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commonly used to solve fluid flow problems without relying on the pre-existing
mesh structure. Recently, based on the MPS method, two new methods, i.e. the
Moving Particle Pressure Mesh (MPPM) and the Moving Particle Level-Set (MPLS)
methods have been developed in our research team to simulate single- and multi-
phase flow problems and meanwhile to obtain a smoother pressure field. In the
current work, the Open Multi Processing (OpenMP) library was used to parallelize
the MPLS code on a shared memory machine and the effects of parallelism on the
computation performances of MPLS were studied. The test case used to benchmark
the computation performance was the multi-phase problem, i.e. the problem
involving Rayleigh-Taylor Instability (RTI). The machine used in this work has 6
physical cores with 12 logical threads. The maximum speedup was 3.71x, which was
comparable to those achieved by similar particle methods such as Direct Simulation
Monte Carlo, Discrete Element Method, etc. Strong and weak scaling studies were
conducted and the memory access (cache hit rates) under different scheduling
patterns was investigated. It was found that the speedup and core performance of
the level-set function implemented in the MPLS code was relatively high.
Keywords:

CFD, MPS, MPPM, particle method,

OpenMP, Shared-memory machine Copyright © 2019 PENERBIT AKADEMIA BARU - All rights reserved

1. Introduction

Applications involving multiphase flow are abundant, e.g. refrigeration, flow boiling, haze
modelling, etc. As multiphase flow applications are being explored, numerical method such as the
Moving Particle Level-Set (MPLS) method has been developed to precisely simulate those
applications [1]. Similarly, in order to simulate large-scale problems, the need for increased
computational power becomes evident. This can be achieved through various parallelization
techniques such as those employing Message Passing Interface (MPI), Open Multi-Processing
(OpenMP) or Graphics Processing Unit (GPU) parallelization. Generally, the numerical methods
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designed for fluid flow simulation can be classified as Eulerian, Lagrangian or a hybrid of both. There
have been many works performed to parallelize these methods on shared-memory, distributed-
memory and hybrid machines using various types of parallelization techniques. Eulerian methods are
grid-based (grids can be adaptive or rigid), which are regarded as the classical methods in
computational fluid dynamics. Grid-based methods have been proven to be adequate for simulating
single-phase flow. Nevertheless, when these methods are adopted for simulating multi-phase
problems, there are difficulties in detecting the rapid changes of fluid interface [2]. The level-set
method [3] was used to capture the interface of different fluids. This method was then combined
with the Volume of Fluid (VOF) method in order to improve mass conservation [4]. Nonetheless,
Eulerian methods are less effective when they are used to compute multiphase flow with large
deformations. The Eulerian ROCFIRE code was parallelized on a 64-core shared-memory machine
using OpenMP and they have reported a speedup of 47x [5]. The domino approach was used to
parallelize the Moving Computational Domain method (MCD) using OpenMP [6]. The authors
reported a speedup of 1.34x and 4.81x out of 6-core and 20-core shared-memory machines,
respectively. Their work, along with that of [7], have shed some lights on the importance of data
locality and cache size effects on the computational performance. Asao et al. [6] reported that the
problem of low speedup was most likely caused by the huge communication cost between the
processor cores and the data storage locations. Usually, the matrix solver for the Pressure Poisson
Equation (PPE) consumes most of the computational effort (hence time). The Bi-Conjugate Gradient
Stabilized (BiCGSTAB) is a pressure solver used in countless methods including the current work. The
solver was reported to be responsible for up to 70% of computation time [8, 9]. OpenMP was also
implemented to accelerate the dam-break flooding simulation on a 16 core machine and the authors
have reported speedup ranging from 7.62x to 8.64x on various grid densities [10].

Recently, in order to address the limitation of grid-based methods in simulating flows involving
complex dynamics (such as those involving multiple phases), Lagrangian methods (particle methods)
such as the Smoothed Particle Hydrodynamics (SPH) method [11] and the Moving Particle Semi-
implicit (MPS) method [12] have been developed. The parallelization of SPH has been reported in
several works. For example, Goozee and Jacobs [13] reported a speedup of 3.11x on a shared-
memory machine with 8 cores while Wrdéblewski and Boryczko [14] reported a relative efficiency of
42% and 79% for OpenMP and MPI respectively on the same simulation domain. They also found that
the relative efficiency increased as the number of neighboring particles increased. Other fairly
successful parallelization attempts on hyper-threaded shared-memory machines have been carried
out [15, 16]. However, both groups have reported that the speedup rates decreased when the
number of threads exceeded the number of physical cores. The MPS method was firstly parallelized
by Sueyoshi and Naito [17]. However, the obtained speedup was low, which might be due to the fact
that the solver was not ready for parallelization. Then, Iribe et al. [18] improved the speedup of their
OpenMP MPS code from 1.90x to 3.37x on a 4-core shared memory machine. This was done by simply
changing the indexing method of particle registration to become proximity-dependant. When the
same code was executed on a distributed-memory machine, the reported speedup of the matrix
solver for PPE was very low (7.19x from 64 cores). The GPU parallelization of MPS have been carried
out by Hori et al. [19] and Ovaysi and Piri [20]. Other numerical methods such as Discrete Element
Method (DEM), Lumped Particle Modelling Framework and Local Radial Basis Function Collocation
Method have been parallelized on shared-memory machines respectively by [21-23].

