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Energy consumption of Wireless Sensor Networks (WSN) is an important aspect in 

the design requirement. This is especially true in a situation where WSN is being 

operated in isolated areas and thus relying on batteries due to unavailability of power 

infrastructure. Since energy efficiency is the main concern in the deployment of WSN, 

the sensor node must keep track of the charge that is left in the battery, commonly 

referred as the State of Charge (SoC). To prevent the discontinuation of the operation 

of the sensor node from power cut off, it is important to find an analytic model for 

the battery’s state of charge. In this paper, an optimized structure of Multi-Layer 

Perceptron (MLP) is utilized to obtain a model of the battery state-of-charge in 

wireless sensor nodes. Results show the suitability of the method that produces 

accurate and simple models, capable of being implemented even in low cost and very 

constrained real motes. 
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1. Introduction 

 

A wireless sensor network (WSN) is composed of a number of sensor nodes that communicate 

with each other through a wireless network where the data of each node are integrated. WSN has 

numerous significant applications in the recent years, such as remote environmental monitoring. 

This has allowed the deployment of WSN lately, to have sensors that are smaller, cheaper, and 

reliable. Wireless interfaces are equipped in these WSN thus allowing communication with one 

another to form a network. 

WSN comprise of a set of nodes (motes) capable of sensing, processing, storing, and 

communicating [1]. The critical issue to combat in developing WSN is the limited amount of energy 

that are available in each of the motes. An application may take weeks to drain the battery of the 
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sensor node in other cases consume it in a matter of days depending on what types of sensors and 

communication means the network is using. 

In most cases, energy consumption is an important aspect in the design requirement. This is 

especially true in a situation where WSN is being operated in isolated areas and thus relying on 

batteries due to unavailability of power infrastructure. Regrettably, the energy density of the 

batteries did not follow the same trend in the advancement in WSN, and energy harvesting systems 

can power only a limited sorts of devices, usually with restricted capabilities [2]. Additionally, these 

sensor nodes must comply with a very strict power allowances to fulfil their duties while providing 

a prolonged lifetime. 

Alongside the development of wireless sensor networks, research in battery technology has 

attracted more and more attention worldwide to further improve the lifetime and operability of 

such power source. As one of the key parameters of a battery, the state of charge (SoC) is the most 

crucial factor to initiate the study on battery management system. SoC estimation is especially 

critical as over-discharging batteries could result in an irreversible damage or reduced service time 

[3]. Over The SoC is defined as percentage of remaining available capacity at a given time in an 

operation [4]. 

Estimation of SOC has become extensive area of research with companies in search of improve 

the performance of their portable products’ battery life, a number of approaches are presented in 

the literature to monitor SOC [5,8]. In this study, the neural network method of MLP is going to be 

implemented and they are able to generate predictive results for many of the processes [9] in WSN. 

This is mainly to the nature of neural network that can learn and update their internal structure to 

adapt to a dynamic input. Moreover, neural network is effective in data processing due to its 

parallelism in computation [10]. Neural networks are data-driven in nature and able to build a 

system model without detailed physical knowledge of a system [11]. 

Thus, the main objective of this paper is to review and study a benchmark method [12], for 

obtaining simple battery models that aims to estimate precisely the state of charge level based on 

multilayer perceptron. The rest of the paper is organized as follows: Section 2 describes the data 

collection. In Section 3, an overview of MLP architecture is explained while numerical simulation 

results are provided in Section 4, evaluating the performance of the optimized structure MLP. 

Finally, concluding remarks are presented in Section 5. 

 

2. Data collection 

 

Multilayer perceptron (MLP) neural network is being used in this study since it is going to be 

based on the model that has been previously used for WSN application for the battery’s state of 

charge estimation [12].  

This section discusses the experimental data traces we use for the benchmark. The method 

done prior the modelling stage is the stress test bench. Where the system applies consecutives 

cycles of charge and discharge automatically. The intention is to degrade the batteries that we use 

during the measurement phase presented above, applying a certain number of charge and 

discharge cycles. 

A control system opens and closes the switches, and it monitors the battery voltage. The control 

system begins detecting the battery status: charged or uncharged, then it applies a charge or 

discharge cycle. When the battery voltage is rated lower than 2.7 V, the battery is considered 

uncharged, and when the battery voltage is above 3.7 V. 

