

**UNIVERSITI
TEKNOLOGI
MALAYSIA**
www.utm.my

LATTICE BOLTZMANN METHOD: AN ALTERNATIVE CFD TECHNIQUE

Nor Azwadi Che Sidik
Department of Thermofluid
Faculty of Mechanical Engineering
Universiti Teknologi Malaysia
<http://www.fkm.utm.my/~azwadi>

www.utm.my

Have you ever experienced these problems in CFD

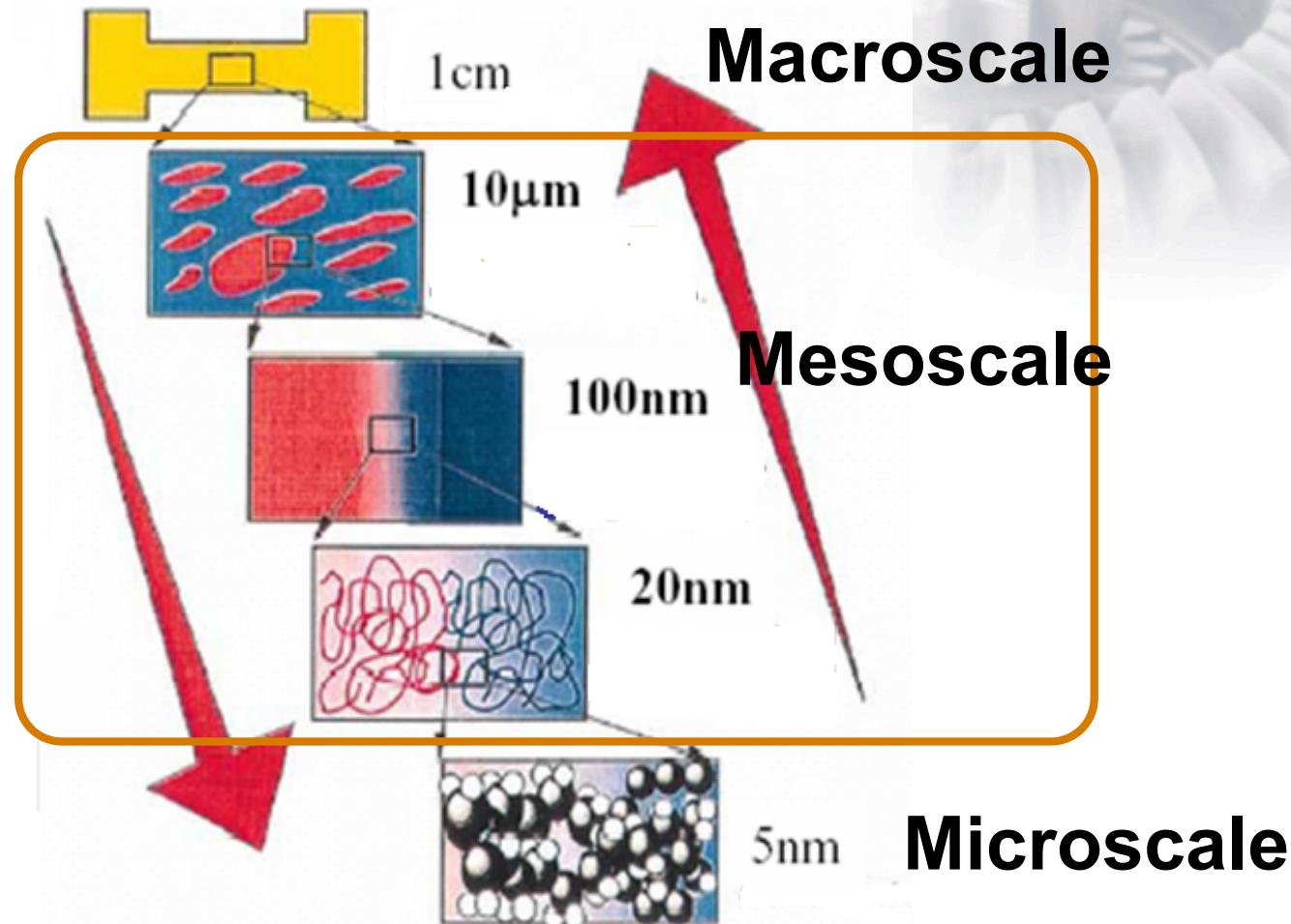
- Complicated Navier-Stokes equation
- Different governing equation for different flow phenomena.
- Lengthy program source code.
- Complicated boundary condition treatment.
- Very long simulation time.
- 100% computer software dependence, etc

Lattice Boltzmann method will solve your problem

Contents:

- What is lattice Boltzmann method (LBM)
- How LBM works
- Why we need LBM
- Simulation results
- Q & A

www.utm.my



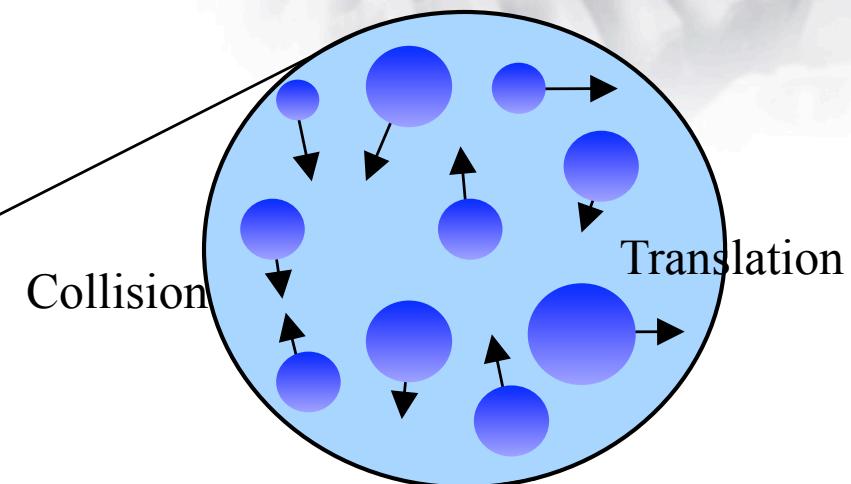
UNIVERSITY TEKNOLOGI MALAYSIA
Malaysia's Premier University In Engineering and Technology

What is LBM

Moment of distribution function

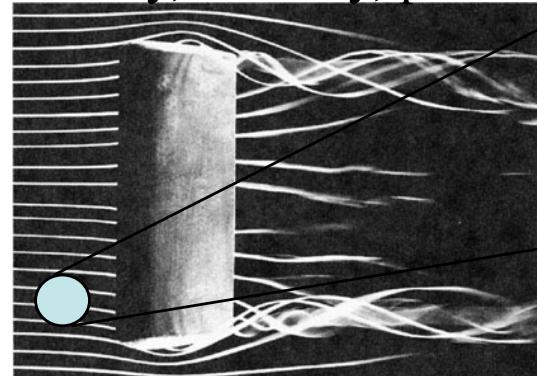
Statistical Mechanics

Density distribution function $f(\mathbf{x}, t)$



Macroscopic variables

Density, velocity, pressure, etc.



Homogeneous fluid

Top-down versus Bottom-up

Partial Differential Equations (Navier-Stokes)

Discretization

Finite differences, finite element, finite volume or spectral methods

Difference Equations

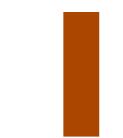
Standard Numerical Methods

Simulate Fluid Flow

Simulate Fluid Flow

Partial differential Equations (Navier-Stokes)

Multi-scale Analysis



Discrete Model Lattice Boltzmann Equation

Lattice Boltzmann Approach

The primary goal of LB approach is to build a bridge between the microscopic and macroscopic dynamics rather than to dealt with macroscopic dynamics directly.

In other words, the goal is to derive macroscopic equations from microscopic dynamics by means of statistics rather than to solve macroscopic equations.

The Boltzmann Equation*

$$\frac{\partial f}{\partial t} + \mathbf{c} \frac{\partial f}{\partial \mathbf{x}} = \Omega(f)$$

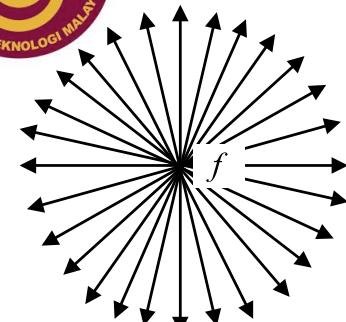
Advection term Collision term

f : particle distribution function

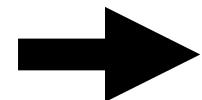
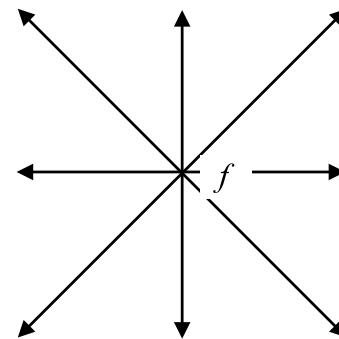
\mathbf{c} : velocity of distribution function

Equation describes the evolution of groups of molecules

*H. Harris, *An introduction to the theory of the Boltzmann equation* (holt, Rinehart and Winston, New york, 1971)

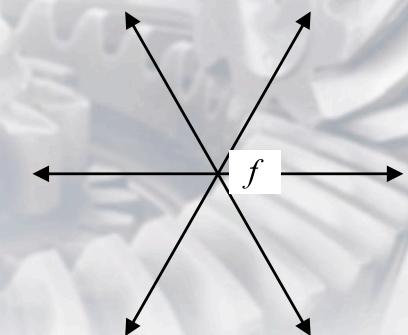


Continuous velocity



9-velocity model

or



7-velocity model

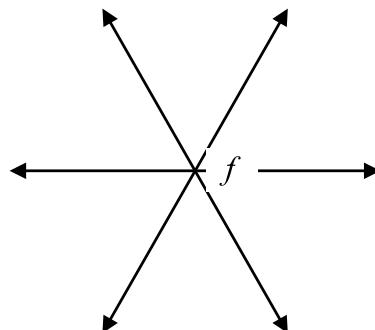
The direction of distribution function is limited to seven or nine directions

$$\frac{\partial f_i}{\partial t} + \mathbf{c}_i \frac{\partial f_i}{\partial \mathbf{x}} = \Omega(f_i)$$

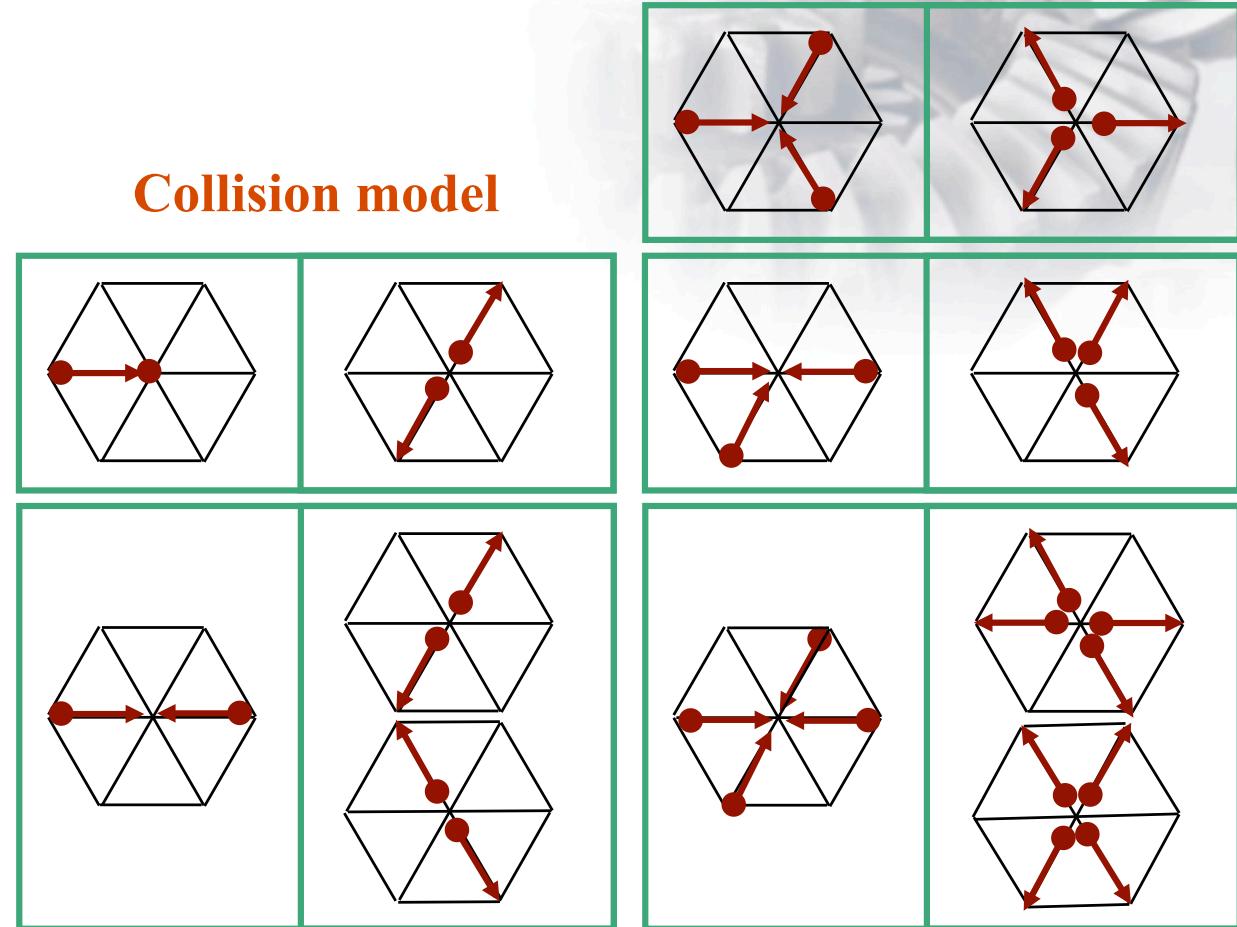
$$i = 1, 2, 3, \dots, 9 \text{ or } 1, 2, 3, \dots, 7$$

Collision model

7-discrete velocity model



Collision model



Bhatnagar-Gross-Krook(BGK) Collision model*

$$\Omega(f_i) = -\frac{f_i - f_i^{eq}}{\tau}$$

f_i^{eq} : equilibrium distribution function

τ : time relaxation

$\frac{1}{\tau} f_i^{neq}$ relax to equilibrium state during collision process

f_i^{neq} : nonequilibrium distribution function

*P. L. Bhatnagar, E. P. Gross and M. Krook, *Phys. Rev* **94** 511 (1954)

BGK Boltzmann equation

$$\frac{\partial f_i}{\partial t} + \mathbf{c}_i \cdot \frac{\partial f_i}{\partial \mathbf{x}} = -\frac{f_i - f_i^{eq}}{\tau}$$

Equilibrium distribution function (*Maxwell-Boltzmann distribution function*^{*})

$$f_i^{eq} = \rho \omega_i \left[1 + 3(\mathbf{c}_i \cdot \mathbf{u}) + \frac{9}{2}(\mathbf{c}_i \cdot \mathbf{u})^2 - \frac{3}{2}\mathbf{u}^2 \right]$$

Macroscopic parameters

Density

$$\rho = \sum_i f_i d\mathbf{c} = \sum_i f_i^{eq} d\mathbf{c}$$

Velocity

$$\mathbf{u} = \sum_i \mathbf{c} f_i d\mathbf{c} = \sum_i \mathbf{c} f_i^{eq} d\mathbf{c}$$

Macroscopic Equations

Macroscopic equations (continuity and N-S equation) are obtained using Chapman-Enskog expansion procedure

$$\nabla \cdot \mathbf{u} = 0 \quad \text{continuity equation derived from BGK equation}$$

