Performance and Emission of B100 Biodiesel with Various Additives in Direct Injection Diesel Engine

Authors

  • Cheah Yi Linn Department of Mechanical Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
  • Mohd Radzi Abu Mansor Department of Mechanical Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
  • Zul Ilham Institute of Biological Sciences, Faculty of Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Keywords:

Biodiesel, B100, additives, heat release rate

Abstract

Alternative fuels for diesel engines have become highly important in the automotive industry due to the depleting fossil fuel sources and increased environmental concerns. Biodiesel fuel has a good combustion characteristic because of their long-chain hydrocarbon structure but the higher density and viscosity of the fuel can contribute to several engine problems such as low atomization, carbon deposit formation and injector clogging. The production of biodiesel with additives can help with the performance and emissions of diesel engines. There are many types of additives on the market but the extent of the additives on engine performance is unknown and lack of research has been done in studying the performance, emissions and fuel consumption together with B100 biodiesel. In this research, there are five types of B100 palm oil methyl ester biodiesel with various additive compositions need to be identified. The density, viscosity and calorific value of biodiesel samples were measured to study the thermo-physical properties as a simulation input. Simulation of the combustion engine is conducted using CONVERGE CFD software; based on single-cylinder, direct injection, YANMAR TF90 diesel engine parameters to study on the combustion characteristics and exhaust emissions. The simulation results were compared with the experiment results. From the simulations, biodiesel with diethyl ester and n-butanol additives give better results compared to other additives because the present of n-butanol PME is believed to reduce CO, CO2 and NOx emissions while diethyl ether can improve the spray characteristics when it blends with B100 biodiesel due to its low density and viscosity.

Published

2021-07-20
فروشگاه اینترنتی