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There are several techniques available for finding mesh independent solutions in 
Computational Fluid Dynamics (CFD) problems. The most commonly known methods 
are the Grid Resolution method, General Richardson Extrapolation and Grid 
Convergence Index methods. In a problem where the solution of a propeller operating 
at a chord Reynolds number of roughly between 4000 and 17000 (estimated at 75% 
radial distance), only an unstructured meshing could be performed. Existing methods 
presented inadequacies in generating a grid independent solution for such a case. 
Therefore, a new method namely “Fitting method” is introduced to overcome these 
inadequacies. The new method uses a polynomial fit to thrust and torque solutions of 
different mesh refinements. A second order polynomial that fits better with less 
divergence is used and proposed. The maxima value of the polynomial is deemed the 
mesh independent solution. For our APC10x7SF low Reynolds number propeller 
performance estimation, the fitting method was able to successfully provide solutions 
to a range of advance ratios selected for simulation. The simulation is performed for 
14 cases of advance ratios ranging from 0.192 to 0.799. The results when compared 
with experimental results available in literature provide a successful validation of the 
proposed method due to satisfactory correlation. When compared with experimental 
results, less than 10% error was observed for 6 cases of advance ratios, in the case of 
thrust coefficient whereas there is over-prediction or under-prediction of results for 
the remaining advance ratios. In the case of torque coefficient, less than 10% error was 
found for three cases of advance ratios while there is over-prediction for remaining 
advance ratios. The results through implementation of this method will improve with 
increasing number of mesh refinements. The method apart from successfully providing 
a mesh independent solution avoids the difficulty of costs associated with running tests 
using very fine meshes. 

Keywords:  
fitting method; low Reynolds number; 
mesh independent solution; propeller 
performance; validation Copyright © 2019 PENERBIT AKADEMIA BARU - All rights reserved 

 
1. Introduction 

 
The reliability of computational prediction of results is a growing concern in CFD scientific 

community. Some of the major questions thus arise are: Are computational results reliable? How can 
one assess the accuracy or validity of CFD predictions? What confidence level could be assigned to 
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computer predictions? These questions are asked due to the uncertainty associated with the results 
generated by CFD. Hence verification and validation procedures have been developed to address this 
growing problem. Verification involves both code verification and solution verification. Verification 
can be done through analytical, highly accurate hybrid analytical-numerical and manufactured 
solutions of the mathematical models. Validation typically involves determination of the accuracy of 
the mathematical model in representing physical phenomena of interest using experimental data 
that are specially designed and undertaken for this purpose [1]. The principal requirement of the 
verification and validation procedure is the grid independent numerical solutions, typically 
performed through extrapolation procedures. 

There are three commonly known methods available for determining grid independent solutions. 
They are 1) Grid resolution method, 2) General Richardson Extrapolation Method and 3) Grid 
Convergence Index. In Grid Resolution method, the mesh size is determined based on prior 
knowledge of the physics of the problem. The mesh size is increased incrementally until there is no 
further significant performance increase with improvement in mesh size [2]. In other words, the 
optimum grid size above which with further increment in grid size not affecting the quality of results 
drastically is determined [3].  

The second method namely, Generalized Richardson Extrapolation method (GRE) uses an 
expansion series to determine the exact values. It relies on convergence and refinement rate to 
estimate the exact solution from the expansion series of errors. An expansion series that consists of 
the performance estimation variable, grid refinement ratio and order of accuracy will be used. The 
order of accuracy is calculated by the ratio between logarithmic forms of thrust coefficient 
differences and grid refinement ratio for uniform grid refinements [4]. For non-uniform grid 
refinements, the estimation is through solving a transcendental equation [5].Condition to satisfy for 
using this method is monotonic convergence. Another condition that must be met is that solutions 
should be asymptotic.  

The third method is the Grid Convergence Index (GCI) method which was proposed by Roache [5, 
6]. It is based on the Richardson Extrapolation method which also requires 3 meshes to estimate the 
extrapolated values. The method also includes order of accuracy estimation to find extrapolated 
values [7]. The method also quantifies relative error between mesh refinements as well as 
extrapolation relative error. A ratio known as the GCI is also estimated by factoring in a Safety Factor 
[4, 8]. To use this method, it has been found that the desired grid refinement factor should be greater 
than 1.3. Furthermore, the grid refinement should be done systematically and structured [7].  