As compared to grid-based methods, the extension of Lagrangian methods to simulating fluid
structure interaction problem is relatively straightforward [24]. Nonetheless, upon reviewing the
existing particle methods, Hwang [25] have argued that those methods are inaccurate when
computing incompressible flow due to the inaccurate pressure gradient calculation and the non-zero
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velocity divergence. Thus, the Moving Particle Pressure Mesh (MPPM) method, which can be
regarded as an Eulerian-Lagrangian (E-L) method, was developed to address these issues by storing
the pressure variable (appeared in the PPE) in the Eulerian mesh (grid). Despite the significant
improvement that MPPM offers over MPS (see [26, 27]), the computation of multi-phase flow
involving fluids of high density ratio using MPPM was unstable. Thus, the MPLS method [1] was
proposed to address this issue. Ng et al. [1] coupled the MPPM solver with the conservative Level-
Set (LS) method where the LS function was used to determine the smoothed density of moving
particles while the divergence-free velocity field was determined through the MPPM solver. There
have been many works detailing on the parallelization of Eulerian-Lagrangian (E-L) method. For
example, the Direct Simulation Monte Carlo (DSMC) method (coupled with grid-based technique for
particle-indexing) was parallelized by Gao and Schwartzentruber [7] using OpenMP. They have
reported near-linear speedups for free-stream flow simulations with low particle count (3.74x with 4
cores). However, very low speedup was obtained as more particles were employed on an 8-thread
shared-memory machine. On distributed-memory machines, Darmana et al. [28] reported a 20x
speedup with 32 cores while Kafui et al. [29] reported a speedup of 37x using 64 cores with the
particle-based portion exhibited a speedup of only 6x as opposed to 44x for the grid-based portions
of the same code. Similarly, Yakubov et al. [30] applied hybrid parallelism on an E-L method and
observed similar speedup behaviors for the grid- and particle-based portions of their code. Their
overall reported speedup was 8.8x using 128 cores with the Lagrangian part achieving a speedup of
2.3x at best.

In this work, the new MPLS method was parallelized using OpenMP and optimized for a shared-
memory machine using strong and weak scaling analyses. The optimum scheduling method for
distributed-memory machines is determined through cache analysis.

2. Numerical Methods
2.1 Moving Particle Pressure Mesh (MPPM) Method

The continuity equation of incompressible fluid flow can be written as
V-u=0, (1)

Eq. 1is solved together with the momentum conservation equations in x- and y-directions

Du oP

p——=———=+uv?*w) + S,
Dt 0x (2)
Dv _ oP V() + S

Pt~ dy HeRy ’

where P is fluid pressure, # = (u, v) is the velocity vector, S, is the source term in the a direction, p
is the fluid density and u is the dynamic viscosity. Both p and p are space-dependent in a multi-phase
flow problem.

The fractional time step method was used to solve Eq. 1 and 2, following the time-splitting
technique developed by Ataie-Ashtiani and Farhadi [31]. The velocity of each particle at different
time levels can be computed by integrating Eq. 2 using the 1%t order explicit scheme

uptt = iy —— VP, (3)

Pk
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with %t is the particle velocity at the new time level and i}, is the velocity vector at the
intermediate time level. For stability, the time step size was calculated in the following manner

At = min (AtD, (4)

max(l%l))

n
where At is the diffusive time constraint defined as Atp < ’;—". Here,
k

2d HijW'kj

Zk = ’
DjzkW'kj

. (5)
=k |rjn - ri?l

where d is the flow dimensionality and W’kj is the weight. The maximum value of the fluid particle
, ﬁ$|can be found as the solution progresses. The Courant number C was set to 0.1 [32].

