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Continuous-fluid Eulerian technique and the Arbitrary-Lagrangian-Eulerian method.
The computations were performed for a single compression process with the piston
velocityof -10 m/s for the effect of diameter cylinder, Dwhich are 0.02 m, 0.04 m and
0.06 m. We foundthat, size of the diameter cylinder has an effect to the occurrence of
the irreversible process. Increase the size of diameter of the cylinder will resulting to
the increases of the average pressure on the piston surface, p,/p., inthe cflinder.
The averagevalue of p,/p,, duringthe compressionprocess forthe case of the D=
0.02 m,0.04 m and 0.06 m are 1.00026, 1.00042, and 1.00057, res pectively.
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1. Introduction

Design of heat engines, energy devices in a power plant and thermo-fluid devices have increased
the need for fundamental understanding of thermodynamics for the advance of energy and
environmental technologies. A process of a compression or an expansion of a gas in a piston-cylinder
system is common in many applications, however an irreversible process is not well understood [1-
6] In thermodynamics, state quantities at a final state in a reversible process can be determined. A
reversible process may occur when a system is maintained continuously and thermally at an
equilibrium state [7-10]. Therefore, the reversible process is also called a quasi-static or a quasi-
equilibrium process [8]. The process is reversible when a piston moves with zero velocity ina piston-
cylinder system.

On the other hand, the thermal equilibrium state breaks in the system and the process becomes
irreversible when the piston moves with infinite velocity. In general, we cannot determine the state
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guantities at afinal statein anirreversible process [9]. The only exception is a throttling process when
a gas or a steam passes through a capillary tube or a porous material. For example, in an adiabatic
throttling process, the specific enthalpy at the final state is identical to the specific enthalpy at the
initial state. Then, the state quantities at the final state can be determined. This strictly highlighted
in a thermodynamic textbook [9] that we can make calculations only for a reversible process. All the
processes are no reversible processes. This is because, there is no process in nature that can be
conducted ina very slow velocity for maintain the state in equilibrium state.

In our previous study, Yusof etal., [11] performed numerical analysis forirreversible processes in
a piston-cylinder system. The computations were performed for a single compression process and a
single expansion process with the piston velocities of + 1 m/s, +2m/s, £4 m/s, 6 m/s, + 8 m/s
and +10 m/s and for cyclic compression and expansion processes with sinusoidal velocity variation.
It is found that the piston velocities have effects on the state quantities of the piston-cylinder system
and it experienced anirreversible process when the piston moved with afinite velocity. Furthermore,
it was concluded that the process can be treated as a polytropic process and the polytropic exponent
was approximately equal to the adiabatic exponent, n when the piston velocity was less than + 10
m/s. In the cyclic process of 10000 rpm, the internal energy increases 0.037 % of the compression
work in each cycle. In 2019, Yusof et al., [12] solved the irreversible processes in a piston-cylinder
system using turbulent flow. Surprisingly, our results show that the system experienced an
irreversible process when the piston moved with a finite sinusoidal velocity, too. The p,,./Pre IS

greater than unity during 10 completed cyclic processes for all cases considered. The value of
Pae/ Prey @t the end of the first cycle for the cases of N =10000 and 50000 rpm were about 1.00045,
and 1.00463, respectively. The value of p,,./Pp,. atthe end of each cycle increased in every cycle for
all cases. Both of previous papers were analyzed an irreversible process in piston-cylinder system
using a fixed diameter cylinder system, D = 0.04 m. Although study have recognized the state
guantities of the irreversible process when the piston moved with a finite velocity, research has yet
to systematically investigate the effect of the diameter cylinder on the state quantities of the
irreversible processes in piston-cylinder system. Apart from that, the influence of the size of diameter
on the irreversible process in piston-cylinder system. This is the motivation of the present study to
conduct numerical analysis for anirreversible process in a piston-cylinder system.

The objective of this paper is to investigate the effect of the diameter cylinder on the state
quantities for the irreversible process in piston-cylinder system. The numerical analysis is performed
using the numerical method based on the combined technique of the Implicit Continuous-fluid
Eulerian (ICE) technique and the Arbitrary Lagrangian Eulerian (ALE) method proposed by Amsden et
al., [13]. The computations were performed for a single compression with constant piston velocities.

2. Methodology
2.1 Numerical Approach

In the current research, the simulation code used is a combined technique of the Implicit
Continuous-fluid Eulerian (ICE) technique and the Arbitrary Lagrangian Eulerian (ALE) method (ICE D-
ALE method) proposed by Amsden et al., [13]. An Implicit Continuous-fluid Eulerian (ICED) technique
has been proposed as an approach to solve the Navier-Stokes equations in multidimensional fluid
dynamic [14-15] in the late of 70’s and 80’s. The ICE technique was the first method that removed
the Courant stability limitation based on sound wave propagation and itis applicable to be use for all
flow speeds with the same stability properties in the limit of zero Mach number. The advantages of
these combination techniques of ICED and ALE method are, apart from applicable to flows for all
speeds, they have an ability to fix arbitrary confining boundaries. The code was written in FORTRAN
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and compiled in GFORTRAN COMPILER using Cygwin64 Terminal. Figure 1 shows the flow chart of

ICED-ALE method for this research.