Currently available grid independence study techniques require a systematic refinement of mesh 
by doubling the number of cells from one grid to the other. However, in many problems, such as the 
current problem, a systematic refinement of the grids could be impossible due to geometric 
complexity. In this paper, a new method to perform grid independency study is proposed. This 
method can be applied to problems where current methods are found to be infeasible. 
 
2. Review of Grid Independency Studies on Propellers 
 

A review of grid independency techniques implemented in past studies has been performed. 
Studies targeting both aeronautical and marine propellers were considered. The working principle of 
propellers adopted in either application is the same. The studies differ only in shape of the geometry 
considered. Therefore, studies on both applications are discussed. 

The study by Yangang et al., [9] has performed a CFD analysis of swirl recovery vanes of Fokker 
29 propeller. In this study, the validation is performed for thrust and torque coefficients. The grid 
independence study was performed using the grid resolution method. Three grids of resolution 1.13 
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(coarse), 1.51 (medium) and 2.02 (fine) million cells were used. The thrust coefficient difference 
showed negligible change in the values between medium and fine and therefore, medium grid was 
chosen. 

The study by de Giorgi [10] focused on numerical prediction of the performance of a contra-
rotating open rotor system for a VTOL airplane. The mesh independence analysis was performed 
using grid resolution method. Three different refinement levels namely, coarse with 1.56 million, 
medium with 2.46 million and fine with 3.92 million cells were adopted. The results showed that 
medium sized mesh achieved grid independence for thrust and torque. 

The study by Kutty et al., [11] was on 3D simulation and validation of APC Slow Flyer Propeller. In 
this study, five different mesh sizes namely standard, coarse, mid, mid-fine and fine were used to 
perform a numerical simulation of a propeller operating at 3008 rpm. The mesh independence study 
was performed using grid resolution method. Five different meshes of varying density namely 
standard (0.38 million), coarse (1 million), mid (2 million), mid-fine (3 million) and fine (4 million) 
were used. It was found that the thrust coefficient (KT), torque coefficient (KQ) and efficiency (η) did 
not approach the asymptotic range. Furthermore, standard mesh produced results of reasonable 
accuracy relatively closer to experimental and therefore was selected as preferred mesh for further 
calculations. 

Yongle et al., [12] has performed a CFD investigation of tip clearance effects on the performance 
of a ducted propeller. The mesh independence study was performed using grid resolution method. 
Three different mesh sizes coarse, medium and fine were employed. The thrust coefficient was found 
to be least differing with improvement in mesh density beyond medium refinement size. The medium 
refinement grid was selected for thrust and torque coefficient estimations on the basis of 
computational efficiency and accuracy consideration.  

Yao [13] has performed a CFD investigation of a marine propeller in oblique flow by solving RANS 
equations. The grid independence study was performed using grid resolution method. Three 
different grid sizes coarse, medium and fine grid, which has roughly 1.5, 2.6 and 5.2 million cells 
respectively, was employed to study the thrust and torque. The result showed that the coarse grid 
experienced a 0.85% error compared to medium of 0.51% error over fine grid for J=0.4.  

In some instances, coarse mesh provided better grid refinement values than finer mesh. 
Liefvendahl [14] performed analysis of propeller wake instability of a submarine propeller using Large 
Eddy Simulation. The validation is performed on performance characteristics and wake velocity field. 
Two mesh refinements, coarse and fine were used to compare with experimental results. The coarse 
mesh agreed better to experimental values than fine mesh for thrust coefficient. However due to 
lower velocity in wake a fine mesh was chosen.  

Stajuda et al., [15] performed a CFD simulation of a propeller. The thrust and power performance 
of the propeller were studied. A mesh independence study was conducted using grid resolution 
method. Three mesh variants with nodes varying between 5 and 12 million were used. The result 
showed that the observed parameters varied with less than 1% error between the coarse and finest 
of meshes. So the mesh with lowest number of nodes was sufficient and chosen over other variants. 

Berchiche and Janson [16] studied the effects of grid resolution and grid quality for simulating an 
open-water propeller. Three different grids – coarse, medium and fine with mesh grid densities 0.5, 
1.4 and 3.8 million were used. A grid refinement factor of √2 is followed for the meshes. As per the 
result, the thrust coefficient was found approaching closer to experimental values as the mesh 
resolution gets finer. However, this was not observed for the torque coefficient. A Richardson 
extrapolation and standard GCI method was subsequently employed to determine grid 
independency. It was found that the order of accuracy, p was non-uniform for all parameters. The 
variation in p suggested that not all the data was found in asymptotic range. 
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Lu et al., [17] performed a CFD simulation to study the hydrodynamic performance of a propulsor. 
For the grid independence study, no specific method was used. Instead, three conditions of advance 
ratio were selected for inspection of hydrodynamic performance. The result showed that refined grid 
resulted in higher computational cost and decrease in grid quality. The coarser unrefined grid was 
subsequently selected over the refined grid option.  