Based on Figure 1, Eq. 1 can be discretised as

NW N NE
U
"k | T
-] :‘l — uw [ ] - u -]
w T »f E Ay
SW S SE
— Ax —)

Fig. 1. Discretized pressure field with particle P and
neighboring particle k

(un+1 n+1)Ay + (vn+1 ngl)AX — O, (6)

The splitting velocity concept [33] was implemented to produce the corrected velocity equations
which were then substituted into Eq. 6 to yield

2 (AX + Ay) Pn+1
A Ax
y (7)

_ Ay Ay Ax Ax p . . . .
= A BT A R R = [ —)Ay + (v - v Ax]

Assuming the mesh spacing is fixed (h = Ax = Ay), Eq. 7 becomes
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Finally, the pressure gradient acting on a particle k can be computed using the bilinear interpolation
(see Figure 2)

aPn+1 n+1l _ pn+1 Pn+1 _ pn+1
aPn+1 n+1l _ pn+1 Pn+1 _ pn+1
aky _ nE . N9+ %(1 —9), (10)

where 9y = (x; — x,)/h and &, = (yx — ¥,)/h. The complete MPPM algorithm is outlined in Figure
3 and more details about the MPPM method can be found in [25]. Nonetheless, the direct application
of MPPM in simulating multi-phase flow involving large density ratio was unsuccessful, prompting
the development of the MPLS method.

2.2 Moving Particle Level-Set (MPLS) Method

This method was developed to complement MPPM by adding the ability to accurately simulate
immiscible multi-phase flow problems [1]. Ng et al. [1] have argued that the commonly used density
interpolation methods tend to produce wiggly solutions caused by particle intrusion. The same
phenomenon was witnessed by Shakibaeinia and Jin [34] even in a flow problem involving fluids of
low density ratio. The proposed solution by Ng et al. [1] involved the improvements of the density
interpolation and the interfacial recognition schemes. This was done by solving the level-set
differential equation on the pressure grid in MPPM in order to capture the fluid interface. Upon
finding the velocities from the MPPM method, the level-set function ¥ can be solved using

ov Lol
5=V @¥w) = L(P), (11)

Eq. 11 was integrated using a 3™ order TVD-RK scheme
Pl =yn 4 AtL(PM),
P2 =yl 4 E [-3L(¥P™) + L(¥D)]
4 ’ (12)

yn+l — w2 4 At [—L(¥™) + 8L(¥2) — L(¥1)]
12 '

By using this approach, the interface thickness may vary and the artificial compression technique
should be used to compress the interface via solving the additional PDE

Y, 4+ V- [®(1 - P)n] = AV (VY), (13)

here, the thickness can be controlled via the parameter A. Lastly, the level-set value of each particle
can be found using the bi-linear interpolation
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Ve = Wn(1 — )0 + Wp(1 — &) (1 = 9g) + Wger (1 — 9) + POy (14)

where &, = (x; —x,)/h and 9y = (¥ — ¥,)/h. Particles employed in this work can be added or
removed from the flow domain whenever necessary.
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Fig. 2. Evaluating the pressure gradient on particle k
using bi-linear interpolation
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Fig. 3. MPPM process flowchart
3. Rayleigh-Taylor Instability (RTI) Problem

This MPLS code was parallelized using OpenMP in the current work. Originally, the MPLS code
was written using FORTRAN77 (F77). However, considering the future plan of GPU parallelization, the
code was converted to C++. Strong and weak scaling analyses were carried out. The selected RTI
problem was obtained from Ng et al. [1]. The RTI problem is one where a heavy fluid is placed atop a
lighter fluid [35-37]. The position of the initial fluid interface y;,; is
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Yint = 1.0 — 0.15(27x), (15)

The densities of the light and heavy fluids are 1.0 and 1.8 kg/m?3, respectively. The domain height
was set to 2.0m and the domain width was fixed at 1.0m. The simulated period was 5 seconds. The
kinematic viscosities of both fluids were similar and the gravitational acceleration was prescribed as
1.0 m/s?. The Reynolds number was 420. Boundaries were treated as no-slip walls. In what follows,
the code used for this simulation was denoted as MPLS-RTI.

4. Parallel Implementation
4.1 Equipment Specification

The MPLS code was parallelized on a shared-memory machine equipped with the Intel® Xeon®
E5-2630-v2 processor that has 6 cores (12 threads) with base frequency of 2.60 GHz. The CPU cache
is L3 cache size of 15 MB.

