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A numerical analysis for the irreversible process in an adiabatic piston-cylinder system 

has  been conducted. Two-dimensional compressible momentum and energy 
equations were solved numerically to obtain the state quantities of the system using 

the laminar flow model. The numerical method is based on the combined Implicit 
Continuous-fluid Eulerian technique and the Arbitrary-Lagrangian-Eulerian method. 
The computations were performed for a  single compression process with the piston 

velocity of -10 m/s  for the effect of diameter cyl inder, D which are 0.02 m, 0.04 m and 
0.06 m. We found that, size of the diameter cyl inder has an effect to the occurrence of 
the i rreversible process. Increase the size of diameter of the cylinder will resulting to 

the increases of the average pressure on the piston surface, ps revp p  in the cylinder. 

The average va lue of ps revp p during the compression process for the case of the D = 

0.02 m, 0.04 m and 0.06 m are 1.00026, 1.00042, and 1.00057, respectively. 
Keywords:  
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1. Introduction 
 

Design of heat engines, energy devices in a power plant and thermo-fluid devices have increased 
the need for fundamental understanding of thermodynamics for the advance of energy and 
environmental technologies. A process of a compression or an expansion of a gas in a piston-cylinder 
system is common in many applications, however an irreversible process is not well understood [1-
6] In thermodynamics, state quantities at a final state in a reversible process can be determined. A 
reversible process may occur when a system is maintained continuously and thermally at an 
equilibrium state [7-10]. Therefore, the reversible process is also called a quasi-static or a quasi-
equilibrium process [8]. The process is reversible when a piston moves with zero velocity in a piston-
cylinder system.  

On the other hand, the thermal equilibrium state breaks in the system and the process becomes 
irreversible when the piston moves with infinite velocity. In general, we cannot determine the state 
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quantities at a final state in an irreversible process [9]. The only exception is a throttling process when 
a gas or a steam passes through a capillary tube or a porous material. For example, in an adiabatic 
throttling process, the specific enthalpy at the final state is identical to the specific enthalpy at the 

initial state. Then, the state quantities at the final state can be determined. This strictly highlighted 
in a thermodynamic textbook [9] that we can make calculations only for a reversible process. All the 

processes are no reversible processes. This is because, there is no process in nature that can be 
conducted in a very slow velocity for maintain the state in equilibrium state.  

In our previous study, Yusof et al., [11] performed numerical analysis for irreversible processes in 
a piston-cylinder system. The computations were performed for a single compression process and a 

single expansion process with the piston velocities of   1 m/s,  2 m/s,  4 m/s,  6 m/s,  8 m/s 
and  10 m/s and for cyclic compression and expansion processes with sinusoidal velocity variation. 

It is found that the piston velocities have effects on the state quantities of the piston-cylinder system 
and it experienced an irreversible process when the piston moved with a finite velocity. Furthermore, 

it was concluded that the process can be treated as a polytropic process and the polytropic exponent 
was approximately equal to the adiabatic exponent, n when the piston velocity was less than  10 

m/s. In the cyclic process of 10000 rpm, the internal energy increases 0.037 % of the compression 
work in each cycle. In 2019, Yusof et al., [12] solved the irreversible processes in a piston-cylinder 

system using turbulent flow. Surprisingly, our results show that the system experienced an 
irreversible process when the piston moved with a finite sinusoidal velocity, too. The revave pp  is 

greater than unity during 10 completed cyclic processes for all cases considered.  The value of 

revave pp at the end of the first cycle for the cases of N  = 10000 and 50000 rpm were about 1.00045, 

and 1.00463, respectively.  The value of revave pp at the end of each cycle increased in every cycle for 

all cases. Both of previous papers were analyzed an irreversible process in piston-cylinder system 
using a fixed diameter cylinder system, D = 0.04 m. Although study have recognized the state 
quantities of the irreversible process when the piston moved with a finite velocity, research has yet 
to systematically investigate the effect of the diameter cylinder on the state quantities of the 
irreversible processes in piston-cylinder system. Apart from that, the influence of the size of diameter 

on the irreversible process in piston-cylinder system. This is the motivation of the present study to 
conduct numerical analysis for an irreversible process in a piston-cylinder system. 

The objective of this paper is to investigate the effect of the diameter cylinder on the state 
quantities for the irreversible process in piston-cylinder system.  The numerical analysis is performed 
using the numerical method based on the combined technique of the Implicit Continuous-fluid 
Eulerian (ICE) technique and the Arbitrary Lagrangian Eulerian (ALE) method proposed by Amsden et 

al., [13]. The computations were performed for a single compression with constant piston velocities. 
 