Queutey et al., [18] has conducted a RANS simulation study of ship-propeller interaction using 
sliding grids and adaptive grid refinement method. The study includes a grid convergence study 
conducted on five meshes of increasing size namely, 0.775, 1.87, 3.86, 6.97 and 11.4 million. The grid 
independence study was conducted for a specific advance ratio case for thrust and torque 
coefficients by calculating the error percentage in comparison with experimental results. The results 
showed that the numerical error was least for the finest grid. 

In Yao and Zhang [19], a grid refinement study based on propeller thrust coefficient estimation 
was performed as part of the numerical study of propeller exciting bearing forces under non-uniform 
ship’s nominal wake. Three sets of mesh were employed. The grid refinement study was performed 
by studying the relative percentage difference between the finest and less finer grids. This is an 
inverse version of the grid resolution method where finest grids tend to become more accurate. The 
relative percent difference was found to be within 3% when the number of cells increases from 3.12 
to 4.39 million. It concluded that the numerical results were little affected by the mesh resolution 
when the cell number is up to 4.12 million, thus attaining mesh independence. 

Yao and Zhang [20] has conducted a CFD study for two cases of propellers rotating after a stern 
and hull. The study’s goal was to measure the exciting forces when operated in a ship’s wake 
condition. Grid refinement study was conducted on the thrust coefficient for a propeller after the 
stern. This study is performed by estimating the percentage difference between the finest and coarse 
grids. Three different mesh sizes were simulated and studied for advance ratio, J of 0.6 condition. 
The study showed when the mesh elements increase from 1.51 to 3.58 million, the observed 
percentage difference is 6.87%. When the mesh elements increase from 3.58 to 8.56 million the 
percentage reduced to 1.58%. The results suggested that increasing mesh size made little 
improvement to numerical results.  

Kaidi et al., [21] performed a steady state CFD simulation based on RANS equations to simulate 
the flow around the hull, propeller and rudders of an Inland Container Ship. In order to test mesh 
independence using the grid resolution method, three different mesh sizes of increasing tetrahedral 
element size, 0.96, 1.9 and 3.9 million were employed with a refinement ratio of √2. The propeller 
mesh sensitivity verification was found to be done by estimating the relative percentage different 
between numerical and experimental results for KT, KQ and η. The medium grid was chosen due to 
satisfactory estimation of errors and applied for further performance studies on varying advance 
ratios. 

Shora et al., [22] conducted a CFD study to predict the performance and cavitation volume of a 
marine propeller under different geometrical and physical conditions. In this study, grid 
independency study for different grid sizing is performed for a 4-bladed B-series propeller using grid 
resolution method. The grid resolution study helped to identify the ideal grid size of 0.00088 
corresponding to 10895632 elements in total based on the results of thrust coefficient variation.  

Razaghian and Ghassemi [23] performed a numerical analysis of the hydrodynamic performance 
of a ducted propeller. The thrust performance was analysed using the grid resolution method. The 
mesh cell numbers were varied from 4.3 to 9.1 million. It was found that the thrust values stabilize 
at 9.1 million mesh size.  

Majdfar et al., [24] performed a performance prediction on a ducted propeller using RANS. Grid 
resolution method was utilized to determine the thrust coefficient for one advance ratio. It was found 
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that the thrust coefficient values do not vary significantly beyond an increase in grid size of 1.4 
million. 

Zhang et al., [25] performed a CFD study on performance investigation of a ducted propeller in 
oblique flow. A mesh independence study was conducted to predict numerical uncertainty and also 
produce results from practical viewpoint for validation. Five mesh grids of increasing mesh element 
sizes were compared and the relative difference to experimental data was computed. The mesh with 
highest density was chosen for detailed analysis. 

