The Effects of Convective and Porous Conditions on Peristaltic Transport of Non-Newtonian Fluid through a Non-Uniform Channel with Wall Properties

Authors

  • Manjunatha Gudekote Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
  • Hanumesh Vaidya Department of Mathematics, VSK University, Ballari, Karnataka, India
  • Divya Baliga Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
  • Rajashekhar Choudhari Department of Mathematics, VSK University, Ballari, Karnataka, India
  • Kerehalli Vinayaka Prasad Department of Mathematics, VSK University, Ballari, Karnataka, India
  • Viharika Viharika Department of Mathematics, VSK University, Ballari, Karnataka, India

Keywords:

Biot number, concentration slip, wall properties, porous parameter, variable viscosity, variable thermal conductivity

Abstract

In the present investigation, the effects of variable liquid properties along with wall properties are incorporated in the peristaltic mechanism of a Rabinowitsch fluid. The two-dimensional non-uniform channel is considered to be porous. The heat transfer characteristics are examined with convective conditions, whereas the mass transfer is considered with slip conditions at the walls. The model is developed with the assumptions of long wavelength and low Reynolds number. Exact solutions are obtained for velocity, streamlines, and concentration. Further, the perturbation technique is employed for obtaining the temperature solution. Moreover, the impact of relevant parameters on velocity, temperature, concentration, and streamlines are analysed for dilatant, Newtonian, and pseudoplastic fluid models. The variable liquid properties are found to enhance the fluid temperature for shear-thinning, shear thickening, and Newtonian fluids.

Published

2021-08-03
فروشگاه اینترنتی