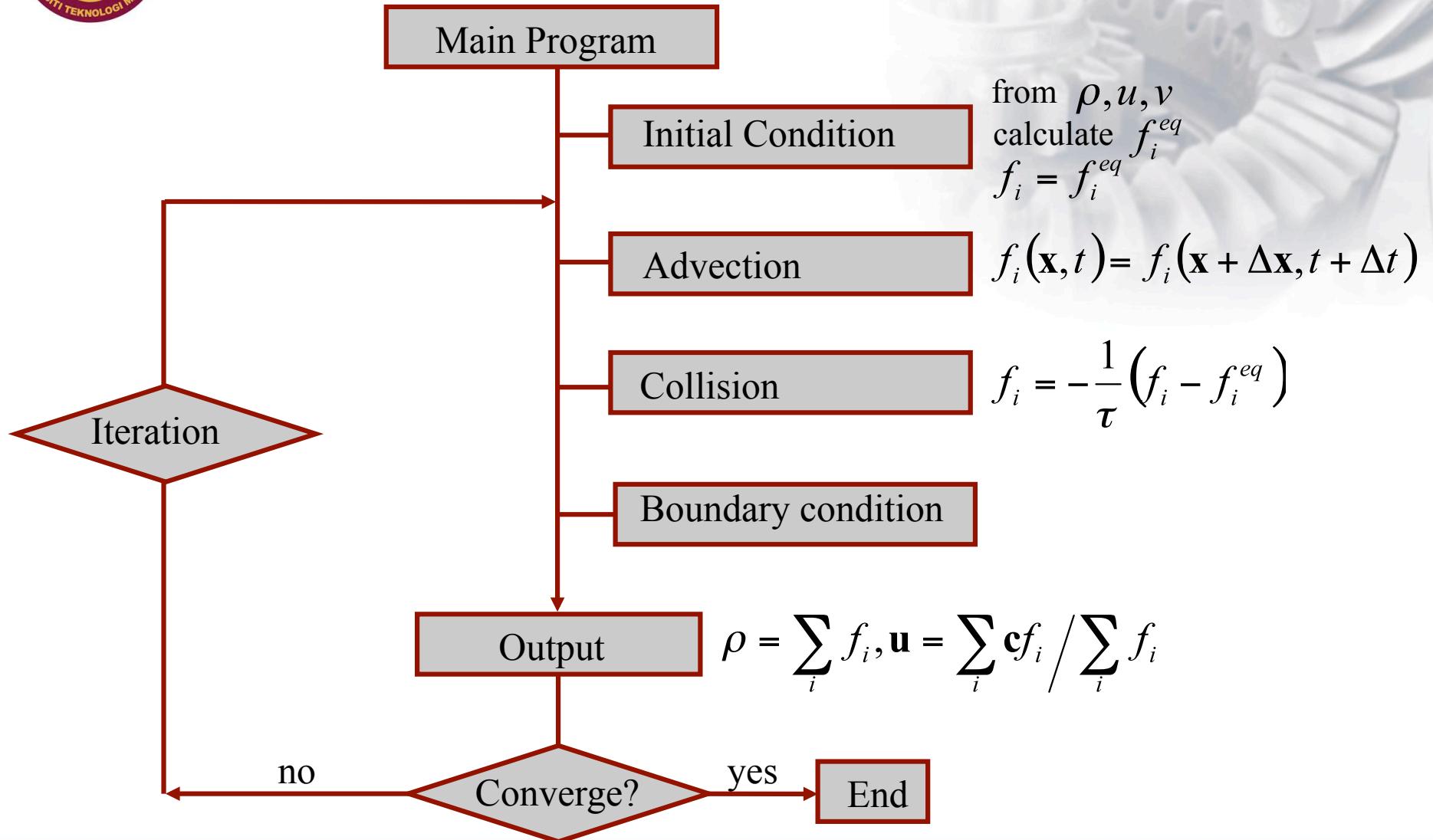
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{\nabla P}{\rho} + \frac{2\tau - 1}{6} \nabla^2 \mathbf{u} \quad \text{Momentum equation derived from BGK equation}$$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{\nabla P}{\rho} + \nu \nabla^2 \mathbf{u} \quad \text{Momentum equation derived from Newton's second law}$$

Relation between time relaxation and fluid viscosity

$$\nu = \frac{2\tau - 1}{6}$$

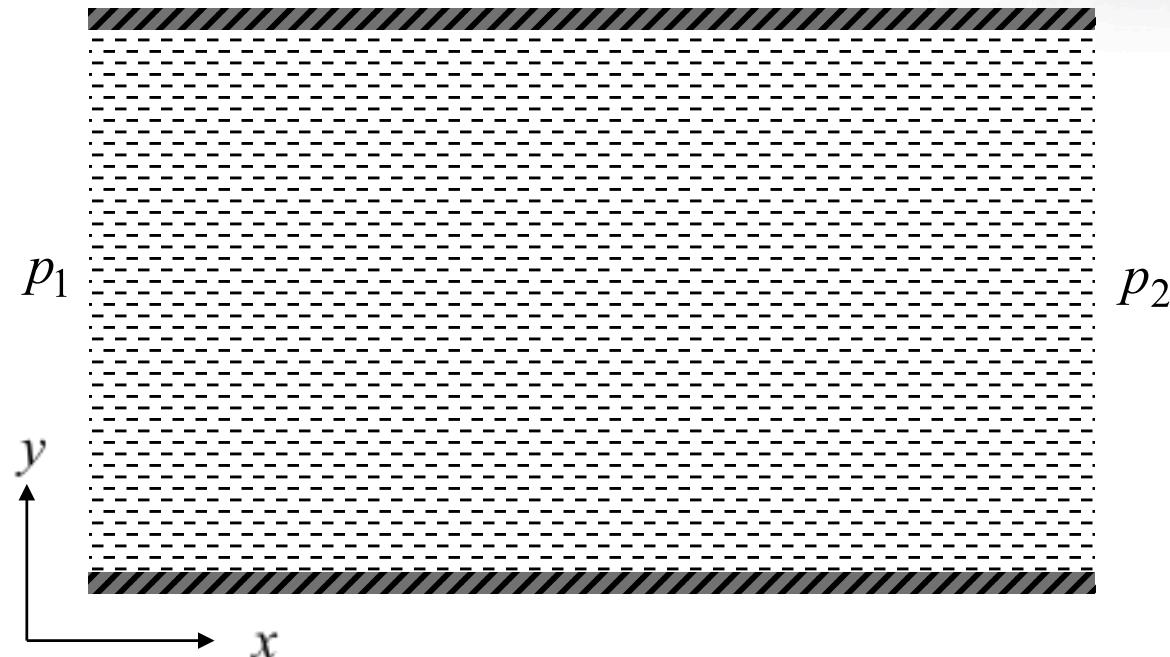
Simulation algorithm



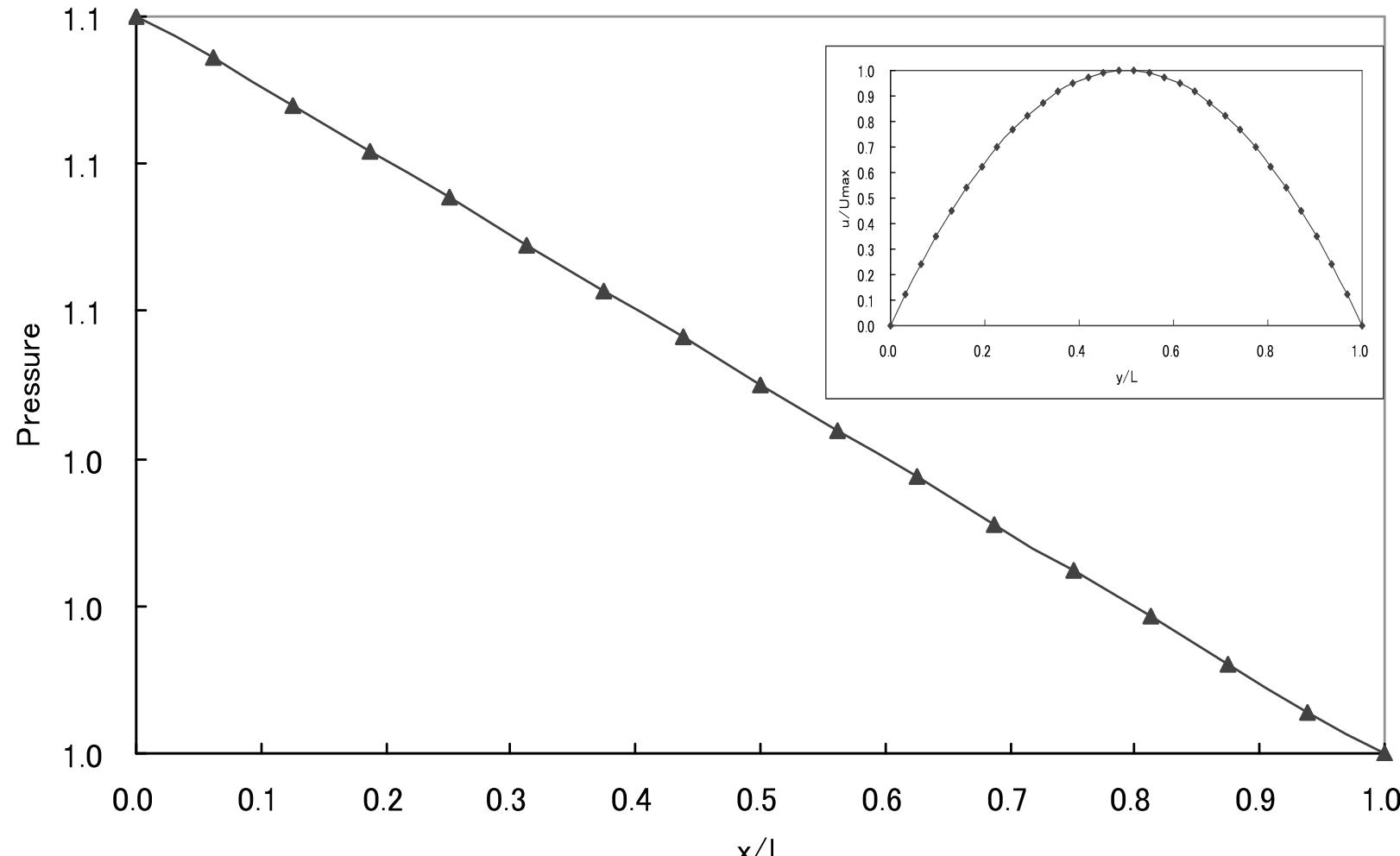
Numerical Test: Poiseuilli Flow

Initial conditions

p_1	p_2	ρ	u	v	τ	mesh
1.1	1.0	1.0	0.0	0.0	1.0	180 x 30



Flow is driven by pressure gradient at inlet and exit channel $p_1 > p_2$



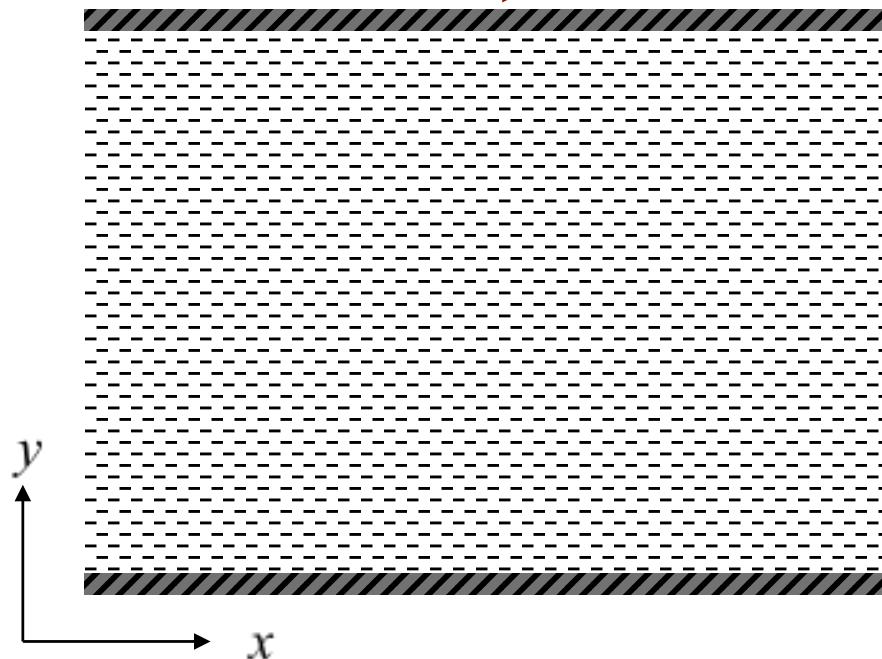
Graph: Centerline density profile along the channel. The inset displays the velocity profile across the channel at the steady state.

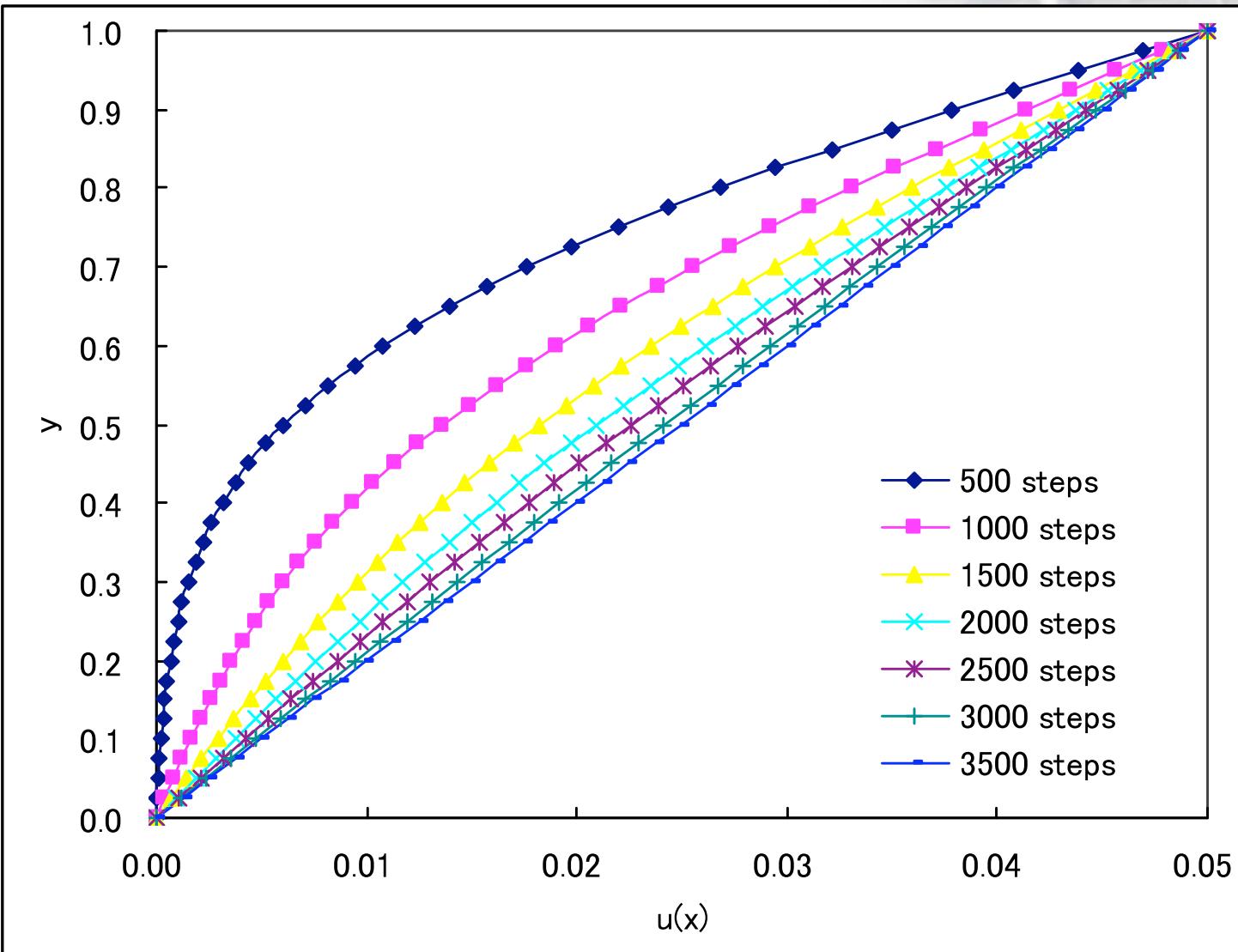
Numerical Test: Couette Flow

Initial conditions

ρ	τ	U	u	v	mesh
1.0	1.0	0.05	0.0	0.0	80 x 40

$$u = U$$



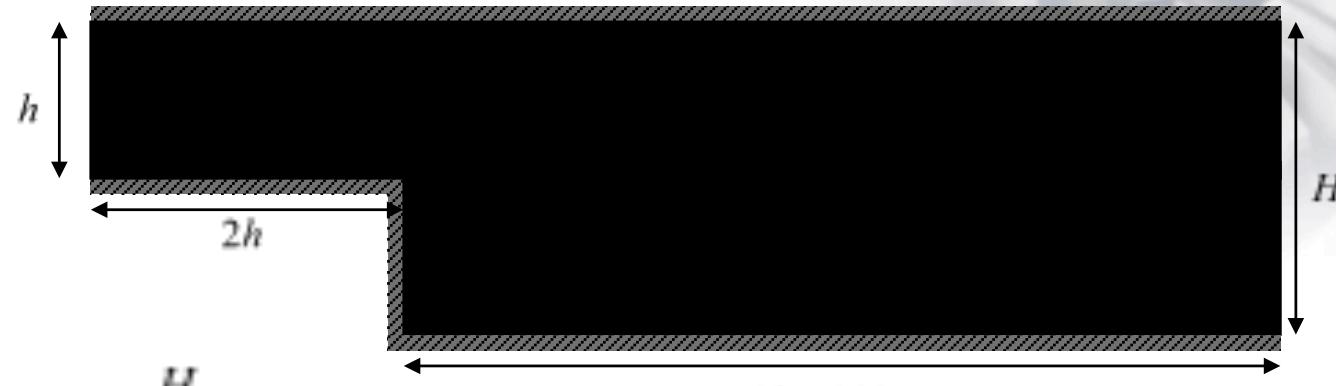


Graph: Velocity profiles across the normalized channel width at different times.

