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ABSTRACT 

Effects of variable thermal conductivity, porosity and Grashof number on natural convection of viscoelastic fluid flow and heat 
transfer are studied and discussed. The nonlinear radiation and dissipations are taken into consideration. The fluid flows through 
non-Darcy porous medium which lies between two heated vertical plates that are kept at constant, but different, temperatures. 
High order accurate finite difference schemes are introduced to solve the governing equations. The coupled nonlinear differential 
equations are linearized and iterations are used to approximate that linearized terms. The finite difference method transforms the 
coupled linearized differential (momentum and energy) equations to a linear system of algebraic equations. An error analysis is 
introduced by refinement of mesh size and comparisons with available previous results. Effects of fluid and heat parameters on the 
velocity field, temperature, skin friction factor and Nusselt number are tabulated and plotted. The present results and comparisons 
show that the numerical solution is of excellent agreement with previous analytical and numerical solution.   
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1. Introduction 
 

The exact and analytical solutions of complicated non-linear coupled differential equations are 
difficult or impossible to be obtained. Hence, the numerical solutions with high accuracy are very 
important tools to solve these problems. The non-linearity in momentum equations are raised 
because of viscoelasticity and non-Darcian effects, while variable conductivity, radiation and 
dissipation are sources of non-linearity in energy equation. The finite difference method (FDM) is 
widely used to solve the linear and non-linear differential equations because of simplicity of this 
method. The natural convection (with variable thermal conductivity) of viscoelastic fluids in 
Forchheimer medium has many engineering applications such as fiber insulation, heat exchangers, 
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nuclear reactors, solar devices, in polymer processing industries, petroleum reservoirs and food 
industries. The natural convection of non-Newtonian fluids has been studied by many authors [1-11]. 
Rajagopal and Na [2] introduced a numerical solution for natural convection flow of Rivlin-Ericksen 
fluid and heat transfer between parallel plates. They studied and computed the skin friction and 
Nusselt number. Zibabakhsh and Domairy [3] used the homotopy analysis method for solving the 
natural convection flow of a non-Newtonian fluid between two vertical flat plates. Kargar, and 
Akbarzade [6] used the homotopy perturbation method (HPM) for the study of natural convection 
flow of a non-Newtonian fluid between two vertical flat plates. Rashidi et al., [7] used the differential 
transformation method (DTM) to solve the governing equations of natural convection flow of a third 
grade non-Newtonian fluids. Murar [9] studied the natural convection flow in a vertical channel in 
the presence of non-linear radiation and viscous dissipation. He used the finite difference method 
(FDM) to solve the governing coupled equations. Siddiqa et al., [10] studied the natural convection 
flow of a two-phase dusty non-Newtonian power law fluid along a vertical surface. The continuity, 
momentum and energy equations are solved numerically with the aid of implicit finite difference 
method (FDM). They studied and computed the skin friction and Nusselt number. The natural 
convection flow in non-Darcy porous media past a vertical surface has been studied by Khani et al., 
[4]. They presented an analytic solution of governing equations of third grade viscoelastic fluid with 
Darcy-Forchheimer model. Jyoti [11] used the homotopy analysis method (HAM) to study the third 
grade fluid with natural heat convection between two vertical plates.  

 The nonlinear radiation effect on Newtonian and non-Newtonian fluids has been studied [12-
14]. Mushtaq et al., [12] introduced a numerical of non-linear radiation heat transfer for the flow of 
an electrically conducting second grade fluid. Shooting method with fourth and fifth Runge-Kutta 
integration has been used to solve the governing momentum and energy equations.  Ahmed et al., 
[13] introduced a finite element investigation of the flow of a Newtonian fluid in dilating and 
squeezing porous channel under the influence of non-linear thermal radiation.  Ewis [17] introduced 
a fourth order accurate finite difference method to solve the governing equations of non-linear 
radiation and dissipation effects on natural convection flow of viscoelastic fluids between vertical 
plates filled with Forchiemer-Darcy medium. The coupled nonlinear differential equations are 
linearized and iterations are used to approximate that linearized terms. The finite difference method 
transforms the coupled linearized differential (momentum and energy) equations to a linear system 
of algebraic equations.  Effects of parameters of fluid and heat on the velocity field, temperature, 
skin friction factor and Nusselt number have been illustrated and discussed in Figures and Tables. 
Ewis [18] introduced a second order accurate finite difference method to solve to solve the governing 
equations of natural convection of non-Newtonian (Rivlin-Ericksen) fluid flow and heat transfer under 
the influences of non-Darcy resistance force, constant pressure gradient, dissipation and radiation. 
The novelty of Ewis [10] is to solve this problem between parallel plates channel instead of one plate. 