Data traces are processed to generate the SoC model by applying a filter in the first stage to 

reduce noise. Derived parameters are then calculated by using the original traces by introducing 
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measurement conditions. To capture the behaviour of the battery several traces of the charging 

and discharging processes are recorded. A single trace consists of voltage and drain current 

measurements of a charging or discharging process. In the discharging case several traces at 

different load levels are recorded. 

 

3. Structured MLP architecture 

 

MLP is a feedforward neural network that composed of three main layers which are the input, 

hidden and output layers. 

 

 
Fig. 1. MLP division 

 

The first layer consists of one node for each of the components of the input data. The nodes in 

the input layer have a transfer function of unity which means their only function is to distribute the 

inputs to the nodes in the following layer.  

The outputs of the input layer are connected to the inputs of the second layer which also where 

the hidden layer(s) starts. The outputs of the hidden layer are, in turn, connected to the inputs of 

the third layer, and so on. The final layer will eventually generate the output values of the MLP 

network. In this arrangement, the layers that sit between the first and last are not visible from 

outside the network, and is henceforth referred to as 'hidden layer'. 

For every connections carrying the outputs of a layer to the inputs of the next layer have a 

weight assigned to them which includes the input layer. The node outputs are multiplied by these 

weights prior reaching the inputs of the following layer. Moreover, in MLP there are learning 

algorithms to set the values of the weights and the same basic structure (with different weight 

values) would enable it to perform many tasks. 

Multilayer Perceptron delivers a powerful base-learner, with advantages such as noise 

tolerance and nonlinear mapping where the method is increasingly used in Data Mining due to its 

good behaviour in terms of predictive knowledge [13]. 

 

3.1. Hidden layers 

 

In, MLP the nature of decision boundaries differs with the network topology. There are several 

conditions to consider: 

• Single layer: have the ability to place a hyperplane in the input space (SLP). 

• Two layers (single hidden layer): have the ability to define a decision boundary surrounding a 

single convex regression of input space. Sufficient to make universal approximator out of MLP. 

• Three layers (dual hidden layers): have the ability to generate random decision boundaries. 

Decision boundary can be estimated closely by a two layer network with sigmoidal activation 

functions when there are insufficient hidden units [14]. Fig. 2 shows a fully connected neural 

network with only one hidden layer [10]. 
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Fig. 2. Fully connected one hidden layer neural network 

 

3.2. Nodes/Neurons 

 

Every nodes are assigned by weights and output signals which are a function of the summation 

of the inputs to the node altered by a simple nonlinear transfer, or activation, function [15]. The 

number of output nodes is usually decided by the amount of output classes, while the number of 

input nodes is determined by the amount of input dimensions.  

For hidden nodes, the number of nodes are depending on which factor would affect the MLP as 

a whole the most, as insufficient nodes would make the network to not model complex decision 

boundaries. In the other hand, a large number of nodes would cause the network to have poor 

generalization. 

MLP are described as being totally connected, with every node connected to every other node in 

the next and previous layer [16].  

 

3.3. Sigmoid function 

 

A sigmoid function produces a curve with an “S” shape which is a form of logistic function. This 

function is a differentiable and real valued. The function is generally used in MLP to introduce non-

linearity in the model. The sigmoid function is can be represented in Fig. 3 where the function 

assigns new values between 0 and 1. 
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Fig. 3. Sigmoid transfer function 

 

There are two main advantages of employing sigmoid function in MLP for predicting SOC, first, a 

squashing function ensures that the values in the network are always within a reasonable range. 

Second, a non-linear transfer function is crucial to allow a feed-forward networks to approximate 

any arbitrary equation, in which, to map any input to a desired output [17] which in this case the 

SOC reading based on the battery’s parameters. The sigmoid activation function can be expressed by 

(1). 

 

 (1) 

 

where,  is the pre-activation function. 

Pre-activation function can be defined as the output of a neuron where each input is multiplied 

by previously established weight, these products are then summed together. 

 

4. Modelling IF SOC IN WSN based on MLP 

 

The output, which also represents the pre-activation function (inputs multiplied by weights) can 

be express by (2). 