2. Methodology  
2.1 Numerical Approach 

 

In the current research, the simulation code used is a combined technique of the Implicit 
Continuous-fluid Eulerian (ICE) technique and the Arbitrary Lagrangian Eulerian (ALE) method (ICED-
ALE method) proposed by Amsden et al., [13]. An Implicit Continuous-fluid Eulerian (ICED) technique 
has been proposed as an approach to solve the Navier-Stokes equations in multidimensional fluid 
dynamic [14-15] in the late of 70’s and 80’s. The ICE technique was the first method that removed 
the Courant stability limitation based on sound wave propagation and it is applicable to be use for all 
flow speeds with the same stability properties in the limit of zero Mach number. The advantages of 
these combination techniques of ICED and ALE method are, apart from applicable to flows for all 
speeds, they have an ability to fix arbitrary confining boundaries. The code was written in FORTRAN 
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and compiled in GFORTRAN COMPILER using Cygwin64 Terminal. Figure 1 shows the flow chart of 
ICED-ALE method for this research.  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 
 

 
Fig. 1. Flow chart of ICED-ALE method 

 
The computational domain is divided into quadrilateral cells with vertices labelled by integers

( , )i j , expressing the column i   and row j . The coordinates ( , )x y  and velocity components ( , )u v

are defined at the vertices of the cell and fluid variables such as pressures p, specific internal energy 
I, cell volumes V, and densities   or masses M are assigned at the cell centers. Figure 2 shows the 

assignment of the fluid variables at the cell center.  
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Fig. 2. The assignment of the fluid variables at the 
cell center 

 

Based on this ICED-ALE method in Figure 1, a flow where the dissipative, transport phenomena 
of viscosity, mass diffusion and thermal conductivity are neglected. The governing equations to be 

solved are; 
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Where  21/ 2e i u  , i  is the specific internal energy, g  is a body acceleration and ( , )p f I . Thus, the 

purposed of this computation are to obtain the fluid variables , pressures p , specific internal energies

i , densities  , and temperature T  at the next time step ( )t t  . Eq. (1) to Eq. (3) are the continuity, 

momentum and energy equations for 2D and incompressible fluid flow. These equations need to 
ingrate over a volume which may be moving with an arbitrarily prescribed velocity. The surface of V 
by surface, S and the outward normal on surface by n are expressed by,  
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Where U is the velocity of the surface, S. U=0 and U=u when the equations are Eulerian and 
Lagrangian, respectively. These are the finite difference method which the integration volumes are 
the cells of a moving mesh as shown in Figure 3.  The difference in integration volumes is determined 

by interpreting fluid densities and energies at cell centers while velocities are interpreted at cell 
vertices. 

 

 
Fig. 3. The dashed line represents the momentum 
integration volume used for vertex 4. The dotted is 
the used for specific vertex and cell finite difference 
equations listed in the text 

 
This ICED-ALE method consists of three phases, which are Phase 1, Phase 2 (first part), Phase 2 

(second part), and Phase 3. 
Phase 1 is to carry out for an explicit Lagrangian calculation in which the velocities field is updated 

by the effects of all forces. The velocities rising from this Lagrangian calculation are expressed as Lu  

and Lv . In this phase, the initializing process is conducted. Once satisfied at the beginning of the 
calculation, the support quantities include cell volumes, cell total energies and the mass assigned to 
vertices are automatically updated in the course of a calculation cycle. 

Phase 2 (first part) of this method is to obtain a velocity field that has been accelerated with time-
advanced pressure gradient. The time-advanced pressures depend upon on the densities and 

energies acquired when the vertices are moved with these new velocities, denoted as (’) symbol as 
shown in Figure 3. Thus, due to these are functions of the new pressures, the pressures are defined 

implicitly and must be specified by iteration. Implicit treatment is responsible to eliminate Courant-
like time step restriction to establish computational stability in incompressible flow. Let’s considered 

the desired pressure, L
Ap of cell A from Figure 3 to calculate the implicit problem. A superscript L is 

representing the time-advanced values, whereas, n is representing the values at the beginning of a 
cycle. There is the following correlation among the pressure, the density and the specific internal 

energy of cell A as 
 

 , 0L L L
A A Ap f i              (7) 

 
where the new cell density and energy can be defined in terms of their initial values as 
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n
L L
A A L

V

V
               (8) 

 
Eq. (8) is the Lagrangian expression of the continuity equation. 
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           (9) 

 
where 

A

nV  is the initial volume of cell A, and LV is the volume of the cell when the vertices are moving 

together during time from 0 to t  which is fluid velocity at t .  

