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Abstract 
 

In the present investigation, Lattice Boltzmann Method (LBM) is used to simulate rarefied 
gaseous microflows in three microgeometries. These are micro-couette, micro lid-driven 
cavity and micro-poiseuille flows. The Knudsen number is used to measure the degree of 
rarefaction in the microflows. First, micro-couette flow is computed with the effects of 
varying Knudsen number in the slip and threshold of the transition regime and the results 
compare well with existing results. After having thus established the credibility of the code 
and the method including boundary conditions, LBM is then used to investigate the micro 
lid-driven cavity flow with various aspect ratios. Simulation of microflow not only requires 
an appropriate method, it also requires suitable boundary conditions to provide a well-posed 
problem and unique solution. In this work, LBM and three slip boundary conditions, 
namely, diffuse scattering boundary condition, specular reflection and a combination of 
bounce-back and specular reflection is used to predict the micro lid-driven cavity flow 
fields. Then the LBM simulation is extended to micro-poiseuille flow. The results are 
substantiated through comparison with existing results and it is felt that the present 
methodology is reasonable to be employed in analyzing the flow in micro-systems.         
 
Keywords: Lattice Boltzmann Method; Knudsen Number; micro-couette flow; micro lid-
driven cavity flow; micro-poiseuille flow.   

 
 

1. Introduction 
 

In the last two decades there has been significant progress in the development of Micro-
electro-mechanical systems (MEMS) and Nano-electro-mechanical systems (NEMS) at the 
application and as well as at the simulation levels [1]. The study of gaseous flow in these micro and 
nano-devices has been an interesting and active topic of research in recent days. Micro-devices have 
attracted increasing attention due to their applications in various fields, such as medicine, 
environment control, office equipment, home appliances etc [1, 2]. It is necessary to understand and 
employ the physical laws governing the flow in these small-scale devices to design the devices 
effectively.  
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Traditional numerical simulations relying on continuum approach and the Navier-Stokes 
equations break down at higher values of the Knudsen number (Kn), which equals the ratio of the 
mean free path of the gas molecules λ  to the characteristic length H of the flow system. The 
Knudsen number is used to measure the degree of rarefaction in the microflows. According to 
Knudsen number range, the state of a gaseous flow can be defined in four different regimes. First, 
the gaseous flow for Kn < 0.001 is termed as continuum regime and the Navier-Stokes equations 
with no-slip boundary conditions are only appropriate and valid in this regime. Next, the gaseous 
flow range for Knudsen number 0.001 <  < 0.1Kn  is termed slip regime and 0.1 <  < 10Kn  is 
termed transition regime. In these regimes, the Navier-Stokes equation loses validity and the 
molecules hitting a solid wall experience, what is known as, slip. For > 10Kn  the regime can be 
considered as free molecular flow. In the above regimes, it is known that as the Knudsen number 
increases the non-continuum effects such as slip flow and non-equilibrium (or) rarefaction effects 
emerge. 

The micro-couette flow problem is one of the simplest benchmark problems in rarefied gas 
dynamics. This problem is commonly encountered in several MEMS-based applications, ranging 
from micro-motors, micro-accelerometers, comb mechanisms to the flying slider heads in computer 
hard drives [3]. It is known that micro-couette flow is shear-driven and the pressure does not change 
in the streamwise direction. Micro lid-driven cavity is another common example of a microfluidic 
system. Cavities, steps and cut-outs occur frequently in many engineering designs [4]. The micro 
lid-driven cavity flows are quite simple in geometry but they display almost all micro-fluid 
mechanical phenomena. Study of micro-poiseuille flow is also a popular benchmark problem and it 
is a common configuration in biomedical applications [5]. Particle based methods such as 
Molecular Dynamics (MD) and the Direct Simulation Monte Carlo (DSMC) has made some 
progress in the simulation of microflows. In the past few years, Lattice Boltzmann Method (LBM) 
emerged as an alternative and computationally efficient method to study the rarefied gaseous flows 
[6]. It is also known that the LBM is a simplified solver of the Boltzmann Equation on a discrete 
lattice. Therefore, the choice of using Lattice Boltzmann Method for microflow simulation is a good 
one owing to the fact that it is based on the Boltzmann equation which is valid for the whole range 
of the Knudsen number (Kn). The Lattice Boltzmann method has been studied extensively by many 
researchers for incompressible fluid flows with no-slip boundary conditions only [7].         