www.utm.my

D2-5 第19数值流体力学シンポジウム

Numerical Test: Back-Step flow



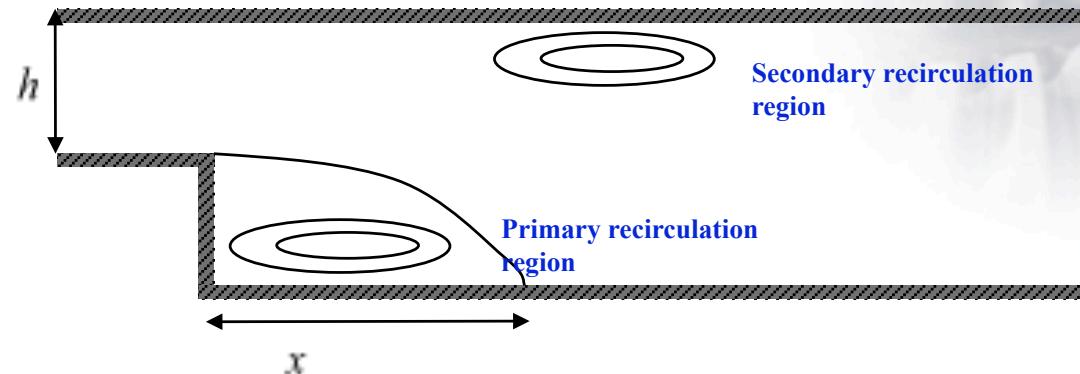
Case 1: $\frac{H}{h} = 2.0$

Case 2: $\frac{H}{h} = 2.5$

$h = 20$ lattice mesh

Case 3: $\frac{H}{h} = 3.0$

Predicted result



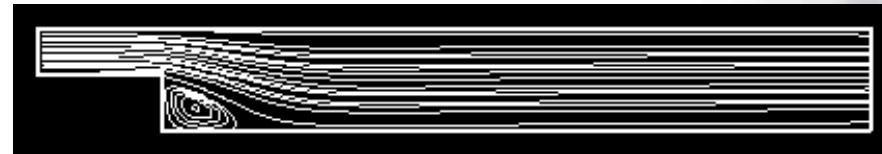
Reference

- 1 . Armaly, Durst, Peireira, Schonung, 1983, *Experimental and theoretical investigation of backward-facing step flow*, J. Fluid Mechanics, 127, pp 473.
- 2 . Biswas, Breuer, Durst, 2004, *Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers*, J. Fluids Engineering, 126, pp 362.

www.utm.my

D2-5 第19数值流体力学シンポジウム

Streamline plot for expansion ratio 2.0



Re=50

Re=100

Re=300

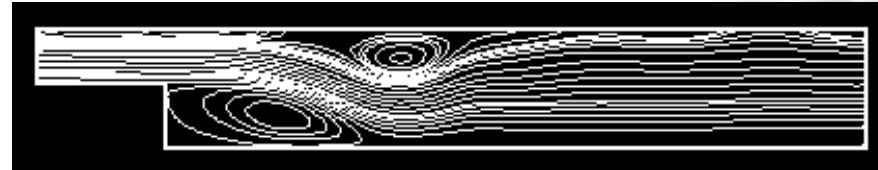
Re=600

www.utm.my

D2-5 第19数值流体力学シンポジウム

Time development of streamline plot for expansion ratio 2.0 at Reynolds number 300

Iteration =
2000



Iteration =
4000

Iteration =
6000

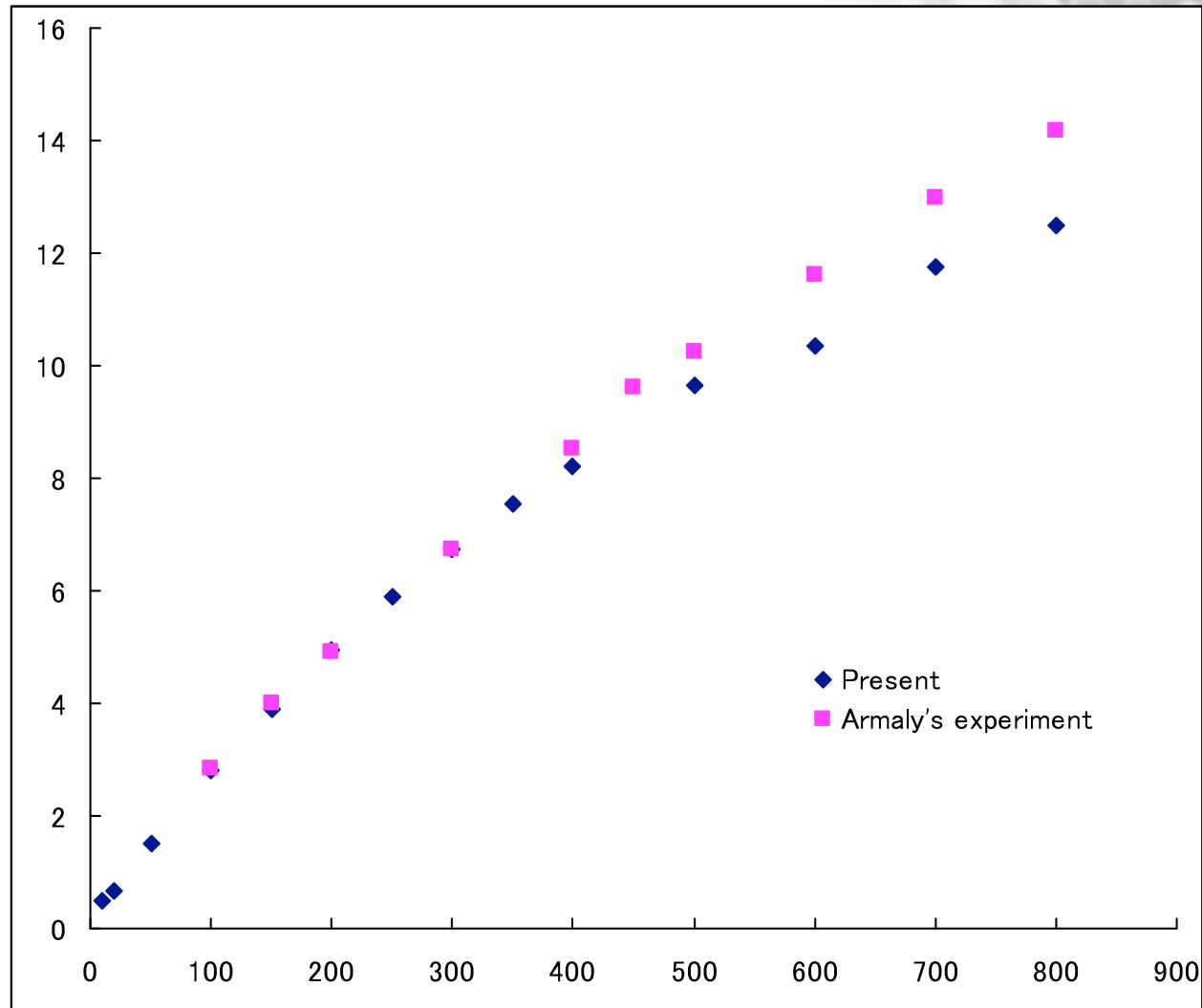
Iteration =
8000

Iteration = 10000

UNIVERSITY TEKNOLOGI MALAYSIA
Malaysia's Premier University In Engineering and Technology

www.utm.my

D2-5 第19数值流体力学シンポジウム

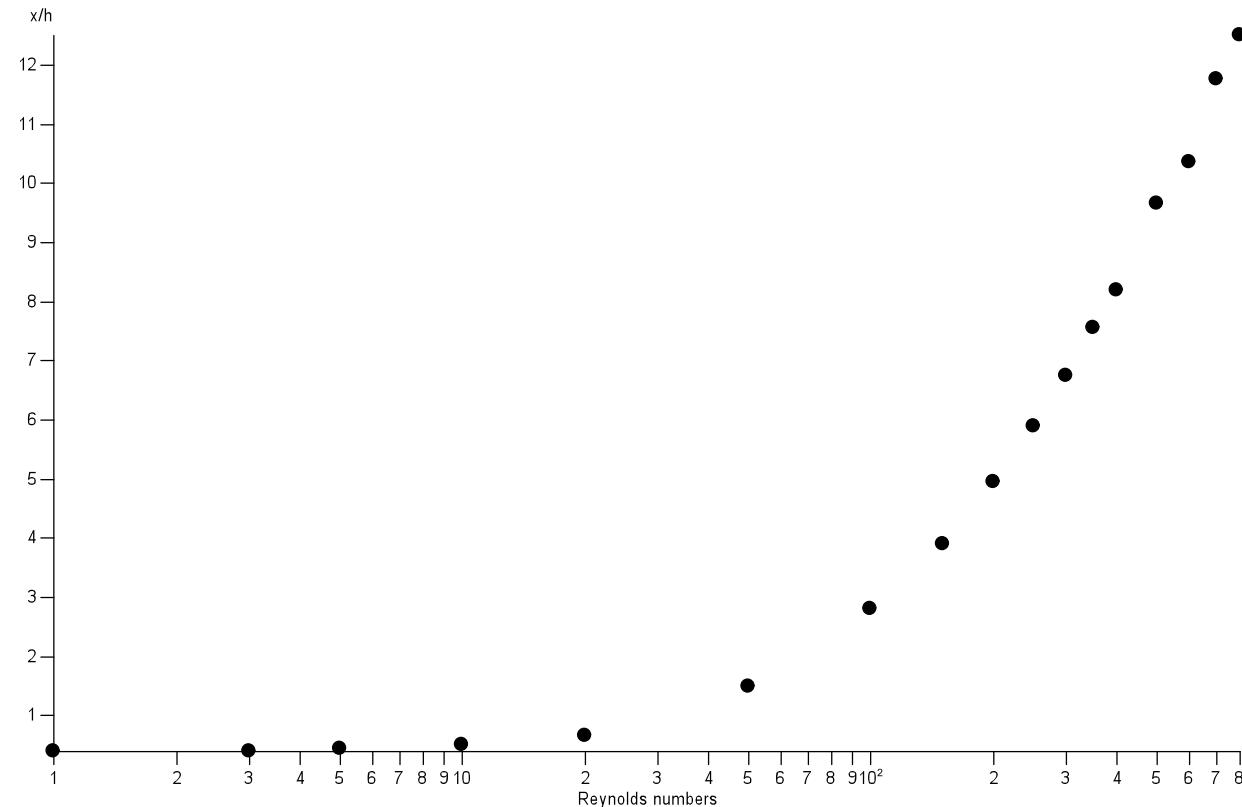


Graph shows the data obtained by Armaly and Lattice Boltzmann simulation for expansion ratio $H/h = 2.0$

UNIVERSITY TEKNOLOGI MALAYSIA
Malaysia's Premier University In Engineering and Technology

www.utm.my

D2-5 第19数值流体力学シンポジウム



Graph shows the relationship between reattachment and Reynolds numbers for expansion ratio 2.0

UNIVERSITY TEKNOLOGI MALAYSIA
Malaysia's Premier University In Engineering and Technology

Tanahashi Lab, Keio

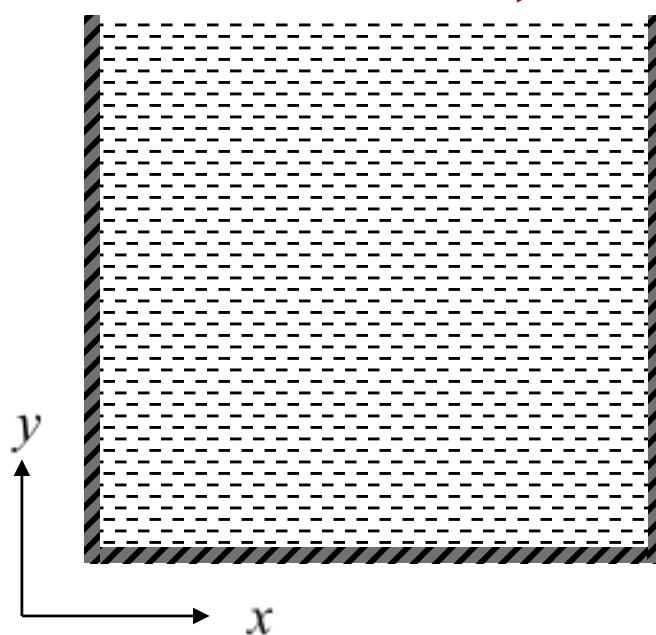
University

Numerical Test: Lid-driven Cavity Flow

Initial conditions

ρ	U	u	v
1.0	0.1	0.0	0.0

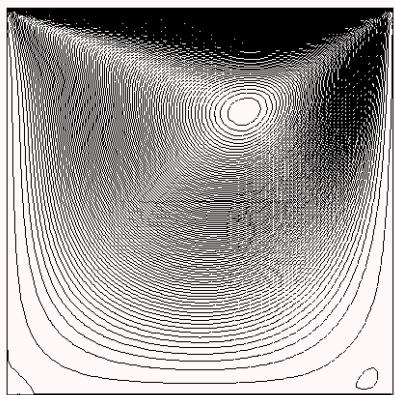
$$u = U$$



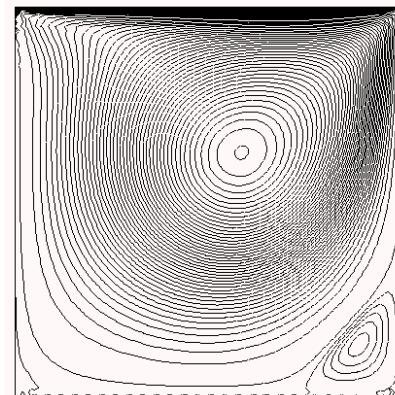
$$Re = \frac{UL}{\nu}$$

$$\tau = 3\nu + 0.5$$

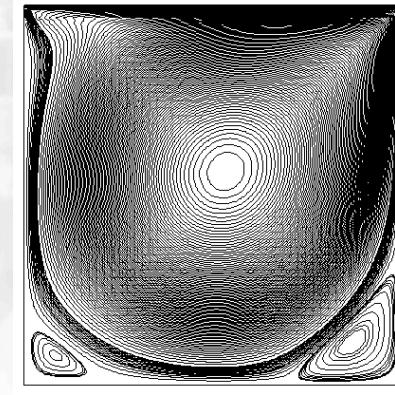
Re	Mesh	τ
100	45 x 45	0.635
400	45 x 45	0.511
1000	45 x 45	0.505
3200	45 x 45	0.504
3200	101 x 101	0.509