Mizzi et al., [26] demonstrated an approach for optimizing Propeller Box Cap Fins (PBCF) using 
CFD analysis. First, the CFD model used for PBCF was validated using a model propeller namely 
Potsdam VP1304. For this purpose, the numerical data was compared with experimental results and 
the accuracy of convergence estimate based on percentage. The finest mesh was chosen based on 
the results. Then the Potsdam Propeller Test Case propeller CFD results verification was performed 
through GCI method. The performance coefficient KT and KQ were analysed and verified for 
uncertainty for three grid sizes namely coarse, medium and fine. A grid refinement ratio of √2 was 
used between medium to coarse grids as well as for fine to medium grids. A monotonic convergence 
was observed. The results showed insignificant uncertainties of GCI in the thrust and torque 
coefficient values estimated. 

Wang et al.,[27] performed a numerical analysis of marine propeller exciting force in oblique flow 
using CFD. A mesh resolution study was conducted using Grid resolution method for KT and KQ by 
varying the mesh y+ value between 20 and 100. The result showed that KT showed greater deviation 
for mesh with y+ between 60 and 100. However, the deviation was negligible for mesh with y+ 
between 20 and 60. This mesh with y+=60 was chosen as appropriate grid. The total number of 
elements for this grid size is 3.24 million. 

A summary of above discussed studies that have used grid independency techniques for propeller 
performance analysis is provided in Table 1. 

From the literature review, it can be found that most studies use one of the three existing 
methods to perform grid independence tests. In most studies, the grid resolution method was 
employed. Some studies have also used GCI method and Standard Richardson Extrapolation method. 
In some studies, the error percentage between numerical and experimental data is performed. Other 
studies have used the decreasing error percentage different between coarsest and finest meshes as 
a mesh independence method. It was found from some studies that for performing mesh 
convergence tests of propeller performance, a single advance ratio condition was assumed. On the 
contrary, some studies have chosen the entire range of advance ratio for performing validation with 
experimental data. It can be found in Table 1 that one of the mesh refinements used is deemed the 
grid independent solution based on the degree of variation of performance. 

Most of the studies considered in this review work are on marine propellers. This implies most 
research work has targeted design and development of marine propellers. Very few studies on grid 
independency exist that have used CFD analysis on aircraft and UAV propellers.  

Also it can be found that most of the studies have implemented only three mesh refinements in 
performing their grid independence studies. The reason could be due to the high computational costs 
involved in performing simulations at high mesh resolution. Some studies have implemented two 
while others have implemented five and more mesh refinements. Simulation problems that can 
afford such high computational requirements can use high number of mesh refinements. Hence, 
employing at least five or more sets generally increases the mesh sensitivity range and helps 
determine the mesh independence resolution more accurately. 
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Table 1 

Summary of propeller studies that implemented grid independency techniques 

No Study Grid Independency Technique used Type of 
propeller 

Selected 
mesh 
refinement  

No. of mesh 
refinements  

1 Yangang et al., [9] Grid resolution method Aircraft Medium 3 
2 de Giorgi [10] Grid resolution method Aircraft Medium 3 
3 Kutty et al., [11] Grid resolution method UAV Coarsest 5 
4 Yongle et al., [12] Grid resolution method Marine Medium 3 
5 Yao [13] Grid resolution method Marine Medium 3 
6 Liefvendahl [14] Grid resolution method Marine Coarse 2 
7 Stajuda et al., [15] Grid resolution method Aircraft Coarsest Not 

available 
8 Berchiche and Janson [16] Richardson extrapolation, GCI Marine Not 

available 
3 

9 Lu et al., [17] Comparison of performance between 
refined and unrefined grids 

Marine Coarse 2 

10 Queutey et al., [18] % error estimation between numerical 
and experimental data 

Marine Coarse 5 

11 Yao and Zhang [19] % difference between finest and coarser 
grid results 

Marine Fine 3 

12 Yao and Zhang [20] % difference between finest and coarser 
grid results 

Marine Medium 3 

13 Kaidi et al., [21] % error estimation between numerical 
and experimental data 

Marine Medium 3 

14 Shora et al., [22] Grid resolution method Marine Finest 9 
15 Razaghian and Ghassemi [23] Grid resolution method Marine Finest 9 
16 Majdfar et al., [24] Grid resolution method Marine Coarse 6 
17 Zhang et al., [25] % error estimation between numerical 

and experimental data 
Marine Finest 5 

18 Mizzi et al., [26] % error estimation between numerical 
and experimental data, GCI 

Marine Finest 3 

19 Wang et al., [27] Grid resolution method Marine Medium 9 

 
3. Methodology 
3.1 Modelling and Simulation 
 

In this section, the selection of propeller model and the selection of technique for performing 
simulation will be elaborated. 