The aim of present work is to study effects of variable thermal conductivity and Grashof number 
on non-Darcian natural convection flow of viscoelastic fluids between vertical plates. Fourth order 
accurate finite difference schemes are used to solve the coupled non-linear differential (momentum 
and energy) equations. A Linearization technique is applied to transform the non-linear terms in 
momentum and energy equations to linearized ones. The power of the present method of solution is 
studied by an error analysis which is made via comparisons with available works.  Iterations are used 
up required accuracy. The Accuracy, convergence and stability of present results are satisfied by 
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agreement of present results with available previous works.  Skin friction and Nusselt number are 
computed and compared with the previous works.   

2. Basic Equations 
 
Consider a natural convection with thermally variable conductivity and non-Newtonian fluid 

flows in a Forchheimer medium between two vertically parallel plates as shown in Fig. 1.  The two 
stationary plates have different temperatures T1 (for left plate) and T2 (for right plate) with T1 > T2.  
The fluid particles, frequently, rise near left plate but they fall near right plate due to their difference 
in temperatures [2]. The flow is steady and laminar, where viscous dissipation and radiation effects 
are taken into consideration. 

  

Fig. 1. Channel Geometry and boundary conditions 

 
Thus, the momentum and energy equations are written, respectively, as [2, 4, 14]. 
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The boundary conditions are shown in Fig. 1 and they are written as: 
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To introduce a general solution for any case of dimensions and scales, the following quantities are 
chosen [2, 4, 6]. 
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Under the above assumptions (Eqns. 4 and 5) and quantities, the dimensionless forms of governing 
equations (1 and 2) with boundary conditions (6 and 7) are rewritten as 
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where,             1 1- x  .                                       

3. The Numerical Solution 
 

A linearization technique is applied on the system of coupled non-linear ordinary differential 
equations (8 and 9) as 
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where, bar notation refers to the iterated (linearized) terms which transform the system (8 and 9) to 
a linearized one. These linearized equations (11 and 12) with boundary conditions (10) are solved for 
the flow velocity and temperature using the fourth order finite difference method with an error 
analysis. The finite domain of solution (-1 < x < 1) is divided into m-subintervals such that the mesh 
size is m/2 , with counter i=1, 2, 3, …, m+1. The linearized system of coupled non-linear ordinary 
differential equations (11 and 12) is transformed to system algebraic equations using the fourth order 
difference schemes. The following fourth order schemes are obtained by Taylor's expansions of the 
variable )(xf about point. 1)1(  ixi
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There are two important fluid flow and heat transfer parameters because of their very 
importance in the engineering applications, since they can be used to improve the shape and 
efficiency of many equipment in aerodynamics. These quantities are the skin friction factor and 
Nusselt number factor which are computed after solution the governing equations. The skin friction 
factor at left plate is defined as [15] 
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Nusselt number is defined as the ratio of the convective conduction to the pure molecular thermal 
conductance [16]. Thus the Nusselt number at left plate may be written as  
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The dimensionless form of these factors are written as 
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Fourth order accurate schemes are applied on equations (21 and 22) to minimize round off errors in 
computations. These schemes can be deduced by Taylor's expansion of independent variables (v and 

) about x=-1. Thus, the dimensionless skin friction factor and Nusselt number of 4th order accurate 
are rewritten as  
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4. Error Analysis 
  

An error analysis is introduced by refinement of mesh size and comparisons with available 
previous results. The iterated terms in governing coupled equations need iterations to achieve 
convergence of the present work. Thus, a good initial guess is required to reach, fast and accurate 
results. The previous works are used as an initial guess for linearized terms. For number of 
subintervals m, we find that, the fourth order truncation error of the solution is O(2/m)4. Thus, the 
FDM is a good method to verify the convergence and stability of the analytical and experimental 
solutions. It is observed that, (5 to 80) iterations are required to achieve (10-4 - 10-12) round off error 
such that number of subintervals (20 ≤ m ≤ 2000).  

 
Table 1 
Convergence of present results with relatively small parameters: 

M=Fs=Rd==1, Tr= S=1.25, Pr=Gr=0.1, Ec=0.2, b=1.1. 