Very few numerical studies are available in the literature for rarefied gaseous microflows [8-
17]. First, Nie et al. [8] used the LBM with bounce-back boundary condition to simulate two-
dimensional micro-channel and micro lid-driven cavity flows. They employed the LBM in the no-
slip and slip regime, but it is known that the no-slip boundary conditions are generally unrealistic 
for slip and transition flows and it cannot capture the real microflow characteristics. Raabe [9] has 
written a review paper on LBM for micro and nano-scale fluid dynamics in materials science and 
engineering. Naris and Valougeorgis [10] described a comprehensive study of the lid-driven cavity 
problem over the whole range of Knudsen number regime using the discrete velocity method to 
solve the linearized Boltzmann equation. Mizzi et al. [11] presented the solutions of a micro lid-
driven square cavity using Navier-Stokes-Fourier equations. Niu et al. [12] used diffuse scattering 
boundary condition to simulate isothermal two-dimensional microchannel flows. Darbandi et al. 
[13] simulated micro lid-driven cavity flow with various aspect ratios using finite volume element 
method. The present work is concerned with the application of Lattice Boltzmann Method (LBM) 
to compute gaseous flows in microgeometries. The paper is organized in four sections. In Section 2 
some aspects of the LBM with governing equation and associated boundary conditions are 
discussed. Section 3 includes the results and discussions. Finally in Section 4 concluding remarks 
are made.   
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2. Numerical Method 
2.1. Lattice Boltzmann Method 
 

The lattice Boltzmann method is an alternative and computationally convenient 
method for the simulation of fluid flows which is quite distinctive from molecular dynamics 
method (MD) on the one hand and the methods based on the discretization of partial 
differential equations (finite difference method, finite volume method, finite element 
method, spectral method) on the other. The Lattice Boltzmann method (LBM) which can be 
linked to the Boltzmann equation in kinetic theory is formulated as [14] 

           1( , ) ( , ) = - ( , ) ( , )i i
eqf t t t f t f t f ti i τ

⎛ ⎞
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Here ƒi is the particle distribution function, ci is the particle velocity along the ith direction, 
ƒi

(eq)(x,t) is the equilibrium distribution function at x, t and τ  is the time relaxation 
parameter. In an incompressible fluid flow the relaxation time is related with viscosity based 
on the continuum assumption. It is known that the reference length in microflows is very 
small, and the continuum assumption may not be valid. To simulate microscopic gaseous 
flows Lim et al. [14] relates the relaxation time τ to the Knudsen number Kn . This relation 
is given by  
                                                             =  ( 1)Kn Nyτ −                                                            (2) 
where Ny is the number of lattice nodes in y-direction. In the present work we take Ny = 300.  
The D2Q9 square lattice used here has nine discrete velocities. In this lattice each node has 
eight neighbours connected by eight links. Particles residing on a node move to their nearest 
neighbours along these links in unit time step. The particle velocities are defined as  
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In the nine-speed square lattice, a suitable equilibrium distribution function that has been 
proposed in [14] 
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where the lattice weights are given by 40 1 2 3w  = 4/9,  w  = w  = w  = w  = 1/9  and 

5 76 8w  = w  = w  = w  = 1/36. The macroscopic quantities such as density ρ and momentum 
density ρu are defined as velocity moments of the distribution function ƒi as follows: 
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2.2. Boundary Conditions 
 

Boundary conditions play a crucial role in micro-geometries [15-17]. On the micro-
scale, the standard no-slip boundary condition used in hydrodynamics has to be replaced by 
a slip boundary condition. In the present work, we adopt three slip boundary conditions, 
namely; combination of bounce-back and specular reflection boundary condition, diffuse 
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scattering boundary condition and specular reflection boundary condition on the stationary 
walls. Combination of bounce-back and specular boundary condition using the tangential 
momentum accommodation coefficient (TMAC) is used to simulate the slip boundary 
condition. For gaseous flow in micro-devices the TMAC (σ ) can be expressed as                                   

                                         = 
M Mri
M Mwi

σ
−

−
                                                                (7) 

where M  is the tangential momentum of the molecules and the subscripts ,  i r, w  refer to 
the incident, reflected and wall molecules respectively. In case, = ,0σ  the condition will be 
pure specular that represents pure slip. This pure slip condition is known as specular 
reflection boundary condition (SBC). For = 1σ , it is pure bounce-back that represents no-
slip. Next, the diffuse scattering boundary condition (DSBC) which is derived from the gas-
surface kinetic theory is written as [12,18] 
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where 'i  and i  are directions of the incident and reflected particles, respectively, and NA  is 
a normalization coefficient and can be obtained by satisfying zero normal flux conditions 
on the walls. This normalization coefficient NA  which guarantees no normal flow through 
the wall can be written as 
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For the D2Q9 model the expression for AN  simply reduces to 6 [12]. 
 