 
3.1.1 Propeller geometry 
 

The baseline propeller considered is the Applied Precision Composites (APC) 10x7 Slow Flyer (SF). 
This propeller is considered due to prior availability of experimental data in literature [28]. It is a two-
bladed propeller with a diameter of 0.254 m. The propeller is modelled using CAD software. The 
geometric modelling of the propeller in chordwise and spanwise directions is performed with 
specifications available in  

Table 2. The blade consists of two airfoil sections. Sections closer to the hub are designed with 
Eppler E63 airfoil and sections away from the hub and closer to the tip are designed with Clark-Y. The 
designed propeller is illustrated in Figure 1. 
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Table 2 
APC10x7SF propeller geometry 
specifications (r=radial distance, 
R=propeller radius,c=chord, 
β=pitch angle) 
r/R c/R β (°) 

0.15 0.109 34.86 
0.2 0.132 37.6 
0.25 0.155 36.15 
0.3 0.175 33.87 
0.35 0.192 31.25 
0.4 0.206 28.48 
0.45 0.216 25.6 
0.5 0.222 22.79 
0.55 0.225 20.49 
0.6 0.224 18.7 
0.65 0.219 17.14 
0.7 0.21 15.64 
0.75 0.197 14.38 
0.8 0.18 13.11 
0.85 0.159 11.83 
0.9 0.133 10.65 
0.95 0.092 9.53 
1 0.049 8.43 

 

 

Fig. 1. CAD model of APC10x7SF propeller 
 

3.1.2 Computational fluid dynamics 
 

The flow around the propeller is modelled by steady Reynolds Averaged Navier Stokes Equations 
(RANS) equations for an incompressible flow. The modelling is performed based on the following 
principle. The inclusion of a turbulence models generally makes the flow unsteady. RANS turbulence 
models provide closure to Reynolds Stress tensor that represents the effect of turbulent fluctuations 
in the mean flow. This allows steady state simulations of turbulent flow being performed in ANSYS 
Fluent [29]. 

The CAD model of the propeller will beimported to finite volume based solver namely ANSYS 
Fluent. Fluent is a CFD software that has been used in several research works in the past [21, 22, 27, 
30, 31]. A three-dimensional (3D) computational grid is implemented in which the velocity 
components u, v and w and pressure component, p at the center of the control volumes is solved. 
The governing equations consist of the continuity and Reynolds-averaged momentum equation 
which can be written as follows [21]: 

 
𝜕𝜌
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𝜕
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where 𝛿𝑖𝑗 is the Kronecker delta and −𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  is the Reynolds stresses. The Reynolds stresses could 

be linked to mean rates of deformation as proposed by Boussinesq hypothesis and can be written as 
follows [21, 32] 

 

−𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(𝜌𝑘 + 𝜇𝑡

𝜕𝑢𝑖

𝜕𝑥𝑖
) 𝛿𝑖𝑗         (3) 

 
where μt is the turbulent viscosity, μt will be estimated by turbulence model equations.  

The one-equation Spalart-Allmaras (S-A) is considered as the preferred turbulence model. This is 
due to the reason that S-A is specifically designed for aerodynamics flows [33] at low Reynolds 
number [34]. Studies that have implemented S-A in the studies, for example are that of Zhang et al., 
[25]. The transport model is given by the following equation [35, 36] 
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The turbulent eddy viscosity is calculated as follows 
 

𝜇𝑡 = 𝜌𝑣𝑓𝑣1,              (5) 
 

where ρ is the fluid density, v=μ/ρ is the kinematic viscosity and μ is the dynamic viscosity, and fv1 is 
the viscous damping function which can be expressed as 

 

𝑓𝑣1 =
𝑋3

𝑋3+𝑐𝑣1
3               (6) 

 

𝑋 =
�̂�

𝑣
               (7) 

 
The 3D computational domain consists of a rotating frame which is the cylinder enclosing the 

propeller blade along with the hub. The second frame, the global stationary domain is specified by 
the enclosure of the smaller cylindrical enclosure. The domain specifications are illustrated in Figure 
2(top) and Figure 2(bottom). The domain is modelled in such a way that the intricate flow physics 
needs are well captured and would not affect the upstream and downstream flow of the propeller.  