 

 (2) 

 

where, , is the neuron input values, , is the assigned weights, , is the threshold value of 

each node which is the bias (assumed=1) multiplied by the bias’s weight. The pre-activation value n 

is sent through the activation function itself, f, which is the sigmoid in this case. Then, the resulting 

output, can be considered as input for the pre-activation function in the following layer which can be 

expressed as, 

 

 (3) 

 

In the case of two layer MLP (single hidden layer) being adapted by the benchmark model, the 

following pre-activation value can be considered as the estimation of the SOC. 
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From the benchmark model [12], a two layer with two neuron network is used in the MLP 

configuration with 500 epochs and using sigmoid as the activation function. The neural network is 

represented in Fig. 5 with the default learning rate and momentum values of 0.3 and 0.2 

respectively. The first benchmark model with only one input can be expressed as, 

 

 (4) 

 

where the input weight ( ) and threshold ( ) coefficient obtained was, =-11.336; =6.056; 

=-2.100; =1.191. 

If we compare the equation (4) and (3) it would fit the expression in equation (4) perfectly as the 

resulting output of the final node, y is represented by the SoC attribute in equation (4).  

The pre-activation equation can be expressed by, 

 

 (5) 

 

Since there is only one hidden layer, the output of the hidden node can be equated by, 

 

 (6) 

 

Finally, the output of the final node located in the output layer can be equated by, 

 

    

 (7) 

 

The same comparison can be made with the second benchmark model which uses 4 nodes, two 

layers (one hidden layer), with four different inputs namely, cycles (Ciclos), temperature (Temp), 

relationship between voltages and currents (R), and slope (Vpend) where the expression at the 

output node is given by, 

 

  

 (8) 

 

Since there are three hidden nodes, 

 

 

 

 
 

The subsequent hidden nodes can be expressed by, 

 

 (9) 
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One of the most well addressed problems that arises in neural network is the problem of 

multiple local minim [18]. This can be tackled by distributing the input data for training, validating 

and testing subsets. The training set is going to be used in computing the values of gradient and 

updating the overall network weights and biases. The validation set is used to avoid overfitting 

where the error value on the validation set is monitored hand in hand during the training process. 

Finally, the test set is used to compare different models where the error value is not used during 

training. 

Optimization wise, in the process of global search, it may stop the convergence to a non-optimal 

solution and determine the optimum number of hidden layers of three ANN. Recently, some studies 

in the optimization architecture problems such as using the radial basis function in neural network 

have been introduced in order to determine the final neural networks parameters [19],[20]. 

Back propagation is a gradient descent search algorithm which is based on the minimization of 

the total mean square error between actual output to the desired output.   

The subsequent hidden nodes can be expressed by, 

 

 (10) 

 

5. Simulation results and discussion 

 

Multilayer perceptron (MLP) neural network is being used in this study since it is going to be 

based on the model that has been previously used for WSN application for the battery’s state of 

charge estimation [12].  

WEKA is an acronym for Waikato Environment for Knowledge Analysis. It is a prevalent suite of 

machine learning software written in Java, developed at the University of Waikato. WEKA is available 

under the GNU General Public License [21].WEKA software is used to simulate and classify the raw 

data with attributes like temperature (Temp), battery cycle (Ciclos), low voltage (Vl), low current (Il), 

slope of low voltage (Vpend) and relation between current and voltage (R). 

The MLP in WEKA is a classifier that uses backpropagation to classify instances. This network can 

be built by hand and/or created by an algorithm. The network can also be monitored and modified 

during training time. The nodes in this network are all sigmoid (except for when the class is numeric 

in which case the the output nodes become unthresholded linear units). 

 

 

Fig. 4. Neural network representation of Equation 4 (Two 

Layers, Two Neurons) 

 

Figure 4 shows the neural network representation of equation (4) while TABLE I presents all the data 

obtained from adding another input to equation (4). 
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Table 1 

Simulation result with inclusion of low-current value (Il) 

Cycles Input Correlation Mean Abs. 

Error 

Root Mean 

Square Error 

Relative Absolute 

Error (%) 

Root Relative 

Squared Error 

(%) 

223 Vl 0.9993 0.9842 1.0192 1.3733 4.0768 

223 Vl, Il 0.9994 1.0865 1.3975 4.3458 4.8408 

220 Vl 0.9994 1.3157 1.4607 5.2628 5.0598 

220 Vl, Il 0.9994 1.3656 1.5039 5.4622 5.2096 

33 Vl 0.9993 0.8299 1.0529 3.3193 3.6471 

33 Vl, Il 0.9994 0.8575 1.0669 3.4298 3.6957 

31 Vl 0.9994 1.3332 1.5489 5.3326 5.3654 

31 Vl, Il 0.9995 1.2948 1.5153 5.1789 5.2491 

26 Vl 0.9993 0.7859 1.072 3.1436 3.7135 

26 Vl, Il 0.9993 0.7602 1.0567 3.0409 3.6606 

 