 
Table 2  
Convergence of present results with relatively large parameters: 

M=Fs==Gr=10, Pr=S=5, Ec=1, Tr=b=1.75, Rd=1000. 
 v(x)  (x) 

    m 
x 

20 

(4=10-4) 

200 

(4=10-8) 

2000 

(4=10-12) 

20 

(4=10-4) 

200 

(4=10-8) 

2000 

(4=10-12) 

-1  0  0  0  0.5  0.5  0.5 
-0.8 0.0808476124 0.0808453410 0.0808455455 0.5240452081 0.5240417472 0.5240419960 
-0.6 0.1514407807 0.1514351189 0.1514356137 0.5385944968 0.5385881399 0.5385886337 
-0.4 0.2111394810 0 .2111285421 0.2111294954 0.5465961626 0.5465851797 0.5465859265 
-0.2 0.2591880715 0 .2591675687 0.2591693837 0.5503984552 0.5503763405 0.5503773646 
 0 0.2935965573 0.2935511106 0.2935551578 0.5517455166 0.5516964404 0.5516977299 
0.2 0.3010509413 0.3010619700 0.3010772459 0.5528663412 0.5528680038 0.5528690678 
0.4 0.2615663918 0.2619808921 0.2620073378 0.5600630284 0.5602722820 0.5602761229 
0.6 0.1943157070 0.1949261314 0.1949601189 0.5776426305 0.5807035039 0.5807760365 
0.8 0.1057583701 0.1063847465 0.1064216616 0.5571721745 0.5856216484 0.5865494628 
1  0  0  0 -0.5 -0.5 -0.5 

 

 v(x)  (x) 

    m 
x 

20 

(4=10-4) 

200 

(4=10-8) 

2000 

(4=10-12) 

20 

(4=10-4) 

200 

(4=10-8) 

2000 

(4=10-12) 

-1  0  0  0  .5  .5  .5 
-0.8 .0027671782 .0027671755 .0027671755  . 4304777493  . 4304780413  . 4304780413 
-0.6 .0044796908 .0044796870 .0044796870  . 3571390943  . 3571396927  . 3571396927 
-0.4 .0052501400 .0052501345 .0052501345  . 2794144189  . 2794153641  . 2794153640 
-0.2 .0052003891 .0052003806 .0052003806  . 1965798522  . 1965811976  . 1965811975 
 0 .0044727062 .0044726929 .0044726929  . 1076918680  . 1076936882  . 1076936881 
0.2 .0032462550 .0032462348 .0032462348 -. 0114813410  . 0114837470  . 0114837469 
0.4 .0017616078 .0017615784 .0017615784 -. 0938287143 -. 0938255384 -. 0938255386 
0.6 .0003574696 .0003574297 .0003574297 -. 2108620114 -. 2108577077 -. 2108577079 
0.8 -.000473674           -.000473724 -.000473724 -. 3437889669 -. 3437826904 -. 3437826906 

1  0  0  0 -.5 -.5 -.5 
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Tables (3-5) illustrate good agreements of present results with earlier literature works 
[6,8,11,17]. It is observed that the absolute difference between present results and differential 
transformation method, DTM [17] and homotopy analysis method, HAM [11] is less than 3.01*10-5.  
Table 3 
 Comparison of velocity v with earlier literature works at  

=0.5, M=Fs=0, Rd=∞, Gr=Br=1, m=2000 
x Present results 

(4=10-12) 

HPM [6] A.E. RVIM [8] A.E. HAM [11] A.E. 

-1   0   0 0   0 0   0 0 
-0.8   0.02391934924   0.0239 1.93*10-5   0.02356863 3.51*10-4   0.02392391 4.56*10-6 
-0.6   0.03217269108   0.0322 2.73*10-5   0.03153540 6.37*10-4   0.03217724 4.55*10-6 
-0.4   0.02840687260   0.0284 6.87*10-6   0.02756369 8.43*10-4   0.02841114 4.27*10-6 
-0.2   0.01661764658   0.0166 1.76*10-5   0.01565187 8.43*10-4   0.01662161 3.96*10-6 

0   0.00080762874   0.0008 7.63*10-6   0.00019888 6.09*10-4   0.00081131 3.68*10-6 
0.2 -0.01508246038 -0.0151 1.75*10-5 -0.01604876 9.66*10-4 -0.01507910 3.36*10-6 
0.4 -0.02710371350 -0.0271 3.71*10-6 -0.02794788 8.44*10-4 -0.0271006 3.11*10-6 
0.6 -0.03123014822 -0.0312 3.01*10-5 -0.03186690 6.37*10-4 -0.0312274 2.75*10-6 
0.8 -0.02342906061 -0.0234 2.91*10-5 -0.02378185 3.53*10-4 -0.0234270 2.06*10-6 
1  0   0   0 0  0 0 

 
Table 4  

Comparison of temperature   with earlier literature works at  

=0.5, M=Fs=0, Rd=∞, Gr=Br=1m=2000 
x Present results 

(4=10-12) 

HPM [6] A.E. RVIM [8] A.E. HAM [11] A.E. 