A distance of 4D between both upstream and downstream ensures the same. Furthermore, a full 
3D simulation is ensured with reasonable accuracy without any problems in convergence. The 
stationary and rotational domains are assigned as translational or rotational zones in ANSYS Fluent. 
A Multiple Reference Frame approach is followed in which the rotational zone is a moving zone with 
motion about rotational axis at 3008 rpm. The stationary and rotating domain are separately meshed. 
Unstructured meshing was performed due to the following reasons. The study by Alakashi et al., [37] 
showed that both structured and unstructured mesh do not produce significant variation of results 
in the analysis of a bump channel, NACA0012 airfoil and wind turbine blade using two different codes. 
The results were found to be similar for both meshes. Furthermore, the study by Shora et al., [22] 
showed that unstructured mesh was preferred to resolve the boundary layer viscosity effects in the 
study on novel blade shapes for wind turbine The stationary domain is made of coarse mesh and the 
blade with finer mesh. This is to ensure that geometries of blade are meshed with better refinement. 
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Fig. 2. Computational domain (top); rotational domain with 
propeller and cylindrical enclosure (bottom) 

 
The mesh consists of unstructured tetrahedron elements. The meshing methodology adopted 

ensured capturing the complexities associated with the geometry within reasonable amount of time. 
It was found from earlier section that employing five sets of mesh size generally increases the mesh 
sensitivity range and helps determine the mesh independence resolution more accurately. The 
geometry is therefore randomly treated for mesh size improvements from grid M1 to grid M5 for 5 
meshes. The sizing of mesh adopted is provided in Table 3.  

An airflow velocity is assigned at the inlet with varying speeds. These velocities are assumed 
based on the experiments by Brandt et al., [28]. The advance ratios and corresponding free stream 
velocities are listed in Table 4. The advance ratio (J) can be calculated from the following equation 

 
Table 3 
Mesh parameters for five grids considered 
Grid Refinement Total nodes Total elements h2 

M1 Standard 41927 199380 0.000154 
M2 Coarse 165545 789650 3.88E-05 
M3 Medium 242877 1141968 2.68E-05 
M4 Mid-fine 292342 1374053 2.23E-05 
M5 Fine 798178 3763486 8.14E-06 
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𝐽 =
𝑉

𝑛𝐷
               (8) 

 
where V is the free stream velocity, n is the rotational speed and D is the diameter. A no slip condition 
is assumed at the walls. The pressure outlet is allocated with a gauge pressure of 0.  

The thrust coefficient can be expressed as follows 
 

𝐾𝑇 =
𝑇

𝜌𝑛2𝐷4              (9) 

 
where T is the thrust, ρ is the density. The torque coefficient can be expressed as follows 

 

𝐾𝑄 =
𝑄

𝜌𝑛2𝐷5                        (10) 

 
where Q is the torque 

 
Table 4 
Advance ratios and corresponding free stream 
velocities 
Case Advance ratio, J Free stream velocity, V (m/s) 

1 0.192 2.4384 
2 0.236 2.9972 
3 0.282 3.5814 
4 0.334 4.2418 
5 0.383 4.8641 
6 0.432 5.4864 
7 0.486 6.1722 
8 0.527 6.6929 
9 0.573 7.2771 
10 0.628 7.9756 
11 0.659 8.3693 
12 0.717 9.1059 
13 0.773 9.8171 
14 0.799 10.1473 

 
The simulation settings are set as follows; a "coupled" scheme with a Semi-Implicit Method for 

Pressure-Linked Equations (SIMPLE) is set for pressure-velocity coupling. A Least-Squares Cell-based 
algorithm is assigned for gradients. The pressure is assigned with Standard scheme of interpolation. 
A second order upwind interpolation scheme is used for momentum, Turbulent Kinetic Energy and 
Turbulent Dissipation Rate. Convergence of simulation iteration was determined by the order of 
magnitude of the residuals. The drop of all scaled residuals below 1×10-4 was utilized as the 
convergence criterion. The maximum number of iterations in a time step was set as 500 which was 
found to be sufficient for the residuals to attain convergence. 
 
3.2 Fitting Method 
 

The grid resolution method could not be used due to the results not approaching values of fine 
mesh refinement i.e. the values not achieving asymptotic range (see Figure 3). The standard 
Richardson extrapolation method requires that the mesh is uniformly refined and refined by a factor 
of two [4]. Also it was found that in the Richardson extrapolation method the grid convergent values 
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do not try to achieve desired asymptotic range. Therefore, this method does not serve the purpose 
as the meshes are non-uniformly refined. 