Read input parameters compute derived &
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Setup cell variables
(p.i.v.m, p)

Calculate & for next cycle

Initialize Lagrangian quantities
For PHASE 1

]
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Store Lagrangian velocities
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e

Fig. 1. Flow chart of ICED-ALE method

The computational domain is divided into quadrilateral cells with vertices labelled by integers
(i, j), expressing the column i and row j. The coordinates (X,Y) and velocity components (u,V)

are defined at the vertices of the cell and fluid variables such as pressures p, specific internal energy
I, cell volumes V, and densities p or masses M are assigned at the cell centers. Figure 2 shows the

assignment of the fluid variables at the cell center.
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i, j+1

XV,

Fig. 2. The assignment of the fluid variables at the
cell center

Based on this ICED-ALE method in Figure 1, a flow where the dissipative, transport phenomena
of viscosity, mass diffusion and thermal conductivity are neglected. The governing equations to be
solved are;

p

—+V.pu=0 1
VP (1)
ag;tquV.puu =-Vp+ pg (2)
%+V.pEU =-V.pu+ pgu (3)

Where e=i+1/202, i is the specific internal energy, g is a body acceleration and p— (,,1). Thus, the
purposed of this computation are to obtain the fluid variables, pressures p , specificinternal energies
I, densities p, and temperature T at the next time step(t = At). Eq. (1) to Eq. (3) are the continuity,

momentum and energy equations for 2D and incompressible fluid flow. These equations need to
ingrate over a volume which may be moving with an arbitrarily prescribed velocity. The surface of V
by surface, S and the outward normal on surface by n are expressed by,

0
~lypdV ~Js p(U-u).nds =0 (4)
0
ajvpudV—jSpu(U—u).ndS +[, VpdV — [, pgdV =0 (5)
%fv pedV —[s pe(U —u).ndS +[s Vpu. ndS — |, pg. udv =0 (6)
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Where U is the velocity of the surface, S. U=0 and U=u when the equations are Eulerian and
Lagrangian, respectively. These are the finite difference method which the integration volumes are
the cells of a moving mesh as shown in Figure 3. The difference inintegration volumes is determined
by interpreting fluid densities and energies at cell centers while velocities are interpreted at cell
vertices.

Fig. 3. The dashed line represents the momentum
integration volume used for vertex 4. The dotted is
the usedfor specificvertex and cell finite difference
equationslistedinthe text

This ICED-ALE method consists of three phases, which are Phase 1, Phase 2 (first part), Phase 2

(second part), and Phase 3.
Phase 1isto carry out for an explicitLagrangiancalculationin which the velocities field is updated

by the effects of all forces. The velocities rising from this Lagrangian calculation are expressed as ut
and vt . In this phase, the initializing process is conducted. Once satisfied at the beginning of the
calculation, the support quantities include cell volumes, cell total energies and the mass assigned to
vertices are automatically updated in the course of a calculation cycle.

Phase 2 (first part) of this method is to obtain a velocity field that has been accelerated with time-
advanced pressure gradient. The time-advanced pressures depend upon on the densities and
energies acquired when the vertices are moved with these new velocities, denoted as () symbol as
shown in Figure 3. Thus, due to these are functions of the new pressures, the pressures are defined

implicitly and must be specified by iteration. Implicit treatment is responsible to eliminate Courant-
like time step restriction to establish computational stability inincompressible flow. Let’s considered

the desired pressure, pkof cell A from Figure 3 to calculate the implicit problem. A superscript L is

representing the time-advanced values, whereas, n is representing the values at the beginning of a
cycle. There is the following correlation among the pressure, the density and the specific internal
energy of cell A as

ph— f(h.ik)=0 (7)

where the new cell density and energy can be defined interms of their initial values as
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(8)

Eq. (8) is the Lagrangian expression of the continuity equation.

n L
ik :iR+p—ﬁ(1—V—nJ (9)
PA v

where vy is the initial volume of cell A, and vtis the volume of the cell when the vertices are moving
A

together during time from 0to At which is fluid velocity at At.
Now, we will explain the corrected method for the Lagrangian pressure of cell A, pk inEq. (7). In
the case of anideal gas, Eq. (7) can be rewritten as

p=f(pi)=(r-Dpi (10)

The residual of the pressure p and the value of the function of f is denoted bys. The residual s can
be expressed as

s=p-f(pi) E(r-Dpi) (11)

If the density pand the specific internal energy iare the converged values, the residual sis O.