-1  0.5   0.5 0   0.49794410 2.06*10-3   0.5 0 
-0.8  0.4007358824   0.4008 6.41*10-5   0.39866980 2.07*10-3   0.4007343 1.58*10-6 
-0.6  0.3011773855   0.3012 2.26*10-5   0.29911352 2.06*10-3   0.30117607 1.32*10-6 
-0.4  0.2015909075   0.2016 9.09*10-6   0.19953058 2.06*10-3   0.20158997 9.37*10-7 
-0.2  0.1019275017   0.1019 2.75*10-5   0.09986820 2.06*10-3   0.1019269 6.02*10-7 

0  0.0020605134   0.0021 3.95*10-6   0.00126049 8.00*10-4   0.00206022 2.93*10-7 
0.2 -0.0980700493 -0.0981 3.00*10-5 -0.1001317 2.06*10-3 -0.09807 4.93*10-8 
0.4 -0.1984085099 -0.1984 8.51*10-6 -0.2004692 2.06*10-3 -0.1984082 3.10*10-7 
0.6 -0.2988285183 -0.2988 2.85*10-5 -0.3008857 2.06*10-3 -0.2988279 6.18*10-7 
0.8 -0.3992747317 -0.3993 2.53*10-5 -0.4013296 2.05*10-3 -0.399274 7.32*10-7 
1 -0.5 -0.5 0 -0.5 0 -0.5 0 

 
Table 5  
Comparison of friction factor with earlier literature works at 

M=Fs=1, Rd=100, Gr=Br=1, m=2000 (4=10-12) 

Tr 
=1 =5 

Present results     Ewis [17]              A.E.                  Present results     Ewis [17]              A.E.                 

1.5 0.1523372982 0.152336641 6.57*10-7 0.1359908687 0.135990374 4.95*10-7 
3.0 0.1667054340 0.166702886 2.55*10-6 0.1467168018 0.146714922 1.88*10-6 

   6.0 0.2170205782 0.217015267 5.31*10-6 0.1827292493 0.182725509 3.74*10-6 
 

Convergence of present solution depending on the influences of v and θ by number of sub-
intervals (m=20, 200 and 2000) is illustrated in Tables 1 and 2, which give orders of truncation error 

(4=10-4, 10-8, 10-12), respectively. Relatively small and large fluid and heat parameters are used to 

LfC
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illustrate the power of present method to solve the non-linear differential coupled equations. It is 
observed that the present solution is stable, convergent and accurate.  

         

5. Results and Discussion 
 

Results are shown in Tables (6-9) and Figures (2-6) to illustrate effects of flow and heat 

parameters (S, Tr, Gr, b, M, Fs, , Rd and Br) on dimensionless quantities (v, θ, 
LfC and 

LuN ). Certain 

values of these parameters are chosen to show variation and convergence of present results as they 
are plotted and tabulated and compared with analytical and numerical available results. The variation 
of v and θ profiles with suction parameter (S=0, 1 and 2) and Grashof number (Gr=10, 20 and 30) are 
shown in Figs. 2 and 3. It is observed that increasing suction parameter (S) and Grashof number Gr 
increase v and θ.  It also is observed that velocity v is relatively affected these parameters more than 
θ. The effect of thermal conductivity (b=0.1, 1 and 2) on the variations of v and θ profiles are shown 
in Fig. 4. It is observed that increasing b increases v and θ because of conductivity. It also is observed 
that velocity v is relatively affected by the thermal conductivity b more than θ. 
 

Table 6  
Effects of flow and heat parameters on the friction factor  

M=Fs=Pr=1, S=0.5, Tr=1.5, b=1, Rd=100, m=2000 (4=10-12) 

Gr 
=1 =2 

Br =0.2                0.4                       1                   0.2                      0.4                    1 

0.5 .1101249834 .1101445049 .1102031831 .1081653491 .1081839007 .1082396616 
1 .2089720351 .2091051836 .2095075312 .1985790700 .1986960716 .1990495385 
2 .3669229552 .3676844303 .3700295276 .3317063891 .3323203333 .3342087799 

 
Table 7  
Effects of flow and heat parameters on the Nusselt number NuL : 

M=Fs=Pr=1, S=0.5, Tr=1.5, b=1, Rd=100, m=2000 (4=10-12) 

Gr 
=1 =2 

Br =0.2                 0.4                      1                  0.2                      0.4                     1 

0.5 .8846329630 .8832291787 .8790094143 .8846413913 .8832460524 .8790517262 
1 .8805769199 .8750975517 .8585322339 .8806774421 .8752993346 .8590423100 
2 .8655398373 .8447515749 .7805459745 .8664014240 .8464970055 .7850857079 