 

 
Fig. 3. Inadequate grid independent solution of thrust 
coefficient (KT) for J=0.383 through grid resolution method 

 

The GCI method requires that the desired grid refinement factor should be greater than 1.3. The 
grid refinement should also be done systematically and be structured [7]. Due to these reasons, the 
GCI method cannot be used for the given problem. Existing methods are found to be inadequate for 
the problem with data from non-uniform mesh sizes.  

Another method will be therefore proposed known as the fitting method. The fitting method was 
originally proposed in Almohammadi et al., [2]. As per the proposed method, the mesh independent 
solution of power coefficient of a wind turbine can be determined from curve fitting of data. Data 
generated from mesh sizes are first plotted versus representative cell size of corresponding mesh 
sizes. The square of the representative mesh size (h2) can be expressed as follows: 

 

ℎ2 =
𝑉

𝑁
                         (11) 

 
where h2 is the ratio between mesh volume (V) and number of elements (N) for each mesh 
refinement. The intersection of power coefficient curve at y where h2=0 was deemed to be the mesh 
independent solution of power coefficient. 

The study also presented two schemes, first order and second order in which both first order and 
second order polynomials fit to power coefficient data. However, the method proposed by 
Almohammadi et al., [2] had a drawback. It did not provide a detailed explanation into the reason 
behind choosing mesh independent results at h2=0. Also, this method may not be suitable for data 
with non-uniform mesh sizes. In this work, these drawbacks have been addressed using a modified 
technique. 

Here, in the current method, the performance variation versus mesh size data is fitted to a curve 
of suitable polynomial order. The first and second order polynomial for thrust coefficient, KT 
estimation can be written as a function of the mesh size as follows in respective order: 

 
𝐾𝑇 = 𝐴ℎ2 + 𝐵                        (12) 
 
𝐾𝑇 = 𝐴(ℎ2)2 + 𝐵ℎ2 + 𝐶                      (13) 
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where A, B and C are the coefficients and h2 is the square of the representative cell size. The maxima 
existing in the curve can be declared the mesh independent solution due to the reason that the curve 
follows a polynomial with maxima in case of thrust coefficient. The same could be applied if a minima 
condition exists. The corresponding mesh size and number of cells required can be estimated. The 
mesh independent number of elements required to perform the analysis can be determined from 
Eq. 13. 
 
4. Results and discussion 
 

The performance values measured are the thrust and torque of the propeller. The simulation runs 
were performed for five different mesh sizes namely standard, coarse, medium, mid fine and fine 
with mesh sizes from high to low. Prior studies have used experimental data as reference data [28] 
which were then used to compare with numerical data. This procedure does not provide a mesh 
independent solution.  

The process of performing mesh independency study is to find solutions with no exact solution 
available a priori. It is performed to validate the numerical solution by employing appropriate 
techniques and find the optimal mesh size and solution. Experimental data can only be compared 
after estimation of these mesh independent solutions. 

The fitting method was employed in this work in determining mesh independent solution of 
thrust and torque performance of a propeller. It was performed by curve fitting data to first order 
and second order polynomials. All advance ratio conditions were considered. The curve fit of KT is 
provided in Figure 4 and KQ in Figure 5. The KT can be plotted for different mesh sizes and can be made 
available in a graphical form. The data can be supposed to remain in a linear relation polynomial of 
first order.  

If the data are scattered and do not fit in a linear relationship, then the second order polynomial 
could be used. The mesh independent KT is now the maxima of the polynomial function. This is true 
since the KT varies with mesh size non-linearly but in suitable order. The point where the curve 
ascends and descends is the point of mesh independency. This is simply the point where the slope of 
the curve is zero. The KT from the mesh independent solution is the maxima if the curve ascends and 
descends or minima, if vice versa. 