However, the residual sis not 0 when the density and the specific internal energy are not converged
values. Then substituting pk, pk and i into Eq. (12), the correction value of the pressure is obtained.

L L il
Ap=-— Pa—f(pa.in) (12)

(Sa)

The new guessed value of pk can be obtained by applying a Newton-Raphson iteration into equation

Eq. (7) and S, is a relaxation factor. Compute a pressure change for each cell. The mesh is computed
repeatedly until no cell exhibits a pressure change violating the inequality.

Ap

Pmax

<e (13)

where Ppax is the actual maximum pressure in the mesh and ¢ is a selected small number. Typically,
¢ is order1072.
Phase 2 (second part) is responsible to calculate compression work. The final values of uL,VL, pL

for Lagrangianvelocities and pressures which obtained from the iteration method in the phase 2 (first
part) are the new Lagrangian values for the cycles. The pressure works terms is ignored in the first
part is now taken account to complete the cycle.

The Lagrangian energy for cell A, E,'g in Figure 3 is change according to
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e =en o Praf + B[ + 1)~ ¥2) + (4 +12) (0~ )]

A
+P,3(1y +13)[(Up +Ug)(Y2 - Y3) + (V2 +V3)(X5 — X2)]
+ P3g (13 +14)[(Ug +Ug ) (Y3 - Ya) + (V3 +Vy ) (X4 —X3)]
+ Pag (g + ) [(Ug +Up)(Yg - Y1) + (Vg +Vp) (3% — X4)]}

(14)

The pressure along the left edge of cell A are located between vertices 3 and 4. Thus, cell-edge
pressure, Pa4is obtained using the mass weighted method.

p34=MBpk+MApé (15)
Ma+Mg

Phase 3 of this method is known as rezone and regrid process. Before the rezone calculations are
begin, all vertex velocities need to convert to momentum and all cell specific internal energies are
converted to total energies so that the rezone are calculated considering of the mass, momentum
and energy. For example, if we moved vertex 4 in Figure 3 to the new position at the time 0, the lines
connecting it to its neighbors 1, 3, 6 and 8 subtract volumes containing mass and total energy
exchange between the adjacent cells (vertex 4 is locates at the center of the control volumes for
these vertices). When vertex 4 is moved to the right, the grid line connecting 4 to 3 subtracts volume
from cell A and adds to the cell B is

A
AV =?t(2r4+r3[U4(y3—y4)+V4(x4—x3)] (16)

where U,,v, are the rezoned velocities specified for the vertex. The mass subtracts from the cell A
and adds to the cell Bis

AM =1(Av+a|Av|)ﬂ+1(Av—a|Av|)% (17)
2 VA 2 VB

where « is the donor cell weighting factor. When « =0 the flux is centered and o =1the flux is full
donor cell. & =1 is enough due to more stable and accurate.
The energy subtracts from cell A and adds to the cell Bis

m+3(AV—05|AV|)m (18)
Vo 2 Vg
Similar formula is computed for the exchange of mass and energy between the other couples of
cells surrounding the vertex.
If vertex 4 is located to a new position, itis alsoneed to calculate by considering a momentum
exchange between its neighbours 1, 3, 6 and 8. When vertex 4 is moved, the surface connecting
vertices 4 and 2 subtracts a volume as,

A(Me) =%(AV PING

AV :%(2r4+r2[u4(y2—y4)+V4(X4—x2)] (19)
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The momentum subtracts from vertex 1 and added to vertex 3. The mass in this volume is (m, /v,)Av
and the u - momentum it contains is expressed as

A(Mu) =%%[(Av — | AV|)us + (AV + @AV (20)
A

Similar formula is computed for the exchange of momentum between the other couples of vertex (3,
6), (6, 8) and (8, 1). Eq. (20) also can be applied for v- momentum with replacing u in the equation.
Finally, we obtain the specific internal energy subtracting the kinetic energy from the total energy
and the pressure from the specific internal energy and the density.

2.2 Description of the Problem and Conservation Equations

The schematic diagram of the problem under consideration that assumes an insulated piston-
cylinder systemfilled with anideal gas is shown in Figure 4. The analyses are based on the assumption
of a single compression process, a single expansion process and a cyclic compression and expansion
processes. The piston is located at the bottom dead center (BDC) at t <0 and it begins to compress
the gas with constant velocity at t = 0. Note that the constant piston velocity was used because we
need to investigate fundamentals of reversible and irreversible processes occur during a single
compression and expansion processes. The pressure and temperature of the gas increase because of
the compression work by the piston. The piston stops when it reaches at the top dead center (TDC).
For the case of the expansion process, the piston is located at the TDC at t <0. The piston travels
with the constant velocity, upand it stops when it reaches at the BDC. For the case of cyclic

compression and expansion processes, the piston travels with sinusoidal velocity variation.
Compressible momentum and energy equations are solved numerically to obtain the pressure and
temperature of the gas during the compression or expansion processes. The flow is assumed to be
axisymmetric and laminar. The thermo physical properties of the fluid exceptthe density are assumed
to be constant. The governing equations can be expressed as follows:

., apu 1o

(21)

ot oX r or
6pu+8puu+16pruvz_@+_arxx+12(”m) (22)
ot OX r or OX OX ror
apv+aﬂ']v+16prvvz_@+%+12(rrrr)_@ (23)
ot OX r or or oX ror r
where
o gl 2feu 1y (v

S T3\ ax rar [P T T T )

ov 2(ou 1orv v 2(ou 1lorv

=pU2———| —+=— |}, Tgg = U 2———| —+—— 24

frr ﬂ{ or S(ax rarj} w ﬂ{ r 3(6x rarj} (24)
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) ) . 2 2
opi | pui 1dprvi _ (@A@)M OT 1T 0T, 4 (25)
ot X r or OX r or ox2 ror  or?

@is dissipation function described as follow

ou v 2(ou av) 2(au vy 2(ov v

p=|—+—| +=| —— | +=| ———| +=| ——— (26)
or ox 3\ox or 3\ox r 3\or r

The equation of the state for the ideal gas is expressed as

P (27)

where i is the specific internal energy. At the initial state as the piston stops, the fluid is stationary,
and both the temperature and pressure are uniform in the cylinder. Furthermore, with the
assumption of no slip boundary condition, the initial and boundary conditions can be expressed as
follows:

[Initial conditions]

t<0 :u=v=0,T=T, p=p (28)

[Boundary conditions]

onr=d/2 : u=v=0, dT/or=0

onr=0 : ou/or=0, v=0, dT/or =0

on piston surface : U=u,, v=0,dT/ox=0

on x=0 : u=v=0,0T/ox=0 (29)

Attention will now be first focused on the calculation of the average values of the specific internal
energy, temperature, density and pressure in the cylinder as follows:

pidv I 1 .
lave = J\J{/pw rTave = é_v\f » Pave = \7 j\/ pdV » Pave = (7_1) Pave lave (30)

where i,, is the mass-based average so that mi,, represents the internal energy of the gas in the
piston-cylinder device. Note that these average values are a function of time.
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Fig. 4. The schematicdiagram of problem

3. Results

The computations were performed for the single compression process. The selected diameter
parameters are D = 0.02 m, 0.04 and 0.06 m with X;pc =0.004 m and Xgpc = 0.044 m. The working
fluid was airand it was assumed to be anideal gas. The thermophysical properties of R = 287 J/(kgK),
y =14, u=1.862x10" Pas and A = 0.0261 W/(m-K) were used for the computations. The piston

velocity, u, was +10 m/s and fixed for the single compression process. The initial pressure and

temperature for the compression case are 1.013x10° Pa and 300 K.

The effect of the size diameter of the cylinder system on the pressure and temperature for the
compression process are investigated using a piston velocity, -10 m/s. During a reversible adiabatic
process, the pressure, Py, and the specific volume, v is related by

*\7/
V.
Prev = Pj (V_I*J (31)

where y is the specific heat ratio, » =Cp/Cys P and Vi* are the pressure and the specific volume at the

initial state. Yusof et al., [16] is presented the details on deriving an expression for the average
pressure on the piston surface, p,; in an adiabatic piston-cylinder system during an irreversible

compression process with finite piston velocity.
The ratio of the average pressure on the piston surface, p, , to the pressure of the reversible

adiabatic process, pps/ Prey is plotted in Figure 5 and the ratio of the average pressurein the cylinder

to the pressure of the reversible process pressure, P,/ Preyv , is also plotted in Figure 5. As can be

seen from figure, increase the size of diameter cylinder will resulting to the increases of the average
pressure on the piston surface, Pps I Paye in the cylinder. The average value of pps/ Prey during the

compression process for the case of the D = 0.02 m, 0.04 and 0.06 m are 1.00026, 1.00042, and
1.00057, respectively.
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4. Conclusions

In this paper, effect of the diameter cylinder on the state quantities of the irreversible processes

in piston-cylinder system has been analysis using ICED-ALE method. The following conclusions are
obtained.

1. The system experienced an irreversible process due to the viscous heat generation occurs
during the process.

2. The results show that increase of the size of diameter cylinder will resulting to the increases
of the average pressure on the piston surface, Pps I Paye inthe cylinder.

3. The average value of pps/ Prey during the compression process for the case of the D=0.02 m,

0.04 and 0.06 m are 1.00026, 1.00042, and 1.00057, respectively.
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