 
Table 8  
Effects Thermal Conductivity on the friction factor  

M=Fs=Pr=Ec=1, S=0.5, Tr=1.5, Rd=100, m=2000 (4=10-12) 

b 
=1 =2 

Gr =0.5                1                        2                   0.5                1                              2                  

0.5 .1042786451 .1991419454 .3544467828 .1025721879 .1897713886 .3210913877 
1 .1102031831 .2095075312 .3700295276 .1082396616 .1990495385 .3342087799 

1.5 .1150278084 .2178580529 .3824012942 .1128401773 .2064903995 .3445992011 

 
Table 9  
Effects of Thermal Conductivity parameters on the Nusselt number : 

M=Fs=Pr=Ec=1, S=0.5, Tr=1.5, Rd=100, m=2000 (4=10-12) 

LfC

LfC

LuN
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b 
=1 =2 

Gr =0.5                1                        2                   0.5                   1                        2                  

0.5 .9995488875 .9787606295 .8991884938 .9995903530 .9792737598 .9039171022 
1 .8790094143 .8585322339 .7805459745 .8790517262 .8590423100 .7850857079 

1.5 .7904092856 .7703208505 .6941641291 .7904517036 .7708213500 .6985036466 

The effect of radiation parameter Rd=0.1, 1 and 2) on the variations of v and θ profiles are shown 

in Fig. 5. It is observed that increasing Rd increases v and θ because of heat generation due to 

radiation. The effect of non-Darcy Forchheimer parameter (Fs=0, 2 and 5) on the variations of v and 

θ profiles is shown in Fig. 6. It is observed that increasing Fs decreases v and θ because it represents 

a resistance to motion. It also is observed that velocity v is relatively affected by Fs more than θ. 

 

Fig. 2. Variation of v and θ profiles with suction parameter (S) when M=1, Fs=1, =1, Rd =1 and Tr=1.25, Pr=1, 

Ec=0.2, Gr=1, b=0.5. 
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Fig. 3. Variation of v and θ profiles with Grashof number (Gr) when M=0, Fs=0, =1, Rd =1 and Tr=1.25, Pr=1, 

S=1, Ec=0.2, b=0.5. 

 
Fig. 4. Variation of v and θ profiles with conductivity parameter (b) when M=0, Fs=0, =1, Rd =1 and Tr=1.25, 

Pr=1, S=1, Ec=0.2, Gr=1. 
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Fig. 5. Variation of v and θ profiles with radiation parameter (Rd) when M=1, Fs=1, b=1.5, =1,  Tr=1. 5, Pr=5, 

S=3, Ec=5, Gr=3. 

 
Fig. 6. Variation of v and θ profiles with Forchiemer parameter (Fs) when M=1, b=1.5, =2, Rd =1 and Tr=1. 5, 

Pr=5, S=3, Ec=5, Gr=3. 

 

Tables (6-9) show effects of some fluid flow and heat transfer parameters (Br, b, Gr and ) on the 
friction factor (CfL) and Nusselt number (NuL). It is observed that CfL increases with increasing Br, b and 

Gr but, CfL decreases with increasing , It is also observed that NuL decreases with increasing Br, b and 

Gr but, NuL increases with increasing .  
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6. Conclusion 

 

The variability of thermal conductivity is very important because it represents the real case of 
energy equation. The effect of variable thermal conductivity on non-Darcian natural convection flow 
of viscoelastic fluids between vertical plates is studied. The finite difference method with fourth 
truncation error is used to solve the nonlinear momentum and energy equations between heated 
vertical plates. The effects of: nonlinear radiation, dissipation and Forchiemer-Darcy resistance force 
on viscoelastic fluid and heat transfer are taken into consideration. An error analysis is made to 
achieve accuracy, convergence and stability of present results and their agreement with available 
previous works. The effects of fluid and heat parameters on velocity, temperature, skin friction factor 
and Nusselt number are studied and discussed. Some results are listed and shown in tables and 
figures. It is observed that, increasing Brinkman number and temperature ratio increase velocity, skin 
friction factor and temperature because of dissipation. It is also observed that, increasing viscoelastic 
parameter decreases velocity, skin friction factor and temperature because resistance to the flow. 
The Nusselt number decreases with increasing Brinkman number, but, it increase with increasing 
both viscoelastic parameter and temperature ratio. It is observed that skin friction factor increases 
with increasing the thermal conductivity but, skin friction factor. It is also observed that Nusselt 
number decreases with increasing thermal conductivity. The results which are introduced in tables 
are very useful in engineering design and comparisons with future analytical and experimental works.   
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