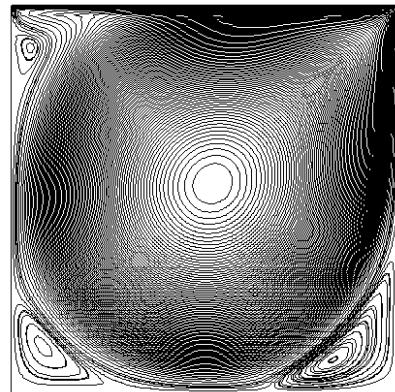
Re = 100



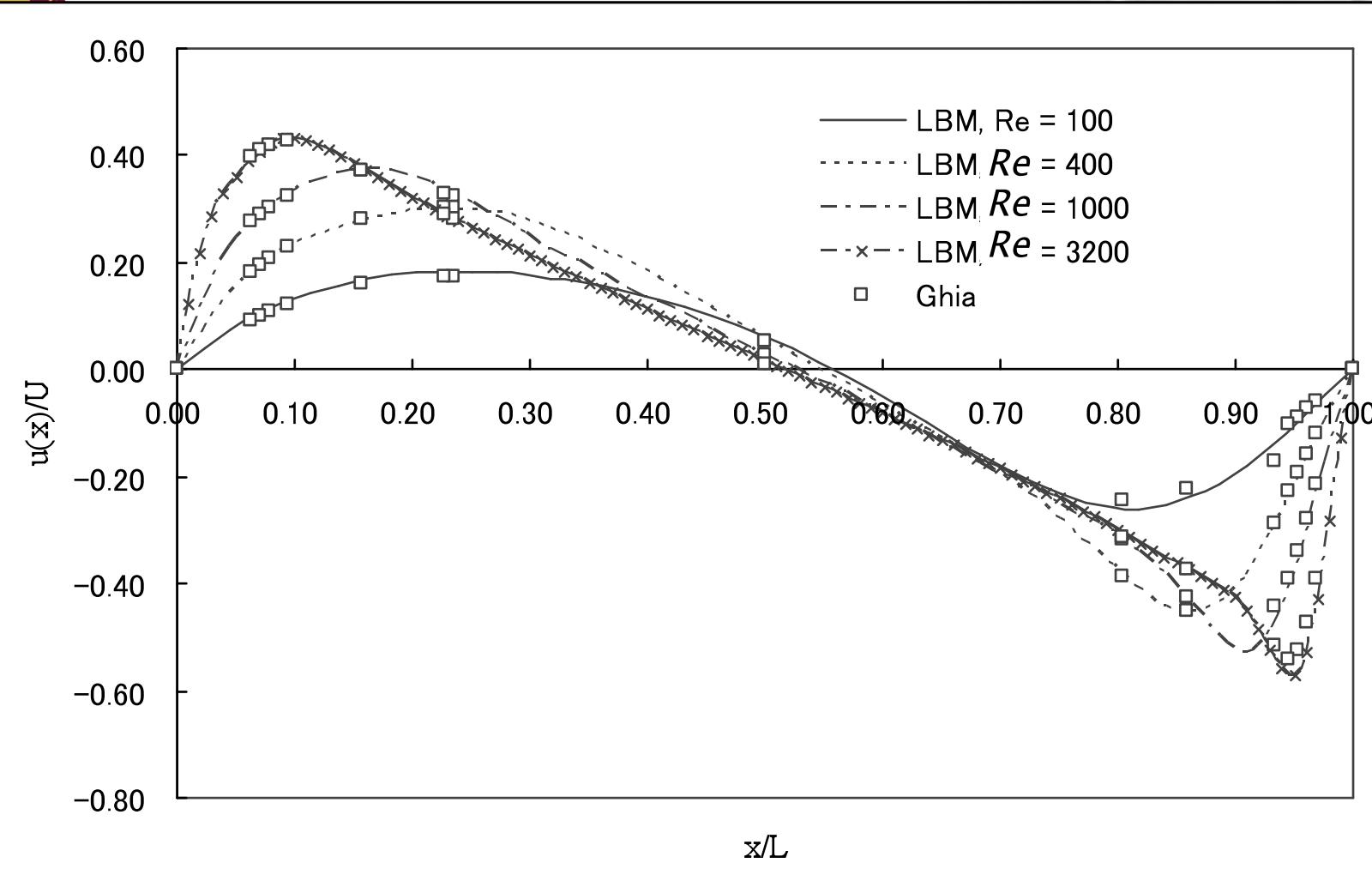
Re = 400



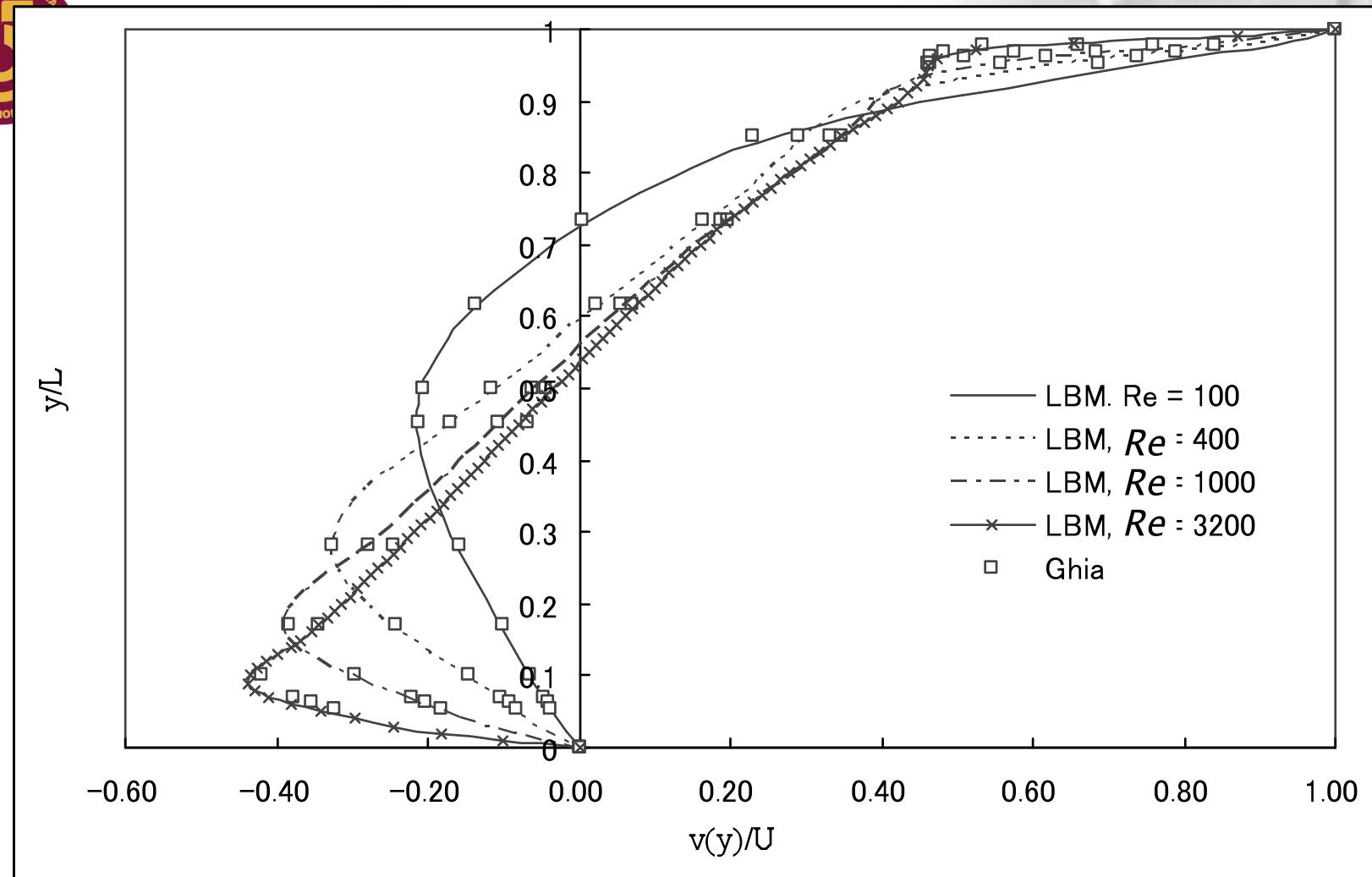
Re = 1000



Re = 3200

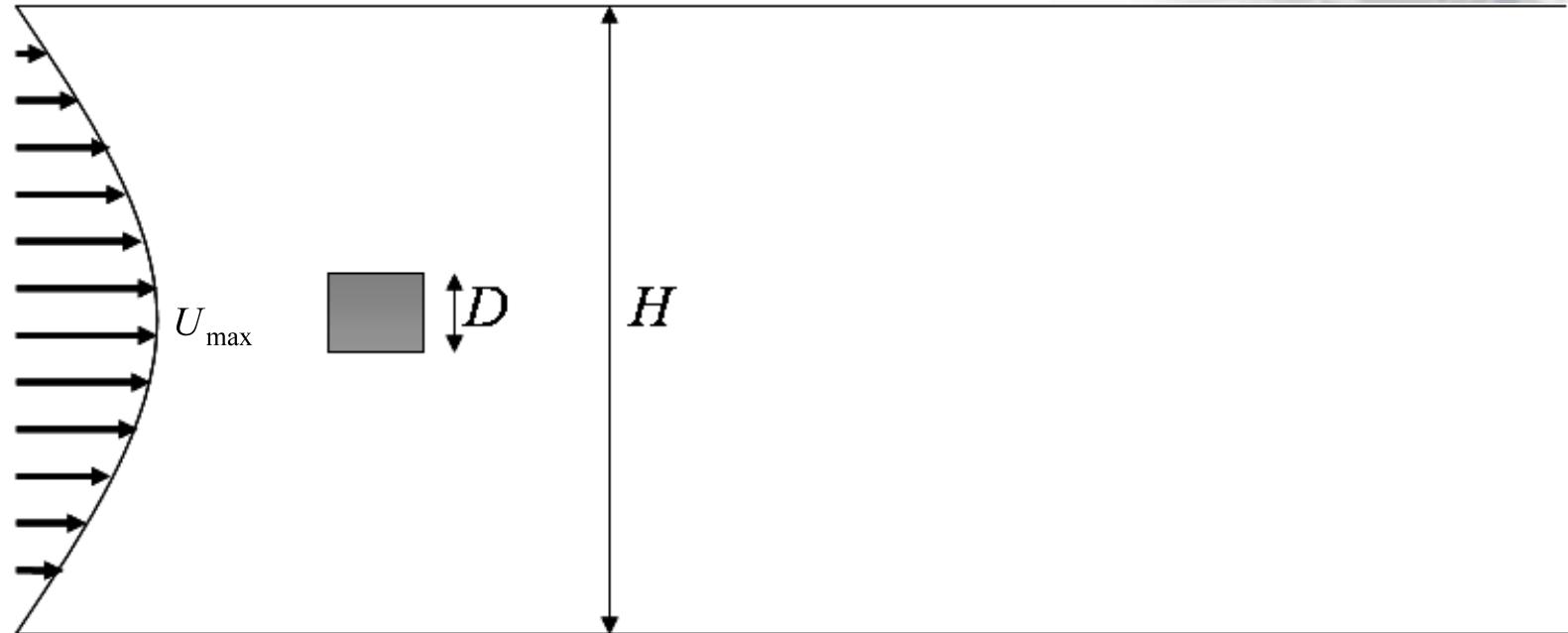


Graph: Plots of normalized vertical velocity.



Graph: Plots of normalized horizontal velocity.

Numerical Test: Flow around rectangular cylinder



Blockage ratio: $\frac{D}{H} = 0.125$

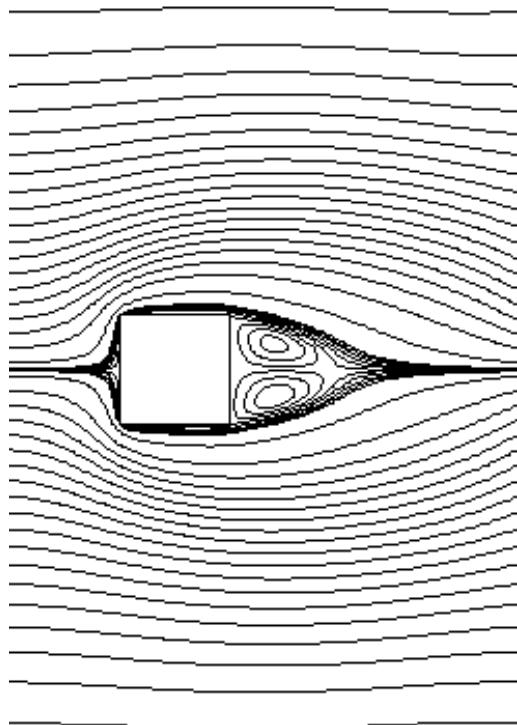
$$Re = \frac{U_{\max} D}{\nu}$$

Reynolds number:

UNIVERSITY TEKNOLOGI MALAYSIA
Malaysia's Premier University In Engineering and Technology

www.utm.my

i) Length of trailing recirculation



M. Breuer, Intl J. Heat and Fluid Flow, 21 (2000)
pp. 186

$$\frac{L_r}{D} = -0.065 + 0.0554 \text{Re}$$

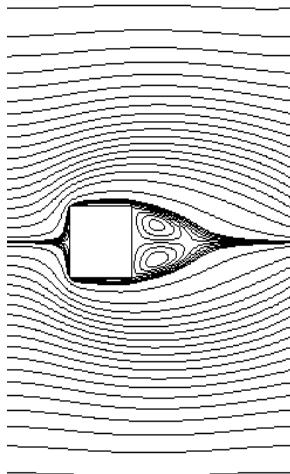
Present simulation

$$\frac{l_r}{D} = -0.2668 + 0.0692 \text{Re}$$

www.utm.my

ii)

Critical Reynolds number



M. Breuer, Intl J. Heat and Fluid Flow, 21 (2000)
pp. 186

$$Re_c = 60$$

A. Okajima, J. Fluid Mechanics, 33 (1990) pp. 171

$$Re_c = 70$$

K. M. Klekar and S. V. Patankar, Intl. J. Numer. Method Fluid, 14, (1992) pp. 327

$$Re_c = 54$$

W. B. Guo et al, Chinese Physics ,12 (2003)
pp.67

$$Re_c = 60 - 62$$

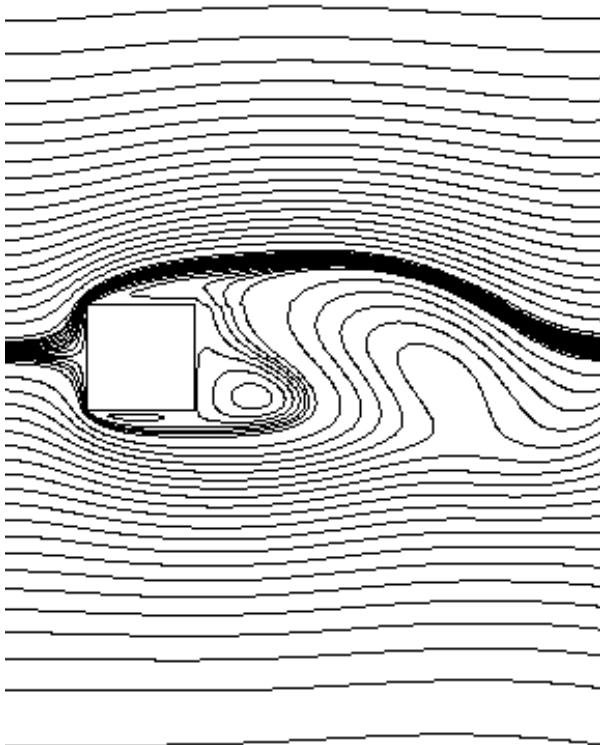
Present simulation

$$Re_c = 53$$

www.utm.my

iii)

