Effects of Heat and Mass Transfer on The Motion of NonNewtonian Nanofluid Over an Infinite Permeable Flat Plate
Keywords:
viscoelastic fluid, nanofluid, boundary layer motion, partial slipAbstract
The motion of viscoelastic nanofluid flow with heat and mass transfer over a permeable flat plate under the action of uniform magnetic field is discussed. The effects of Brownian motion, thermophoresis and viscous and ohmic dissipations are considered. The system of equations describes the motion is converted to ordinary non-linear differential equations by using suitable transformations, and then solved numerically by using fourth order Runge-Kutta method with shooting technique. The obtained solutions are functions of the physical parameters of the problem. The effects of these parameters on the obtained solutions are discussed numerically and illustrated graphical to show that the parameters controlled the solutions.