Now, we will explain the corrected method for the Lagrangian pressure of cell A, L
Ap  in Eq. (7). In 

the case of an ideal gas, Eq. (7) can be rewritten as 
 

 , ( 1)  p f i i                           (10) 

 
The residual of the pressure p and the value of the function of f is denoted by s . The residual s can 

be expressed as 
 

 ,  ( ( 1)  )s p f i i                            (11) 

 
If the density  and the specific internal energy i are the converged values, the residual s is 0. 

However, the residual s is not 0 when the density and the specific internal energy are not converged 
values. Then substituting ,  and L L L

A A Ap i  into Eq. (12), the correction value of the pressure is obtained. 
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The new guessed value of L

Ap  can be obtained by applying a Newton-Raphson iteration into equation 

Eq. (7) and AS  is a relaxation factor. Compute a pressure change for each cell. The mesh is computed 

repeatedly until no cell exhibits a pressure change violating the inequality. 
 

max

p

p



                          (13) 

 

where maxp  is the actual maximum pressure in the mesh and   is a selected small number. Typically, 

  is order 310 . 

Phase 2 (second part) is responsible to calculate compression work. The final values of , ,L L Lu v p  

for Lagrangian velocities and pressures which obtained from the iteration method in the phase 2 (first 

part) are the new Lagrangian values for the cycles. The pressure works terms is ignored in the first 
part is now taken account to complete the cycle.  

The Lagrangian energy for cell A, L
AE  in Figure 3 is change according to 
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The pressure along the left edge of cell A are located between vertices 3 and 4. Thus, cell-edge 

pressure, 34p is obtained using the mass weighted method. 

 

34

L L
B A A B

A B

M p M p
p
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Phase 3 of this method is known as rezone and regrid process. Before the rezone calculations are 

begin, all vertex velocities need to convert to momentum and all cell specific internal energies are 

converted to total energies so that the rezone are calculated considering of the mass, momentum 
and energy. For example, if we moved vertex 4 in Figure 3 to the new position at the time 0, the lines 

connecting it to its neighbors 1, 3, 6 and 8 subtract volumes containing mass and total energy 
exchange between the adjacent cells (vertex 4 is locates at the center of the control volumes for 

these vertices). When vertex 4 is moved to the right, the grid line connecting 4 to 3 subtracts volume 
from cell A and adds to the cell B is 

 

4 3 4 3 4 4 4 3(2 [ ( ) ( )]
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                          (16) 

 
where 

4 4,U V are the rezoned velocities specified for the vertex. The mass subtracts from the cell A 

and adds to the cell B is 
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where  is the donor cell weighting factor. When 0  the flux is centered and 1  the flux is full 
donor cell. 1   is enough due to more stable and accurate.  

The energy subtracts from cell A and adds to the cell B is 
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Similar formula is computed for the exchange of mass and energy between the other couples of 
cells surrounding the vertex.  

If vertex 4 is located to a new position, it is also need to calculate by considering a momentum 
exchange between its neighbours 1, 3, 6 and 8. When vertex 4 is moved, the surface connecting 

vertices 4 and 2 subtracts  a volume as, 
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The momentum subtracts from vertex 1 and added to vertex 3. The mass in this volume is ( / )A AM V V

and the u - momentum it contains is expressed as 
 

3 1

1
( ) ( ) ( )

2

A

A

M
Mu V V u V V u

V
           

                   (20) 

 
Similar formula is computed for the exchange of momentum between the other couples of vertex (3, 
6), (6, 8) and (8, 1). Eq. (20) also can be applied for v - momentum with replacing u in the equation. 
Finally, we obtain the specific internal energy subtracting the kinetic energy from the total energy 
and the pressure from the specific internal energy and the density. 
 