3. Results and Discussions 
 

A lattice node resolution study is carried out using three lattice sizes composed of 250×250, 
300×300 and 350×350 lattice arrangements. The numerical results are equivalent for the 300×300 
and 350×350 lattice sizes. Therefore 300×300 lattice size is considered in all simulations in the 
present study.  

      
Figure 1. Geometry of a micro-couette flow.  
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3.1.  Micro-couette flow 
 

First, the developed LBM code is used to compute the micro-couette flow shown in 
Figure 1. In this problem the flow is confined between two parallel plates, and the upper 
plate moves with a constant velocity U  and the lower plate is stationary. The flow field 
between the two plates is generated exclusively by the shear stress exerted on the fluid by 
the moving upper plate, resulting in a velocity profile across the flow u = u(y), as sketched 
in Figure 1. Periodic boundary conditions are applied in the inlet and outlet. Initially the x- 
direction velocity is assumed to be uniform through out the channel except at the upper plate 
where the velocity is U = 0.001 and y-velocity is taken as 0. Density is initially set equal to 
1.0. Combination of bounce-back and specular reflection boundary condition (BSBC) is 
used in the stationary wall (  = 0.7σ ). At moving (upper) wall particle distribution functions 
are updated by the equilibrium distribution function.    
 

        
Figure 2. Micro-couette velocity profile for different Kn. 

 
Figure 2 depicts the velocity profiles of gaseous flow between the plates for  different 

Knudsen numbers (Kn = 0.01, 0.1 and 0.25). The predicted LBM results  agree well with 
existing results of Roy and Chakraborty [3]. It is seen that as the  Knudsen number increases, 
slip velocity at the walls increases, but the velocity  profile remains linear and ‘symmetric’. 
Confirming of the results with existing  results lends credibility to the present code and 
methodology, so that it is  extended to the micro lid-driven cavity and micro-poiseuille flows 
in the next  two subsections.    
 

3.2. Micro lid-driven cavity flow 
 

Here Lattice Boltzmann Method with D2Q9 model is used to simulate the two-
dimensional micro lid-driven cavity flows. As shown in Figure 3, in the micro-cavity the 
upper wall moves with a constant velocity U  from the left to right and the other three walls 
remain stationary. The equilibrium distribution function is assigned to the particle 
distribution function at the surface of the moving wall. First, LBM is used to compute the 
micro-lid-driven cavity flow in a square cavity on a 300×300 lattice arrangement. From our 
study of the micro-couette flow we observe that a TMAC of = 0.7σ  produces results that 
are in good agreement with existing results. That is why on the stationary walls we use a 
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combination of specular and bounce-back boundary condition using a TMAC of = 0.7σ . 
Figure 4 show for various Knudsen numbers, the x-velocity (u) profile along the vertical 
centreline and the y-velocity (v) profile along a horizontal centreline passing through the 
geometric centre of the cavity. These figures represent the effect of Knudsen number on the 
velocity profiles and on the velocity-slip condition at the boundary. 

 

      
Figure 3. Geometry of a micro lid-driven cavity flow. 

 
Figure 5 depicts the velocity profiles in the micro-lid-driven square-cavity flow for 

Kn = 0.05 with different boundary conditions, namely, BSBC ( = 0.7σ ), SBC and DSBC on 
the stationary walls. It is seen that BSBC and SBC velocity profile results are similar and 
DSBC result shows some deviation from these two slip boundary conditions. The reason 
may be that the DSBC is a slip boundary condition derived from gas-surface interaction law 
of the kinetic theory. Figure 6 depicts the streamline patterns for micro lid-driven cavity 
flow at Kn = 0.01 with aspect ratios K = 0.5, 2.0 and 5.0. For aspect ratio K = 0.5 and 1.0 
there is only one primary vortex and for K = 2.0 and 5.0 secondary vortices appear under the 
top one and it is seen that as the aspect ratio of the cavity increases, the number of counter-
rotating vortices appear at the bottom increases. It is also seen that, the flow is almost 
symmetric with respect to the vertical centreline.  
 