4.2 Language Conversion

Eliminating the weak points of F77 is the focus of the conversion. The language uses go-to style
statements often lead to unreadable code (Spaghetti code: unnecessarily complex code). Thus, all do
loops were converted to for loops in C++ whenever applicable. Additionally, the actual go-to
statements were reconstructed and converted to while loops in C++ whenever permissible. Figure 4
presents a simple code segment as an example of the conversion approach. The conversion has
effectively eliminated a total of 261 go-to statements in the MPLS-RTI code. Another essential scope
of the conversion is variable declaration. Repetitive Common block variables in F77 were declared
once as global scope variables in C++, hence yielding a more readable code.

while(np != 0) 8650 continue
if(np.eq.9) go to 8800

if(Id[np] == IdFluid) if(Id(np).ne.IdFluid) go to 8700
{ call presGrad2(np,dpdx,dpdy)
presGrad2(np, dpdx, dpdy); cc rest of statements .
//rest of statements ... ; 8700 continue
} np=npnext(np)
np= npnext[np]; go to 8650

} 8800 continue

Fig. 4. Go-to statements to while loops conversion. Left: C++; RIGHT: F77
4.3 First Touch Parallelization

In an effort to study how susceptible the code is to parallelization, incremental parallelization
was the method of choice in this work [5]. OpenMP directives and constructs were introduced into
the code whenever possible and their effects were taken into consideration before proceeding. The
following steps were taken to initialize the parallelization process

I.  All involved variables, especially those that would change in value after each iteration, are

identified.
II.  Applicable loops are parallelized by introducing #pragma omp parallel {#pragma omp for (...)}
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lll.  Variables that are accessed by different threads in parallel regions are defined as private
variables to prevent data racing.

IV.  The reduction construct is used to address accumulating variables in parallel loops along with
the respective operators.

V.  When needed, the critical{...} construct is used to force serial execution within parallel regions.
However, this is performed once in each model.

VI.  Lastly, the number of threads involved in each parallel region is controlled using the function:
omp_set_num_threads (NUM_THREADS), where NUM_THREADS is previously defined during
compilation.

These steps ensure that the parallel output is identical to that of the serial one. However,
functions where particle ID reassigning takes place are not applicable for parallelization due to the
fact that data racing bound to happen if they are parallelized. Upon applying the aforementioned
steps, computation time was recorded and it was found that after the number of threads used in a
simulation exceeded a certain number, the computation time would grow thereafter. Hence, more
fine tuning efforts are required.

4.4 Parallelization Tuning

Upon recording the computation times for all functions, it was noticed that certain functions
seem to perform worse as the number of threads exceeded a certain number. This was named a
parallel threshold. Each code has some functions with different thresholds. Thus, the number of
threads involved in those regions was fixed to the optimum amount. Work sharing clauses were
found to have the most impact on improving the parallel performance. Wei et al. [22] reported that
OpenMP works best when utilizing the dynamic clause and Hoeflinger et al. [5] reported that the
default static clause improved data-locality. However, it was found that the most suitable work-
sharing clause is the guided clause. Parallel sections were tested. No improvement was found and
hence they were ignored along with locks. Fine tuning test results are reported in the next section.

5. Results and Discussion
5.1 Language Conversion Effects

In order to validate the C++ code, its output must be compared to that originated by the original
F77 code. Both languages have a value range of 1e-308 to 1e+308 with 16 decimal digits. Interestingly
enough, since each language has its own way of calculating and storing values of variables, the results
were slightly different despite the codes were identical. This is believed to be caused by the peculiar
way both languages handle decimal numbers beyond the 8" decimal points as shown in Figure 5.
Despite the value of Sigma is declared as 0.075, this number appears differently in both languages
with the C++ value coming closer to the actual value (-3.0e-18 deviation compared to +2.98e-9 in
F77). The effects of these miniscule differences become more apparent in CFD calculations where
millions of operations take place and the propagating effects become more visible as the simulation
progresses. This is presented in Figure 6 where particle locations generated by each language are
plotted against each other. It is noticeable that as time progresses, more particles have different
placements when comparing Figure 6(a) and Figure 6(b). The propagating effect becomes more
apparent as the grid density increases, which is notable when comparing Figure 6(a) and Figure 6(c).
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FORTRAN77

1.00000000000000
2.00000000000000

REAL(3)
REAL(8)