2.2 Description of the Problem and Conservation Equations 
 

The schematic diagram of the problem under consideration that assumes an insulated piston-
cylinder system filled with an ideal gas is shown in Figure 4. The analyses are based on the assumption 

of a single compression process, a single expansion process and a cyclic compression and expansion 
processes.  The piston is located at the bottom dead center (BDC) at 0t   and it begins to compress 

the gas with constant velocity at t = 0. Note that the constant piston velocity was used because we 

need to investigate fundamentals of reversible and irreversible processes occur during a single 
compression and expansion processes. The pressure and temperature of the gas increase because of 

the compression work by the piston. The piston stops when it reaches at the top dead center (TDC). 
For the case of the expansion process, the piston is located at the TDC at 0t  . The piston travels 

with the constant velocity, pu and it stops when it reaches at the BDC. For the case of cyclic 

compression and expansion processes, the piston travels with sinusoidal velocity variation. 
Compressible momentum and energy equations are solved numerically to obtain the pressure and 
temperature of the gas during the compression or expansion processes. The flow is assumed to be 
axisymmetric and laminar. The thermo physical properties of the fluid except the density are assumed 
to be constant.  The governing equations can be expressed as follows: 
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where 
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 is dissipation function described as follow 
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The equation of the state for the ideal gas is expressed as 
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where i  is the specific internal energy. At the initial state as the piston stops, the fluid is stationary, 
and both the temperature and pressure are uniform in the cylinder.  Furthermore, with the 

assumption of no slip boundary condition, the initial and boundary conditions can be expressed as 
follows:   

 
[Initial conditions] 

 
t< 0 : 0 vu , iTT  , ipp                       (28) 

 
[Boundary conditions] 
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on piston surface : puu  , 0v , 0 xT  

 
on 0x    : 0 vu , 0 xT                    (29) 

 
Attention will now be first focused on the calculation of the average values of the specific internal 

energy, temperature, density and pressure in the cylinder as follows: 
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where avei  is the mass-based average so that aveim  represents the internal energy of the gas in the 

piston-cylinder device. Note that these average values are a function of time. 
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Fig. 4. The schematic diagram of problem 

  
3. Results  

 
The computations were performed for the single compression process. The selected diameter 

parameters are D = 0.02 m, 0.04 and 0.06 m with TDCx = 0.004 m and BDCx = 0.044 m. The working 

fluid was air and it was assumed to be an ideal gas. The thermophysical properties of R = 287 J/(kgK), 
γ = 1.4, µ = 1.86210-5 Pas and λ = 0.0261 W/(mK) were used for the computations. The piston 

velocity, pu  was 10 m/s and fixed for the single compression process. The initial pressure and 

temperature for the compression case are 1.013105 Pa and 300 K.  
The effect of the size diameter of the cylinder system on the pressure and temperature for the 

compression process are investigated using a piston velocity, -10 m/s. During a reversible adiabatic 

process, the pressure, revp  and the specific volume, *v  is related by 

 

*

*
i

rev i

v
p p

v


 
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                       (31) 

  

where γ is the specific heat ratio, 
p vc c  , ip  and *

iv  are the pressure and the specific volume at the 

initial state. Yusof et al., [16] is presented the details on deriving an expression for the average 
pressure on the piston surface, psp  in an adiabatic piston-cylinder system during an irreversible 

compression process with finite piston velocity. 

The ratio of the average pressure on the piston surface, psp , to the pressure of the reversible 

adiabatic process, ps revp p  is plotted in Figure 5 and the ratio of the average pressure in the cylinder 

to the pressure of the reversible process pressure, ave revp p , is also plotted in Figure 5. As can be 

seen from figure, increase the size of diameter cylinder will resulting to the increases of the average 

pressure on the piston surface, /ps avep p  in the cylinder. The average value of ps revp p during the 

compression process for the case of the D = 0.02 m, 0.04 and 0.06 m are 1.00026, 1.00042, and 
1.00057, respectively.  
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Fig. 5. Pressure ratios, revps pp  and revave pp  vs v* of 

10pu  m/s for the size of diameter of 0.02 m, 0.04 m, 

and 0.06 m 

 
 

 
Fig. 6. rev,ff pp and rev,ff TT  vs pu  for compression process 

 
 
4. Conclusions 

 
In this paper, effect of the diameter cylinder on the state quantities of the irreversible processes 

in piston-cylinder system has been analysis using ICED-ALE method. The following conclusions are 
obtained. 

 
1. The system experienced an irreversible process due to the viscous heat generation occurs 

during the process. 
2. The results show that increase of the size of diameter cylinder will resulting to the increases 

of the average pressure on the piston surface, /ps avep p  in the cylinder.  

3. The average value of ps revp p during the compression process for the case of the D = 0.02 m, 

0.04 and 0.06 m are 1.00026, 1.00042, and 1.00057, respectively. 
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