Thermoacoustic Energy Conversion Devices: Novel Insights
Keywords:
Thermoacoustics, engines, Refrigeration, Performance, Optimisation, Oscillatory heat transferAbstract
Thermoacoustic engines and refrigerators have many advantages. They use environment-friendly working gases, their design is simple, and they can operate quietly. However, they have many design characteristics from geometric parameters and operating conditions. Besides this, they still have low efficiencies and performance. This paper summarises important considerations of the design and presents the state-of-the-art developments in thermoacoustic energy conversion devices. This includes recent studies and designs of the thermoacoustic refrigeration devices towards more efficient thermoacoustic engines and refrigerators. New insights into the design of resonators, the different sources of the power sources, the different stack geometries and working mediums were considered. The challenges that face the development of thermoacoustic devices were also discussed. Far too little attention has been paid to looking at these devices comprehensively. In further research, the use of neural networks and metadata as optimisation methods could be a means of significantly increasing the performance of these devices. There is also abundant room for further progress in enhancing oscillatory heat transfer. Moreover, further recommendations and studies were proposed for a better understanding of the interrelationship between the geometric parameters and operating conditions.