Leading edge separation



M. Breuer, Intl J. Heat and Fluid Flow, 21 (2000)
pp. 186 Re = 100 – 150

W. B. Guo et al, Chinese Physics ,12 (2003)
pp.67 Re = 133

K. M. Klekar and S. V. Patankar, Intl. J. Numer. Method Fluid, 14, (1992) pp. 327

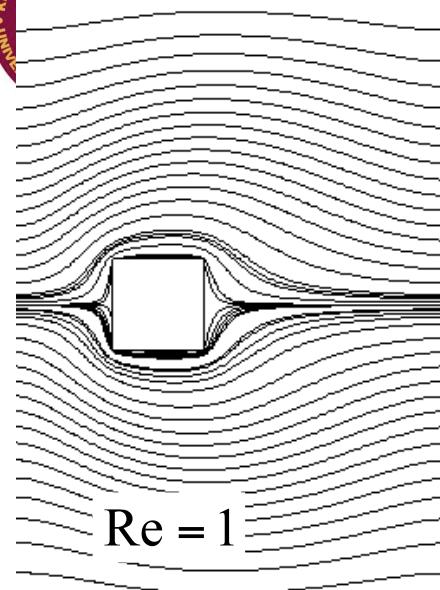
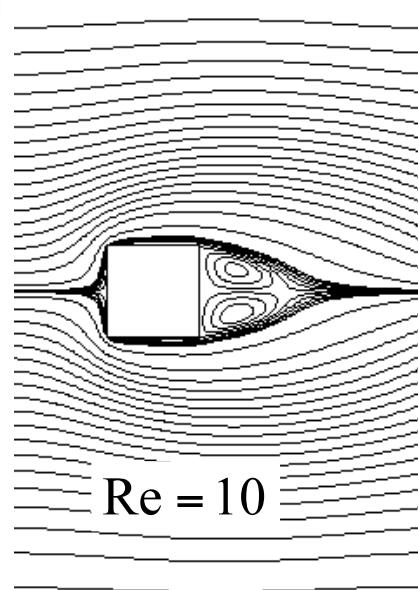
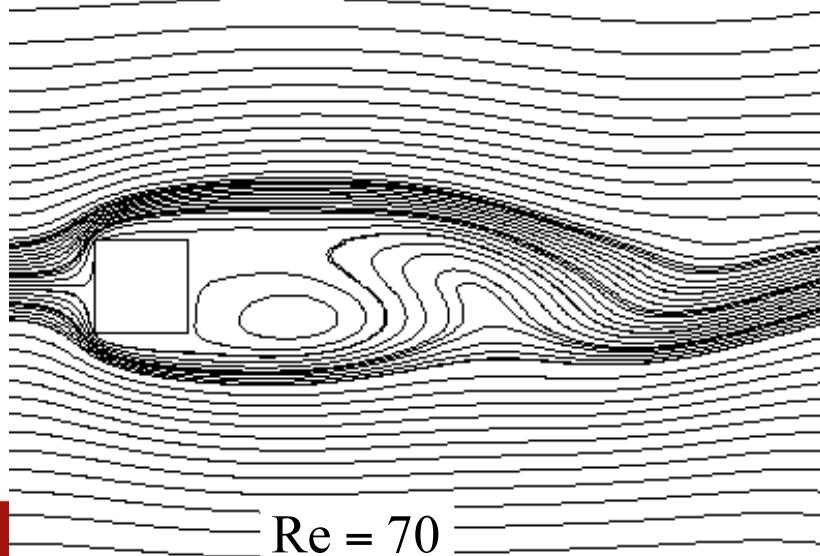
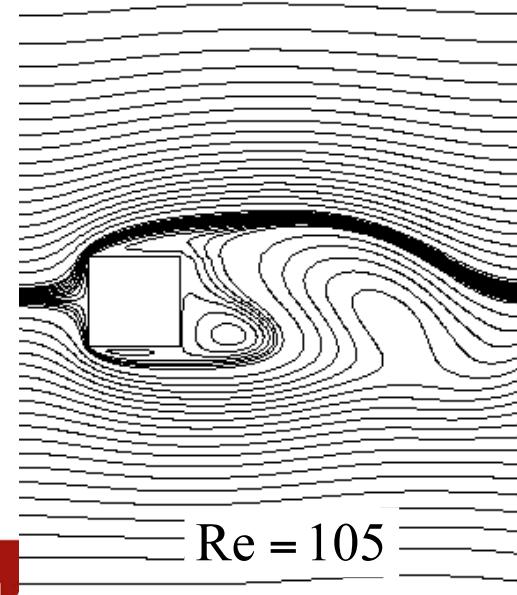
Re = 100 – 150

Present simulation

Re = 103

Flow pattern for various Reynolds numbers

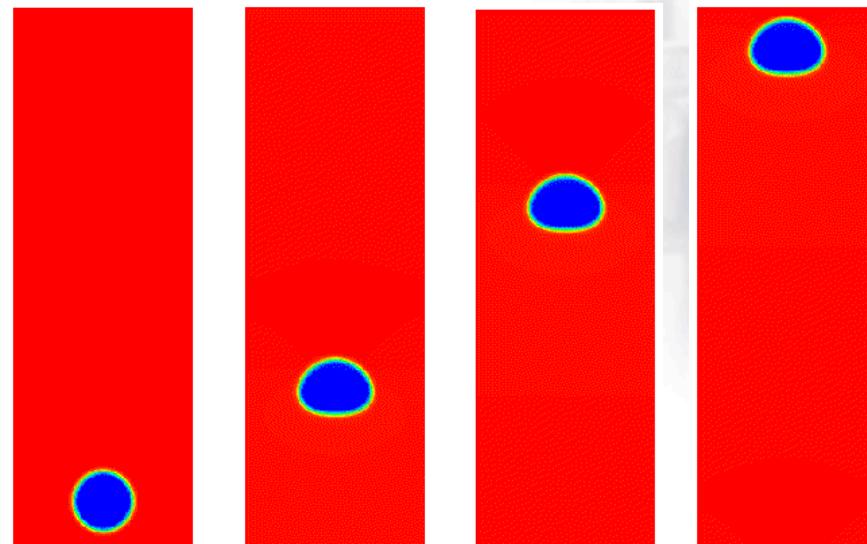
.utm.my



Multiphase flow

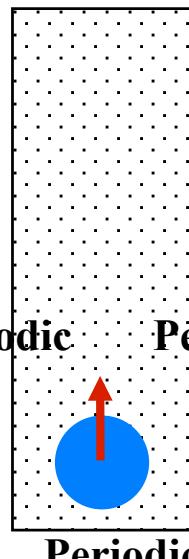
Morton Number , $Mo=10$

Bubble rises



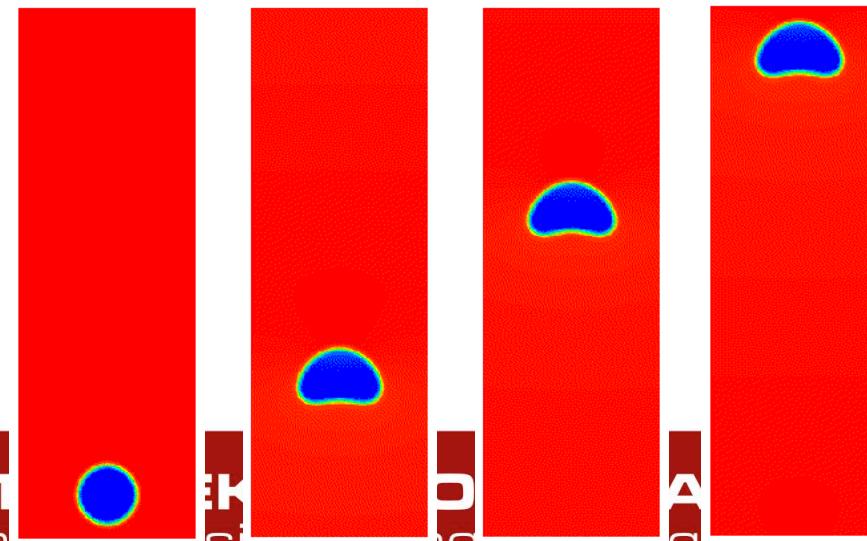
Model for simulation

Periodic



Morton Number , $Mo=20$

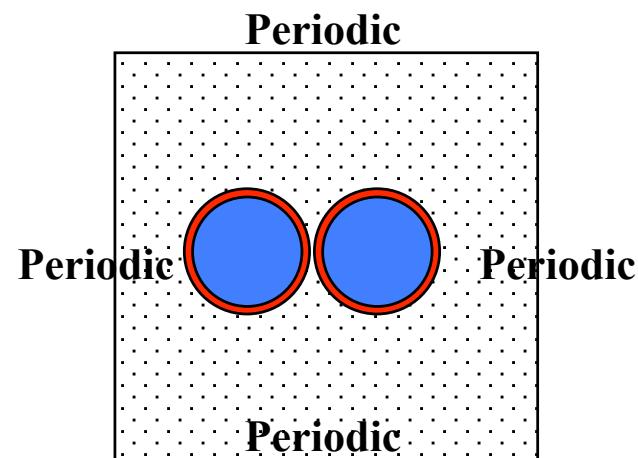
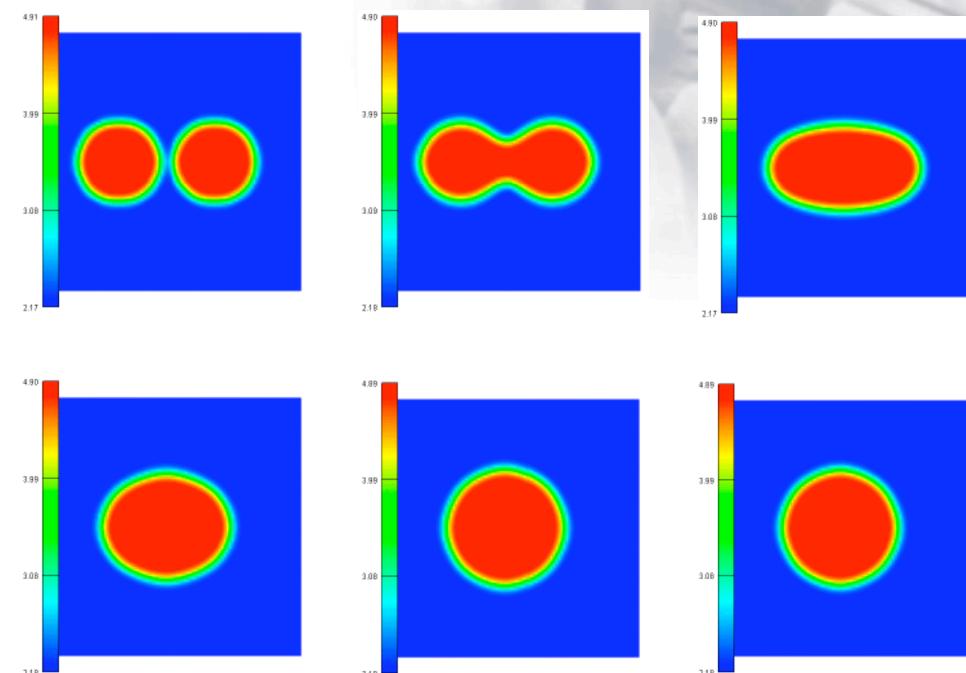
Periodic Periodic



Multiphase flow

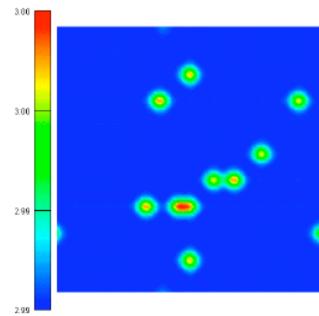
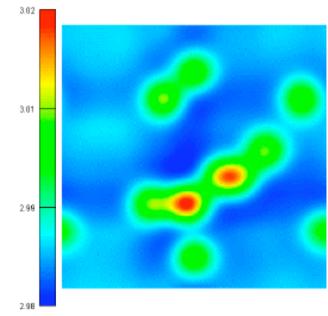
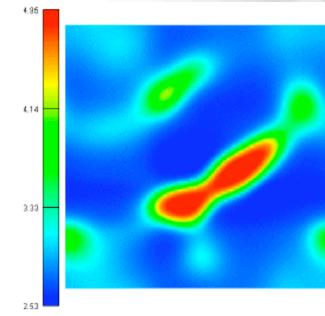
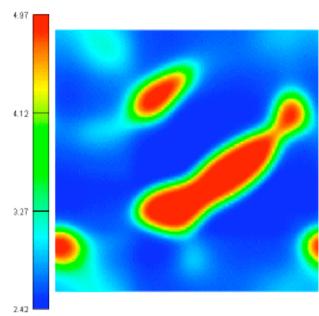
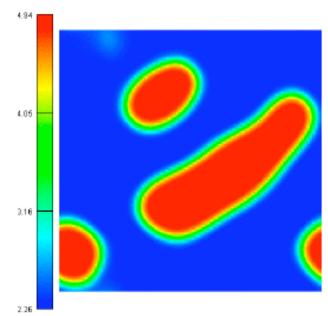
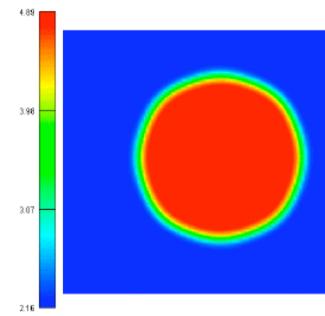
Bubbles Coalesce

Model for simulation



Multiphase flow

Phase separation



Thermal BGK Boltzmann equation

Energy distribution function to calculate temperature

$$\frac{\partial g_i}{\partial t} + \mathbf{c}_i \cdot \frac{\partial g_i}{\partial \mathbf{x}} = -\frac{g_i - g_i^{eq}}{\tau_g}$$

Equilibrium energy distribution function

$$g_i^{eq} = \rho T \omega_i [1 + 3(\mathbf{c}_i \cdot \mathbf{u})]$$

Macroscopic parameters

Density

$$\rho = \sum_i f_i d\mathbf{c} = \sum_i f_i^{eq} d\mathbf{c}$$

Velocity

$$\mathbf{u} = \sum_i \mathbf{c} f_i d\mathbf{c} = \sum_i \mathbf{c} f_i^{eq} d\mathbf{c}$$