 

  
Fig. 4. APC10x7SF propeller’s thrust coefficient 
data fitting to first order (in “blue”) and second 
order (in “red”) polynomial for J=0.486 

Fig. 5. APC10x7SF propeller’s torque coefficient 
data fitting to first order (in “blue”) and second 
order (in “red”) polynomial for J=0.486 

 
It can be found that the first order curve fit was found to be highly divergent with R2=0.52 for 

KTand R2=0.51 for KQ. A second order polynomial curve was able to provide a reasonable data 
convergence (R2=0.88 for KTand R2=0.89 for KQ). So a second order fit was preferred. The y values in 
all curves have an increasing and then decreasing curve. This was observed for all advance ratios.  
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There is a point in which increasing and decreasing transition takes place. The maxima of the 
fitting function are the mesh independent solution. The corresponding value of x provides the 
independent mesh size required. The thrust performance can now be plotted as a mesh independent 
solution in Figure 6. The corresponding mesh size was found to be 0.00999. Similarly, the torque 
performance can be plotted as in Figure 7. 

 

 
 

Fig. 6. Grid independence solution of thrust 
coefficient using Fitting Method in comparison 
to experimental data 

Fig. 7. Grid independence solution of torque 
coefficient using Fitting Method in comparison 
to experimental data 

 
It was found from Figure 6 and Figure 7 that there is over-prediction of mesh-independent KQ 

results for Case 7 condition of J=0.486. The same could be observed for Case 4 and Case 7 in the 
estimation of KT. This error could be due to the non-availability of sufficient number of grid 
refinements. An inclusion of additional number of grid refinements could solve the problem of over- 
as well as underprediction of results. 

The relative error percentage of KT and KQ between the fitting method and experimental results 
can be calculated through the expressions provided in Eq. 14 and 15 

 

∆𝐾𝑇(%) = |
𝐾𝑇𝐶𝐹𝐷−𝐾𝑇𝐸𝑋𝑃

𝐾𝑇𝐸𝑋𝑃
| × 100                     (14) 

 

∆𝐾𝑄(%) = |
𝐾𝑄𝐶𝐹𝐷−𝐾𝑄𝐸𝑋𝑃

𝐾𝑄𝐸𝑋𝑃
| × 100                     (15) 

 
The error between the fitting method generated results and experiments are summarized in Table 

5. It can be found from graph in Figure 6 that the results generated using the new method follow the 
experimental results' data trend closely with a relative error percentage of below 10% for 6 cases of 
advance ratiosfor KTwhereas there is over-prediction or under-prediction of results for the remaining 
advance ratios. In the case of KQ, less than 10% error was found for three advance ratios while there 
is over-prediction for remaining advance ratios. While the use of other three methods proposed in 
previos studies [6 – 8] are acceptable only for structured grids with uniform mesh refinements, they 
provide higher error estimates than the current method. Nonetheless, Figure 7 produced a higher 
error percentage for KQand it seems that the error percentage increased with increasing advance 
ratios. The high error percentage is due to the reason that KQ is a miniscule quantity. Also the increase 
in error with advance ratio between numerical and experimental results could be due to the reason 
that the Reynolds number is increasing as freestream velocity increased. Note that this method is 
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proposed for low Reynolds number. Nevertheless, the fitting method follow a similar data trend as 
experiment. Consequently the accuracy of CFD prediction is enhanced using the proposed method.  

 
Table 5 
Error percentage of CFD and experimental 
methods 
 
J 

Error % 

ΔKT (%) ΔKQ (%) 

0.192 2.60 3.6 
0.236 0.67 48.9 
0.282 15.95 7.0 
0.334 11.32 73.9 
0.383 2.51 9.1 
0.432 4.39 11.4 
0.486 15.62 22.3 
0.527 7.54 13.9 
0.573 9.41 18.5 
0.628 14.39 21.5 
0.659 16.92 24.7 
0.717 36.40 32.7 
0.773 67.09 42.7 

 
The accuracy of this method increases with implementation of more number of grid refinements. 

The above presented method of curve fitting provides useful applications to available existing 
methods: One reason is that the computational expense to find the optimal mesh size and solution 
is prohibitive in problems employing huge number of cells. This method saves the computational 
costs of using much finer meshes. Secondly, this method allows finding the solution for unstructured 
grid refinements. 

 
5. Conclusion 
 

An alternate method known as the fitting method was proposed in order to provide reliable 
estimations of grid independent solutions in CFD analysis. The method was able to predict the thrust 
and torque performance accurately for an APC10x7SF low Reynolds number propeller. In this 
method, polynomial fits of suitable order are used to fit data for different mesh refinements. The 
given polynomial functions were deemed the mesh refinement solution. This method was able to 
reliable identify mesh independent solutions for the thrust and torque performance of a propeller 
operating at 3008 rpm. A reliable verification method was therefore found for this propeller 
performance estimation in this study. 
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