

semi axes for a prolate spheroid with 𝑏 > 𝑎 = 𝑐 and 𝑐 > 𝑎 = 𝑏 as well as for an oblate spheroid with 
𝑏 < 𝑎 = 𝑐 and 𝑐 < 𝑎 = 𝑏, from a given first order PT, has been discussed. The method extends the 
previous method developed specifically to find the values of the semi axes for a spheroid but only for 
 𝑎 > 𝑏 = 𝑐 and 𝑎 < 𝑏 = 𝑐. By applying the rotation according to Proposition 6, the first order PT for 
a prolate spheroid with  𝑏 > 𝑎 = 𝑐 and 𝑐 > 𝑎 = 𝑏 can be related to the first order PT for a prolate 
spheroid with semi axes 𝑎 > 𝑏 = 𝑐 whereas, the first order PT for an oblate spheroid with 𝑏 < 𝑎 = 𝑐 
and 𝑐 < 𝑎 = 𝑏 can be related to the first order PT for an oblate spheroid 𝑎 < 𝑏 = 𝑐. Furthermore, 
using the new proposed methods, numerical examples based on the previous literature are also 
presented. The findings suggest that the results obtained by the proposed methods have a very 
strong agreement with the literatures, so the method developed in this research could also be 
considered by the related researchers in the future.  
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