Temperature

$$T = \sum_l g_l d\mathbf{c} = \sum_l g_l^{eq} d\mathbf{c}$$

Numerical Test: Thermal Porous Couette Flow

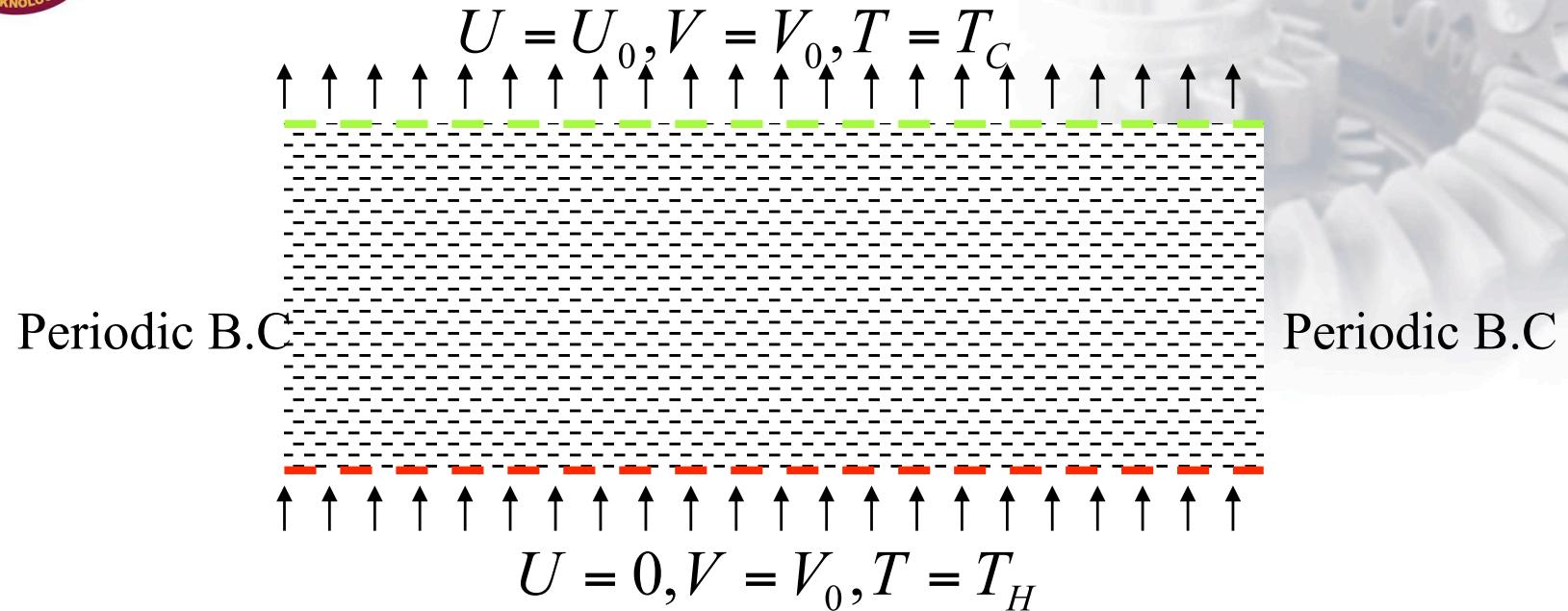
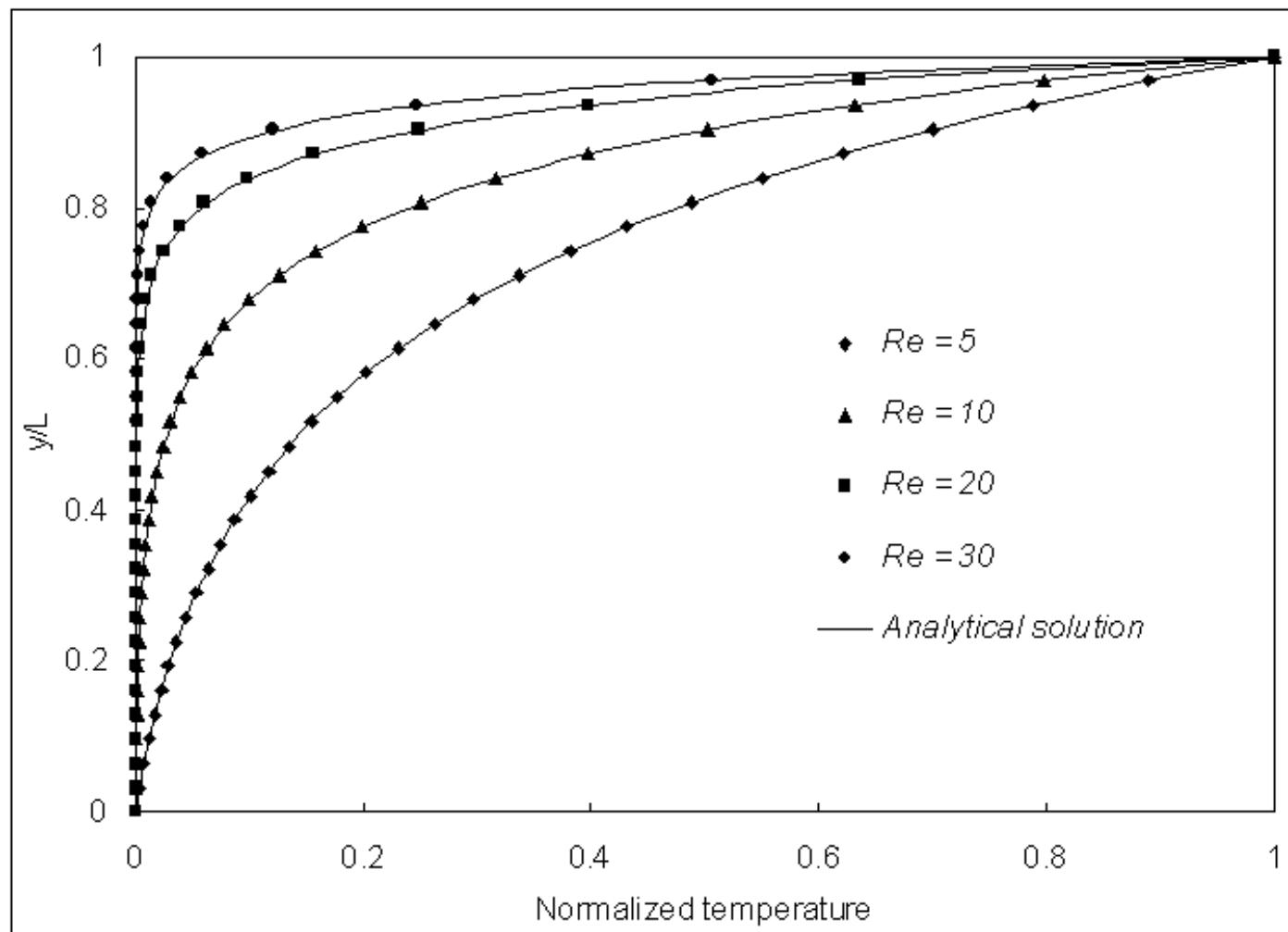


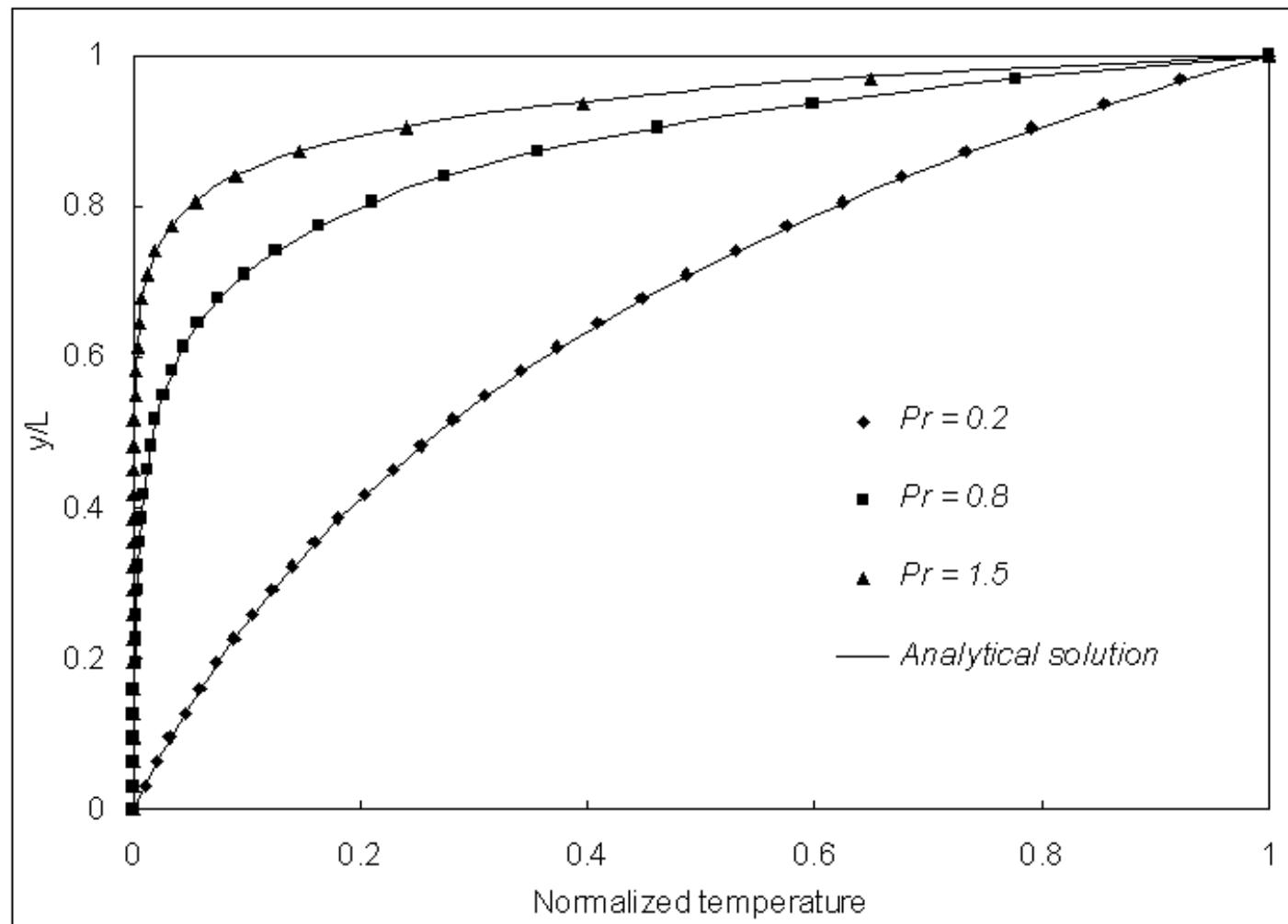
Figure: Simulation model for Couette flow

Analytical solution

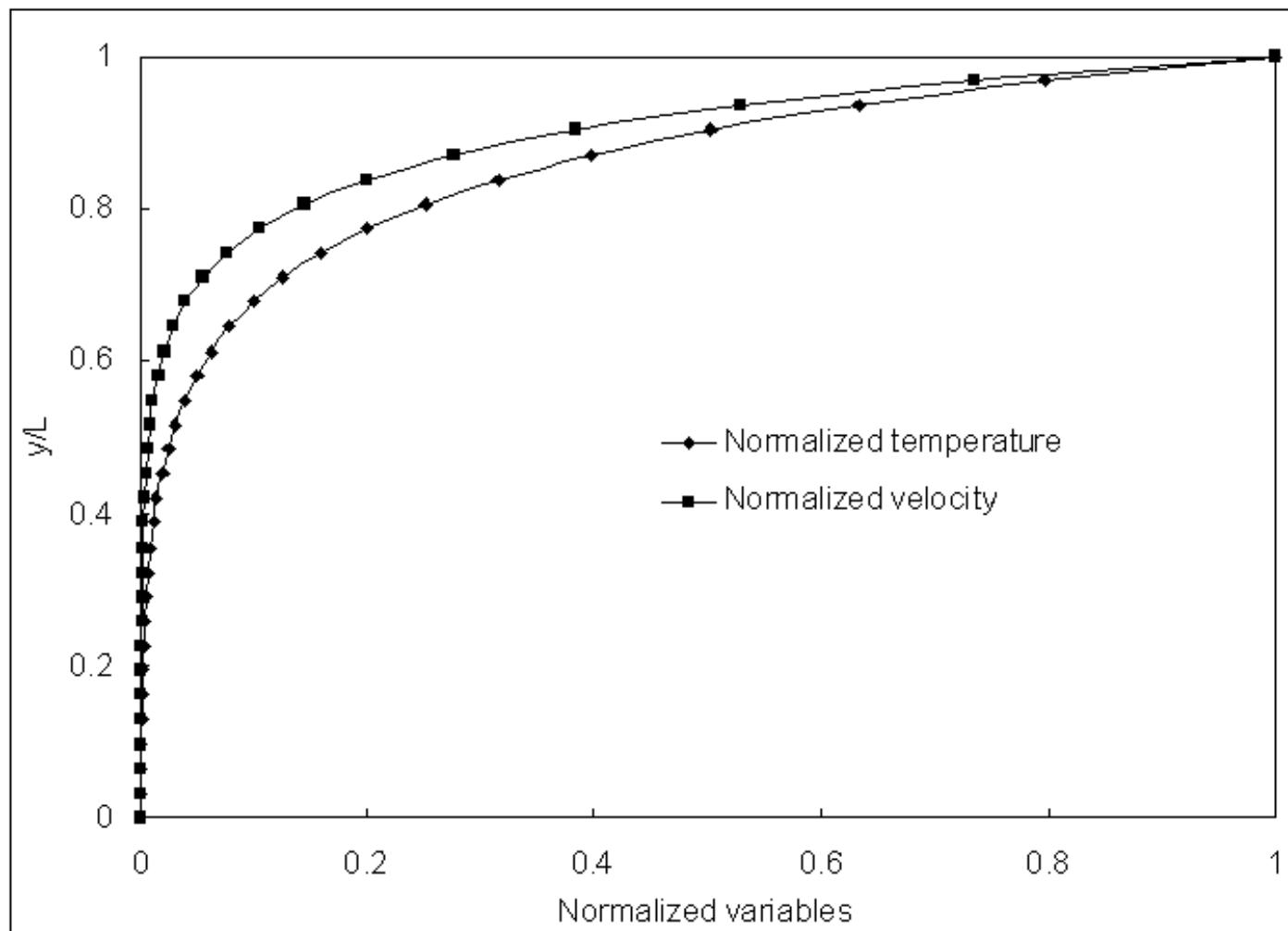
$$u = U_0 \left(\frac{e^{(\text{Re} y/L)} - 1}{e^{\text{Re}} - 1} \right), \quad T = T_C + \Delta T \left(\frac{e^{(\text{Pr Re} y/L)} - 1}{e^{\text{Pr Re}} - 1} \right)$$



Graph: Temperature profile at $Pr = 0.71$ and $Ra = 100$



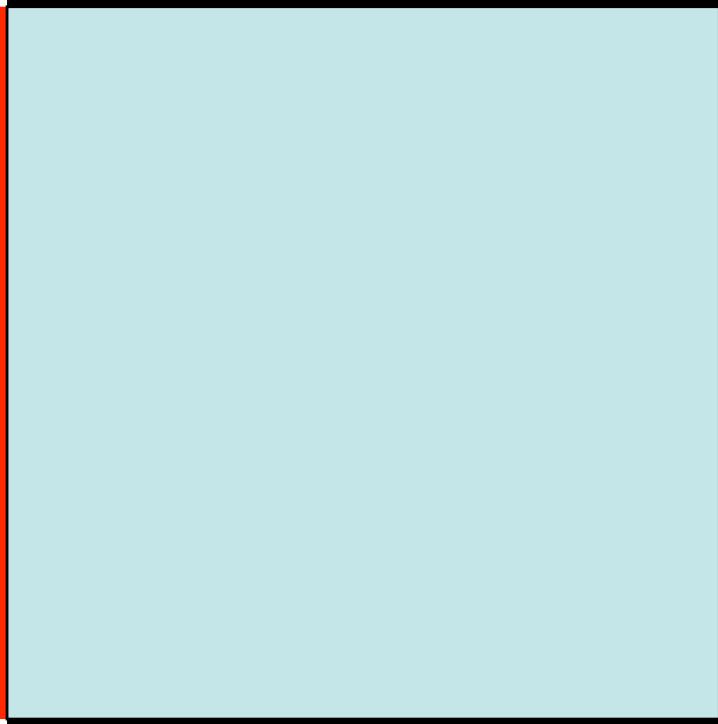
Graph: Temperature profile at $Re = 10$ and $Ra = 100$



Graph: Temperature profile at $Re = 10$, $Pr = 0.71$ and $Ra = 60000$

Numerical Test: Natural Convection in a Square Cavity

$$\frac{\partial T}{\partial y} = 0$$



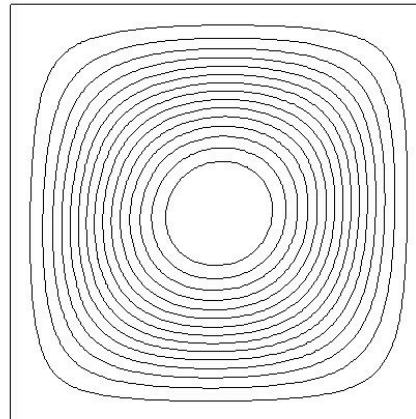
A diagram of a square cavity. The left vertical boundary is red and labeled $T = T_H$. The right vertical boundary is green and labeled $T = T_C$. The top and bottom horizontal boundaries are black.