 
(a) 

 
(b) 

Figure 4. (a) u-velocity profile along the horizontal centreline and (b) v-velocity profile along 
the vertical centreline for different Knudsen numbers of the micro lid-driven square cavity 
flow. Lattice size: 300×300. 
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(a) 

 
(b) 

Figure 5. (a) u-velocity profile along the vertical centreline (b) v-velocity profile along the 
horizontal centreline for the micro-lid-driven square-cavity flow at Kn = 0.05 with the 
BSBC, SBC and DSBC boundary conditions. Lattice size: 300×300.  

 
 Figure 7 depicts the streamline patterns for micro lid-driven cavity flow at Kn = 0.10 
(high-slip regime) with aspect ratios K = 0.5 and 2.0. Here it is seen that even at K = 2.0 
there is only one vortex. Thus the present study reveals the fact that multiple vortices may 
be absent even at higher cavity-aspect ratios if the Knudsen number is relatively high. 
Another point is that a primary vortex appears in the cavity in all examined aspect ratios 
even at relatively large Knudsen numbers. This is along expected lines as at the lowest 
Knudsen number the ability of the top wall to drive the flow is at its highest and it generates 
the highest clockwise circulation. For all Knudsen numbers the present streamline patterns 
agree well with those reported by Darbandi et al. [13].  

 
(a) K = 0.5 

 
(b) K = 2.0 

 
(c) K = 5.0 

 
Figure 6: Streamline patterns for the micro-lid-driven cavity flow with aspect ratios K = 
0.5, 2.0 and 5.0 at Kn = 0.01.    
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(a) K = 0.5 

 
(b) K = 2.0 

Figure 7: Streamline patterns for the micro-lid-driven cavity flow with aspect ratios K = 
0.5 and 2.0 at Kn = 0.10.    

      
Figure 8. The geometry and micro-poiseuille flow profile. 

 
3.3. Micro-poiseuille flow 

 
Lattice Boltzmann Method is now used to investigate the isothermal micro-poiseuille 

flow. In this case, fully developed pressure driven flow between parallel plates is considered. 
The geometry and the micro-poiseuille flow profile is shown in Figure 8.     

       

      
Figure 9. Velocity profiles of micro-poiseuille flow for various values of the Knudsen 
number.  
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Initially the x-direction velocity is assumed to be uniform through out the channel and 
y-velocity is taken as zero. Density is fixed at a value of 1.0 at inlet. Periodic boundary 
conditions are applied in the inlet and outlet. Combination of bounce-back and specular 
reflection (BSBC) boundary condition is used on the stationary walls. Figure 9 shows the 
velocity profiles of micro-poiseuille flow for different Knudsen numbers for a pressure ratio 
of 2.0 and σ = 0.7. For the sake of comparison, in the same figure we also plot the recently 
computed results of Chen and Tian [17], who used the lattice Boltzmann method with 
Langmuir slip model. The comparison exhibits good agreement. It is seen that, the highest 
value of horizontal velocity is in the middle of the channel and the horizontal velocity slows 
down near the two plates. As the Knudsen number increases, the slippage also increases. The 
effect of TMAC on the velocity profile at Kn = 0.055 is also studied and the results are 
depicted in Figure 10. As TMAC decreases, expectedly slip at the wall increases and the rate 
of increment in slip velocity is more as TMAC approaches zero.                  

                     

      
Figure 10. The effect of different TMAC on velocity profile of micro-poiseuille flow at 
Kn = 0.055. 

 
4. Conclusion 
 

The application of the LBM to compute rarefied gaseous flows in microgeometries is presented 
in this work. For the first geometry, namely, micro-couette flow some numerical and experimental 
results exist, which are reproduced with the LBM. This knowledge is then utilized when applying 
the LBM to compute flows in the second geometry, namely, a two-dimensional micro lid-driven 
cavity flow. Then the effect of Knudsen number with different boundary conditions is studied 
through the computation of flow in the micro lid-driven cavity. Results are presented for Knudsen 
numbers within the slip and the threshold of the transition regime where the onset of non-
equilibrium effects are usually observed. Good agreement is found in predicting the general features 
of the velocity flow field and recirculating flow. Variation of slip with Knudsen number is then 
studied in some details through the computation of flow in the micro-poiseuille flow. To sum up, 
the present study reveals many interesting features of micro-couette, micro lid-driven cavity and 
micro-poiseuille flow and demonstrates the capability of the LBM to capture this features. It can be 
concluded that the present LBM, as an alternative to the particle based methods such as Molecular 
Dynamics and Direct Simulation Monte Corlo, holds very good promise in gaseous microflows.  
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