Table 1 shows the performance of equation (4) with another input current draw, Il, included, the 

first cycle shows different data trace being used for different charge-discharged cycle the battery has 

went through. The correlation tells how much the desired output value to the estimated value is 

associated, where a value near to 1 reflects a very strong linear relation. From Table 1 results, only 

two out of five data sets with different cycles shows improvement if another input which is the low 

current, Il, is included in the network, this are shown by cycles 26 and 31. The result shows the 

performance of equation (4) with another input current draw is included for the training phase. Only 

two out of five data sets with different cycles shows improvement if another input which is the low 

current, Il, is included in the network, this is shown by cycles 26 and 31. This further affirms the black 

box nature of a neural network machine learning and is highly dependent on the training phase 

where a more complicated topology of the network will not always yield better classification result 

as shown in the 2-3 neuron configuration network as shown in Table 2. Table 2 shows the 

performance of the MLP employing data trace from 223 charge-discharge cycle is employed with 

four results from different layer and neuron count is configured in the network. Only a single input is 

used which is the voltage reading, Vl. 

  
Table 2 

Simulation result from single input variable with different layers and neuron count 

Cycles Input Hidden 

Layer(s) 

Neuron 

Configuration 

in each layer 

Correlation Mean 

Abs. Error 

Root 

Mean 

Square 

Error 

Relative 

Absolute 

Error (%) 

Root 

Relative 

Squared 

Error (%) 

223 Vl 1 1 0.9994 0.7649 1.0869 3.0515 3.7578 

223 Vl, 2 1-2 0.9994 0.8585 1.1702 3.4247 4.0461 

223 Vl 2 1-3 0.9996 0.5704 0.934 2.2755 3.2293 

223 Vl  2 2-2 0.9998 0.4502 0.6154 1.7961 2.1276 

223 Vl 2 2-3 0.9996 0.5700   0.8883 2.2739 3.0712 

223 Vl 2 3-3 0.9999 0.2284 0.2837 0.9113 0.981 

 

Figure 5 depicts the classifier output data that is represented by (4) taken directly from Weka 

which shows how the errors, threshold values,  and weights,  are collected. The figure also 

highlights where each of the coefficients used in representing the MLP models is located in the 

classifier output window in WEKA. In addition, the results show the performance of the model by the 
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mean absolute error, root mean squared error, relative absolute error and root relative squared 

error. 

 

 

Fig. 5. Classifier model for Equation 4 (Two Layers, Two Neurons) 

 

From the weight coefficients and threshold values obtained shown in Fig. 5, the WEKA classifier 

is able to give the final weight coefficient in order to produce the best correlation and error reading 

for the given input data set relative to the optimum SoC output data which is linear. 

 

 

Fig. 6. Neural network representation of 

Equation 4 (Two Layers, Two Neurons) 

 

Figure 6 shows the configuration of benchmark model equation (8) is presented in neural 

network architecture. Fig. 7 shows how all the errors, threshold values, th and weights, k are 

gathered. In this case, a single hidden layer MLP structure is used where there are 18 weight 

coefficients obtained for the four input variables to the three hidden nodes and for the output of 

the hidden layer to the output node of the network, which is illustrated in Fig. 6.    

It can be observed that the difference between the given coefficients in (4) model and the 

simulation using data set of cycle 223 is very small as shown in Fig. 5 and Table 1. This shows that 

the expression in the benchmark models is derived from the root equation of neural network with 

multiple layers and nodes. Various weight coefficients are collected from WEKA with respect to all 

of the four nodes. For this simulation the values of coefficient are dissimilar from the benchmark 

due to the larger number of nodes which has a greater probability of obtaining unique sets of 

weights and threshold values using data set of cycle 223 [22].  

 

6. Conclusion 

 

This paper reviews on how two models are constructed and validated using multilayer 

perceptron neural network in classifying attributes being used in this paper. The effects of using 
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additional variable and different network topology were also demonstrated. The simulation done in 

this study is to show that the models from MLP can be obtained from tools like WEKA in rather a 

short amount of time with the configuration described and represented by (7) and (8). 
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