$$T = T_H$$

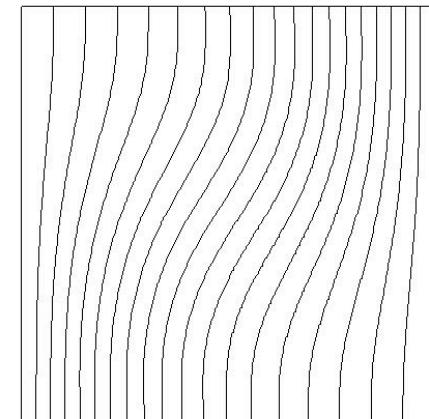
$$T = T_C$$

$$\frac{\partial T}{\partial y} = 0$$

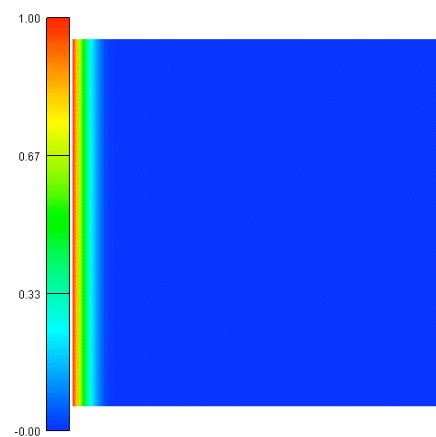
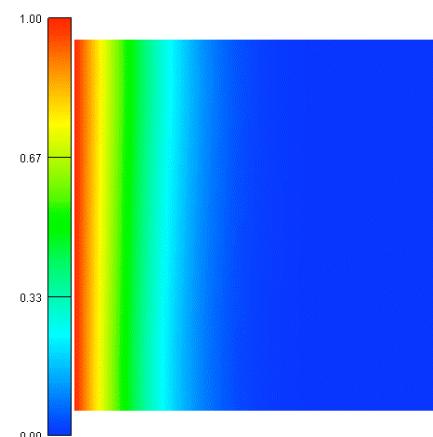
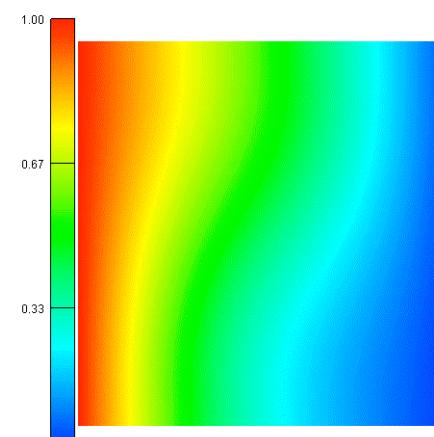
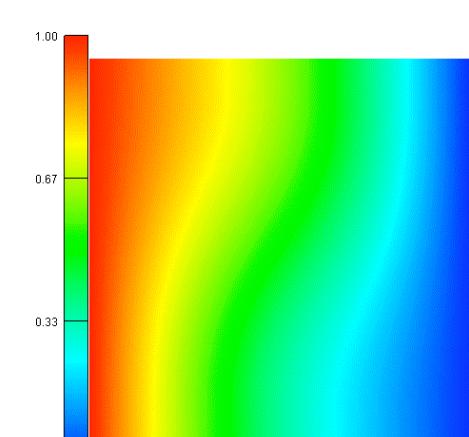
$$Ra = 10^3$$



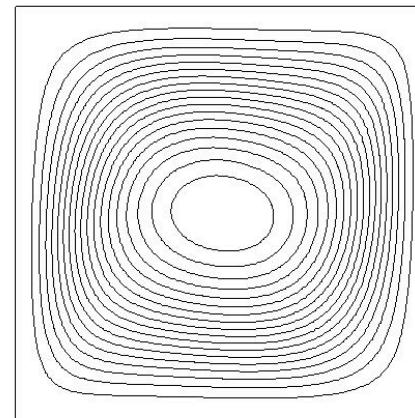
Streamline



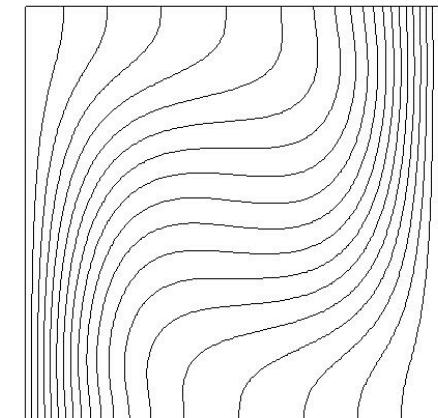
Isotherms



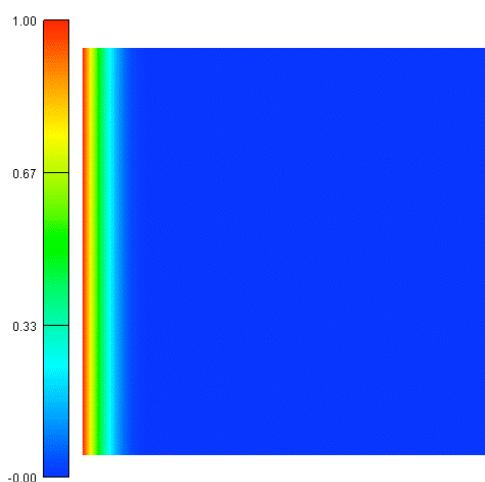
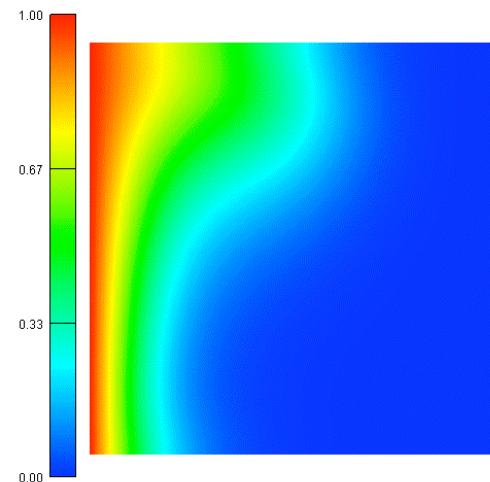
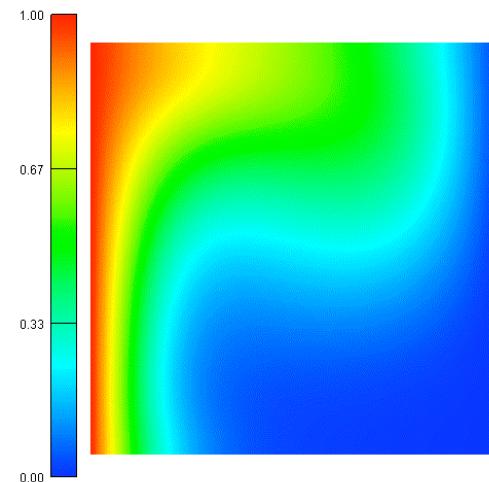
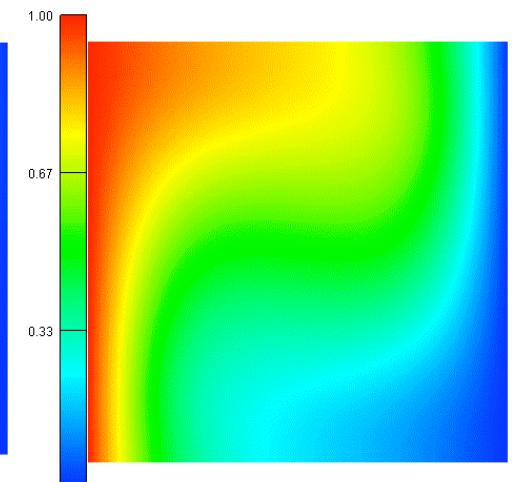
$$Ra = 10^4$$

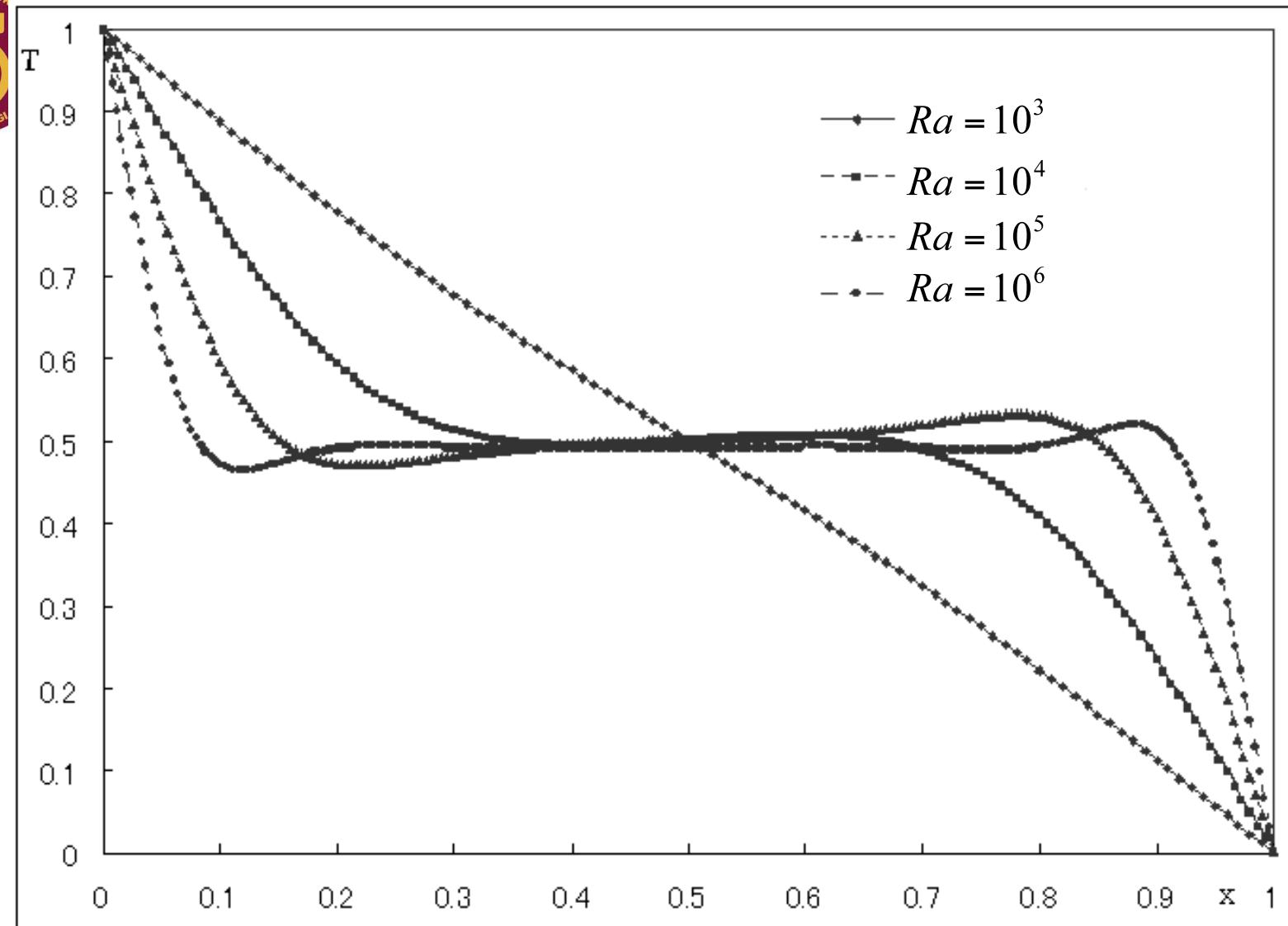


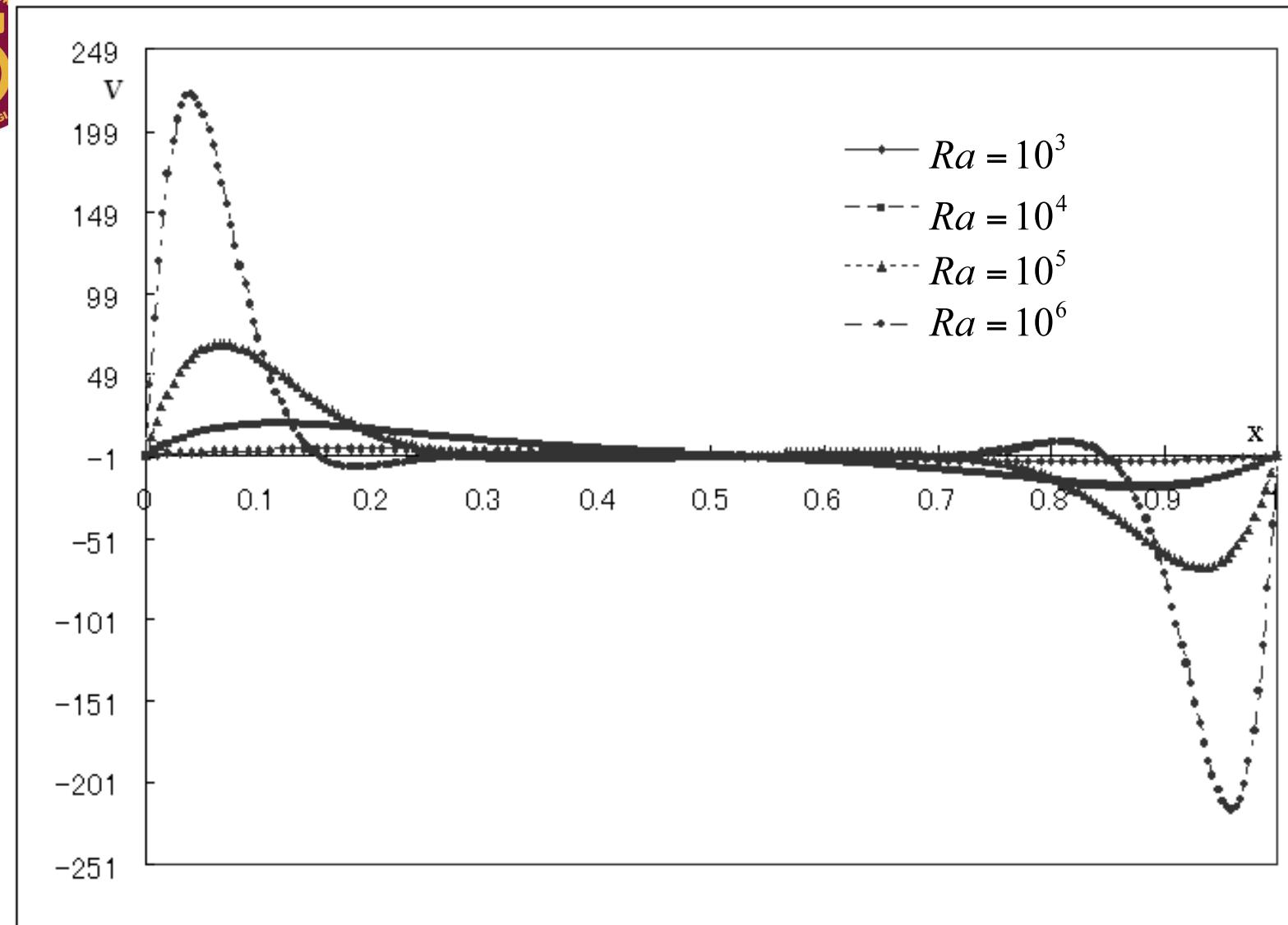
Streamline



Isotherms

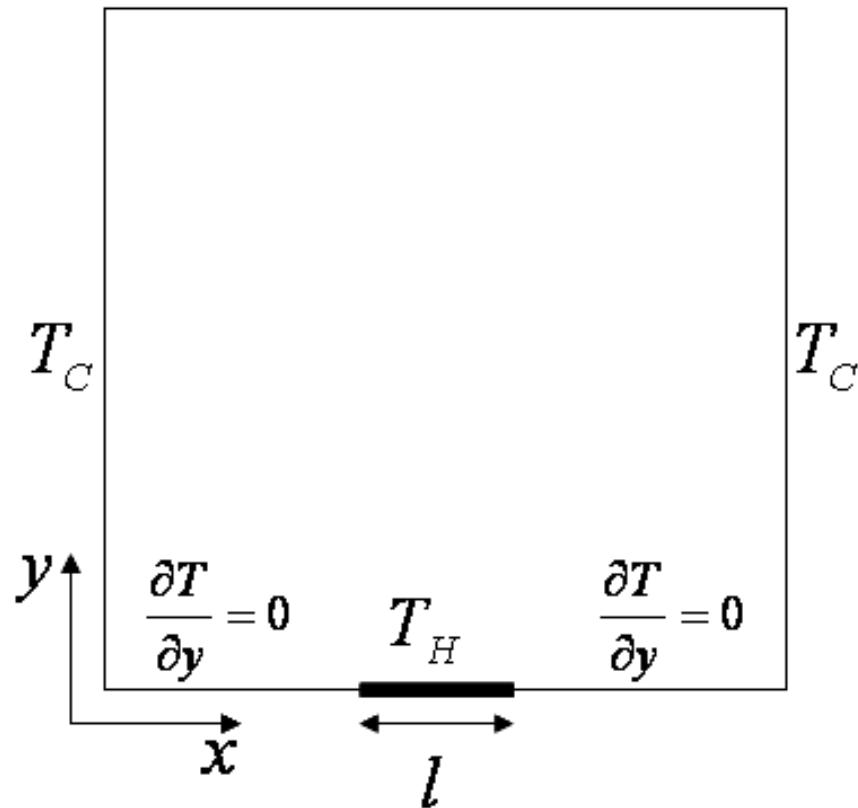


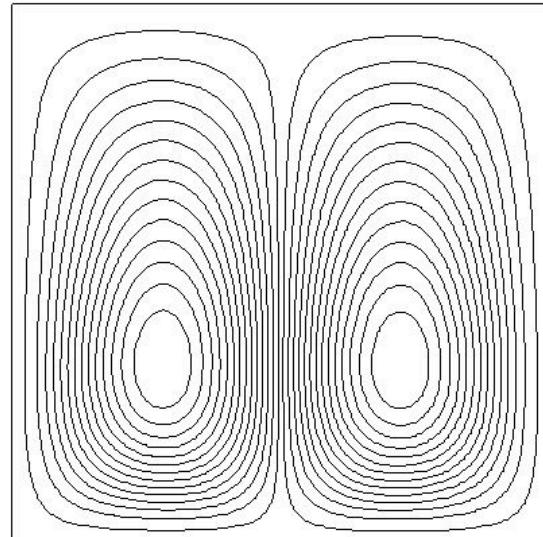




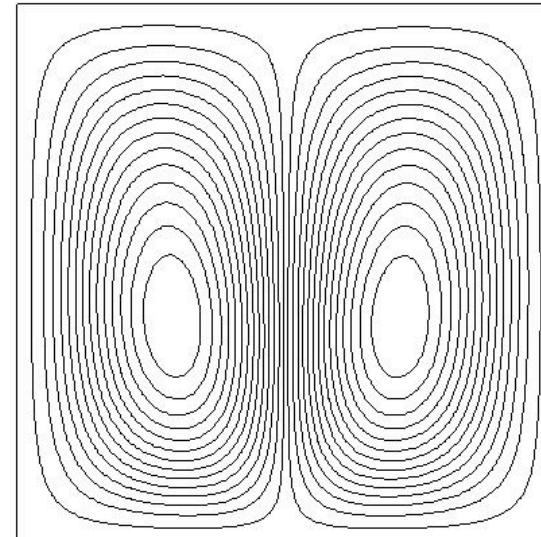
Numerical Test: localized heating

$$\frac{\partial T}{\partial y} = 0$$

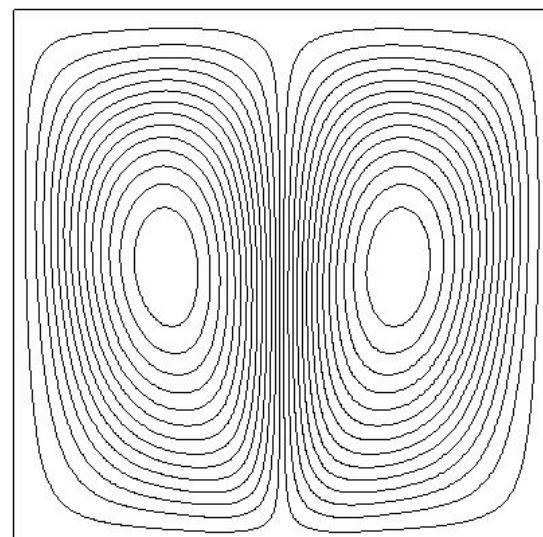




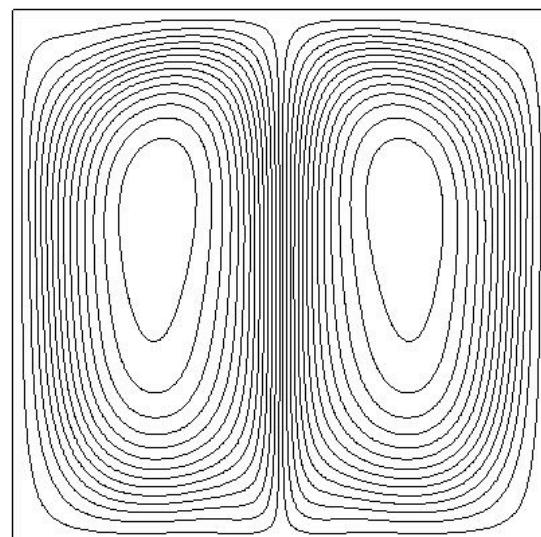
$Ra = 10^3$



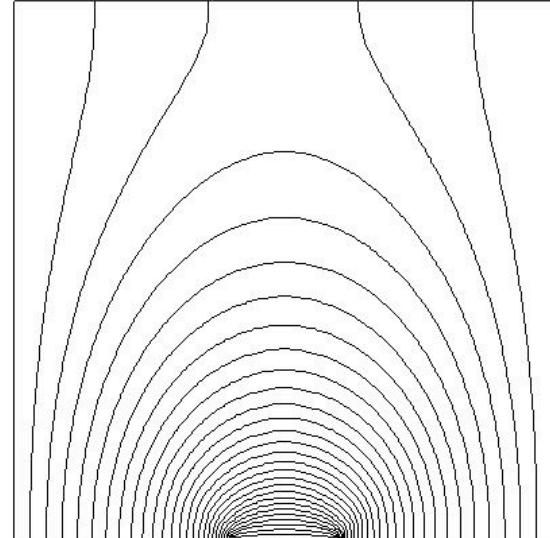
$Ra = 10^4$



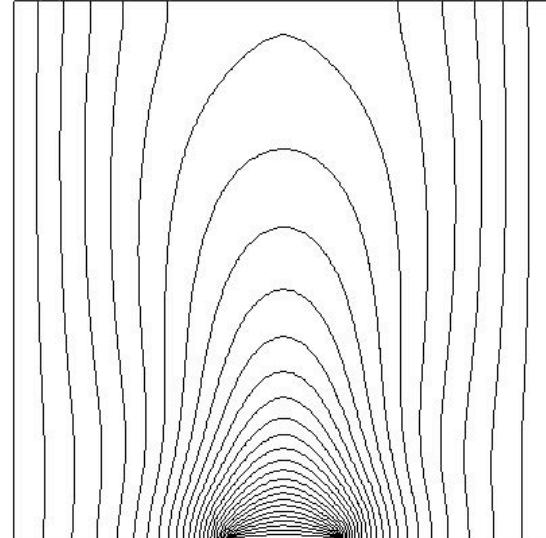
$Ra = 10^5$



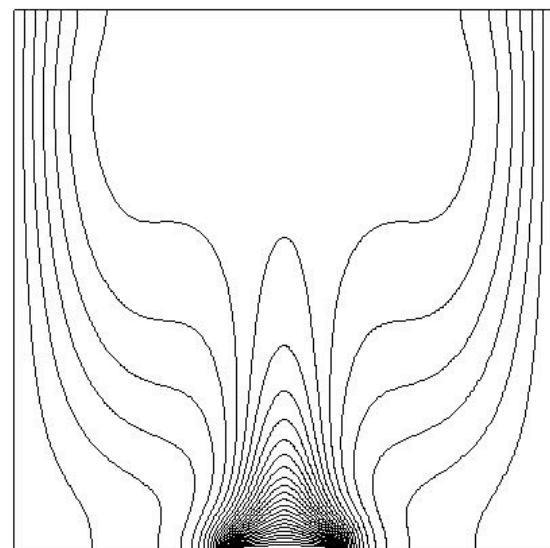
$Ra = 10^6$



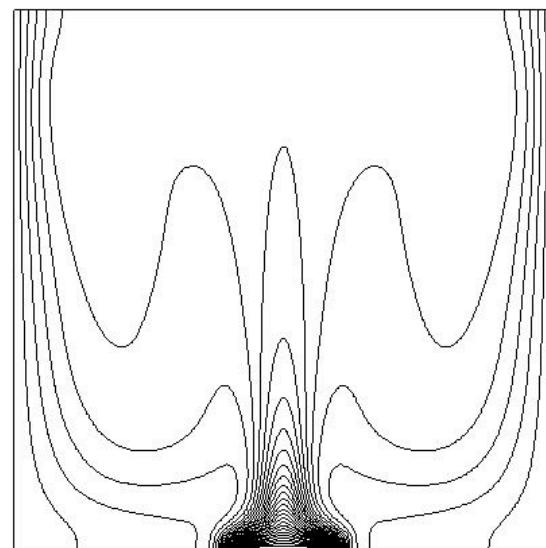
$Ra = 10^3$



$Ra = 10^4$

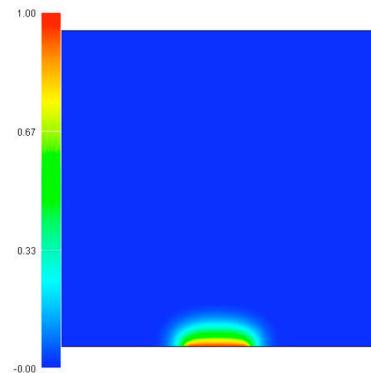
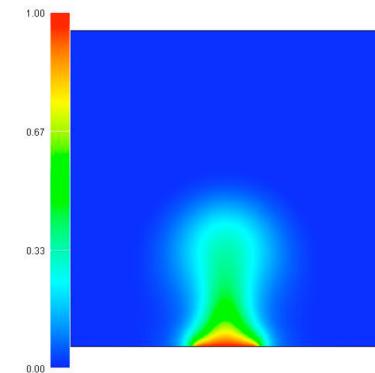
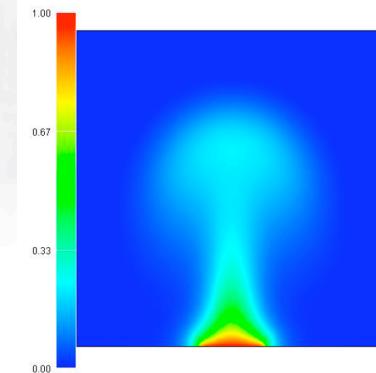
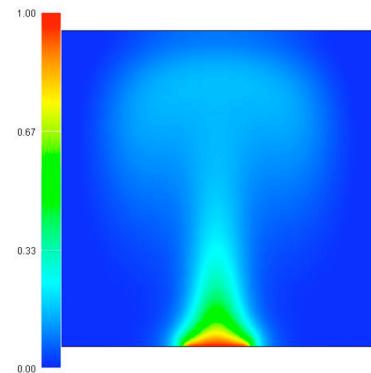
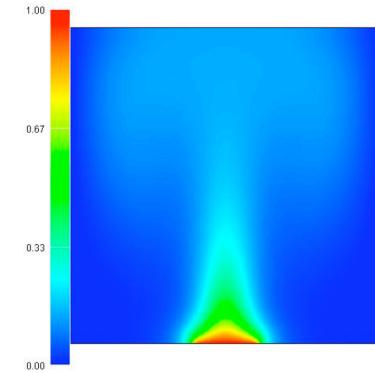
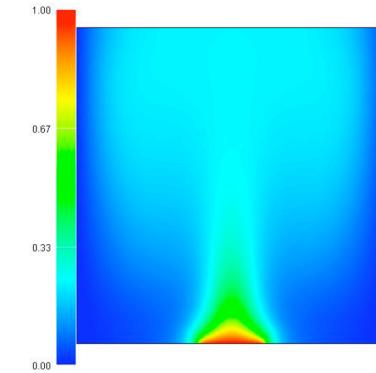


$Ra = 10^5$



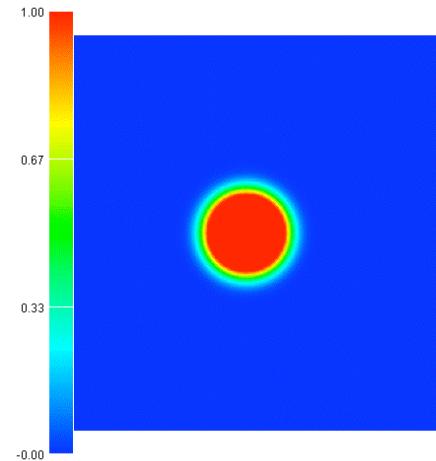
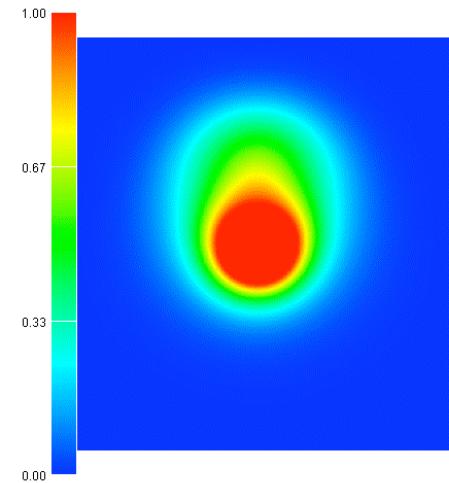
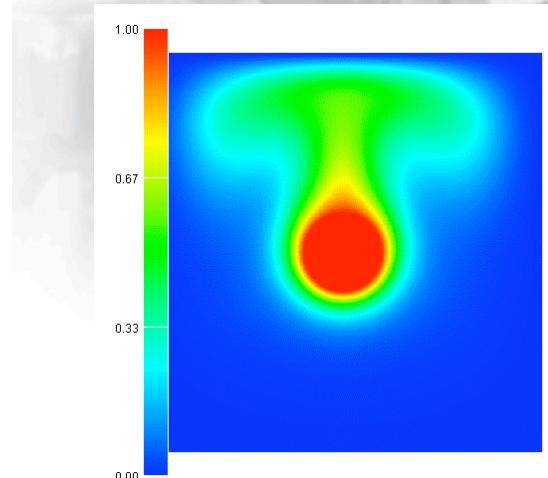
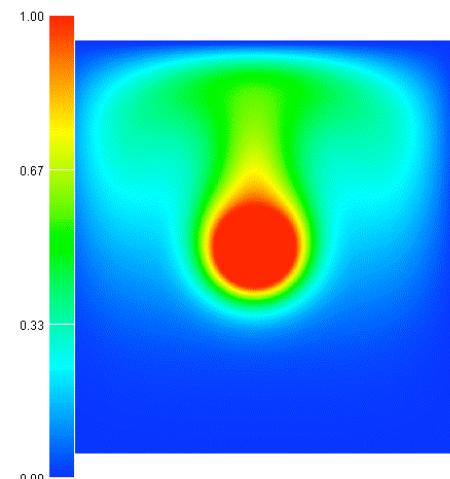
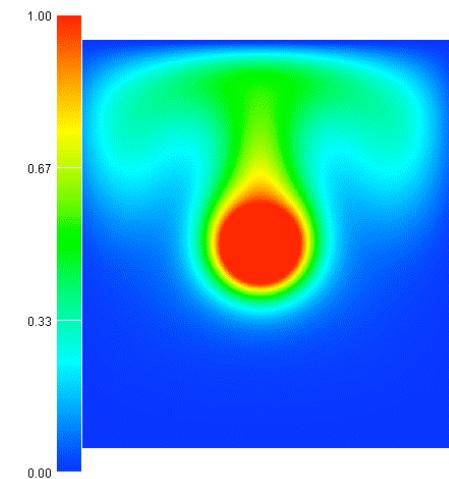
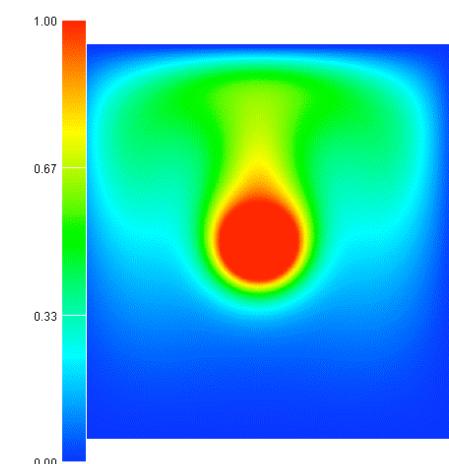
$Ra = 10^6$

www.utm.my



www.utm.my

Numerical Test: Heated cylinder in enclosure



Conclusion

- ❑ Only one simple equation required to simulate isothermal fluid flow (two equations for thermal fluid flow)
- ❑ Full momentum and energy equation can be derived from Boltzmann equations.
- ❑ Short and simple computer program source code.
- ❑ Program source code can be easily modified, etc

Future research

- Flow in nano-and micro-tube.
- Fluid structure interaction (flow behind fish motion).
- Droplet motion on inclined plate.