&g rhol

@ rho2 dsten=0.0 ! set to 0.0 if no

sigma=0.075 !surface tension

(R sigma [ 7.500000298023224D-002

cC

& rhol 1.0000000000000000

C++
double

& rho2 2.0000000000000000 double long double dsten=0.0; // set
i ,07499999999999999 s 0 5
& sigma 0.074 7 double  1ong double sigma=0.075;
Fig. 5. The effect of decimal precision on variable declaration
12| o T u]" 4® -‘--.‘. sle $ ule -.._..: :-.- :'-.It ;. = "P‘.A in 4 ul B
"‘-‘:-'.-'!.-k""'.-"' . P ERETEFARASEFNESDEDE
- = el le » T - = 4" Tofy [u e dw = )
A0 R % X D A P T e Fortran?7
03[ o rh=Tul Tubl 1 b=["1 Jubalef|] - Fortran77 | 8 Sle | o | ha g nl O C=
AN .-' :l"-,.li' « 0O C++ 022 " a 9 .‘-‘ o o o 0
NEOADEO SN DA NN o[l ke s B O W ST
"u'-.l‘.l'. ajs ¢ " '--- .:-'-"""‘t - i .';e.' :.'.' A -..'. -
AT YOO AYATEES DN oasART I LT M ™S ol ot o[ LML Tule®
5:. '.-i"_.h"' ' EEEEDYEAEN 016: - R Nd 1N el 2 2P P
5'-';--":-""".."._' i = : :-: .u-:‘. " o T o
>-°«r- "‘-' ".r-" ,-r ule $uln 8 of. XN >0.14 - fu:-': ) i' - -' o &k
"_l"-.- [l ‘-":.‘ ...-"- n“.--...‘.. :; 0.12'::'. "::-.l by & B ; - ,.-.b'
el = [ o w® 5 wlwphn .-y, " o - . e ] = HU. "
- - * . et ‘Ill haed e . - - H ‘i
Pl 5. B P O labuloheohdole o 0'1';..:-:.-“. i.il - -. =t
_a'-_.-‘.'....- --n.,,.ﬂ': :!i'ﬁl.. ! L v -_-.-
0.151 .':’. .-‘-.“.I.'l :-.---.-.'_n‘_ O.OBKIN:.. “'- - = " e
FHHEBOE Jels ¢ ejepdele --:."..‘:- 006F% F I ok [y T Ol T Y ) O
!.-ll.'-:...‘---h | E|% B " |y ..: _.: doFal o* ". ladadepubafalo B
01 « =[x f S Y alaluls bodalalablta” 0.04 Pt S T T [ e qwameF 4 W lw pal o™ F "
‘;.',‘.-l" w wle lll-::ll-.. ’l. 002 7 www - LI =
T ECLNC L I ] ) S Y N Mo L1 T R = 1 1 1 1
0.75 0.8 0).?5 0.9 0.95 0.75 0.8 )(().as 0.9 0.95
(a) (b)
E - ;j- g b 4 ‘.
Wﬁ-, . Fortran77
200 % o C+
1.25 B by m et
;.I-
- = e
* Gl
12 HoE (1 rox L
Etg .
M3 2
sk &
1.15 'éﬁ
oy ey
> Shere ®,
1.1 g
Qx - L
1.05 =
* -
J x . "
1 Ll
! 58
0.95 . 2
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

X

(©)

Fig. 6. Comparison of particle locations (a) Grid (75x150) at t= 3s (b) Grid (75x150) at t= 5s (c)

Grid (112x225) at t=3s



CFD Letters
Volume 11, Issue 1 (2019) 84-100

5.2 Parallelization Validation

In order to validate the results generated by the parallel C++ code, its output is compared to that
generated by the serial C++ code. By observing the particle locations (Figure 7) the parallel output
was indeed identical to the serial one. Figure 8 compares the pressure plots which were found to be

in complete agreement. Similarly, the plots of level-set, x- and y-velocity (not shown here) were
identical as well.

2 s 5
Tl wmmx;]g:g :
1 3 il . SERIAL
1 o REiE | - PARALLEL
%f Bmaﬂ
1.8 = Ey E
é & ] 13
>
1.
16
&)
15 :
0.5 0.6 07 0.8 0.9
X(m)

Fig. 7. Comparison of particle locations simulated from
the serial and the parallel MPLS-RTI code (75x150 grid, t
=5s)

——— Serial « = « » « Paralle]]

Y (m)

0.3 4

3.0 2.3 -2.0 -1.5 -1.0 0.5 0.0 0.5
Pressure (Pa)

Fig. 8. Comparison of pressures values predicted from serial and
parallel MPLS-RTI code at x = 0.5 m (75x150 grid, t = 5s)
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5.3 Strong Scaling Analysis

The MPLS code was parallelized on a shared-memory machine equipped with the Intel® Xeon®
E5-2630-v2 processor that has 6 cores (12 threads) with base frequency of 2.60 GHz. The CPU cache
is L3 cache size of 15 MB.

There are several approaches that can be used to evaluate the parallel performance. Amongst
those, parallel speedup is the main concern of strong scaling in this work. Derived from Amdahl’s Law
[38], the following equation was used to find the speedup Sy

=—, 16
Sy =7 (16)

where Ts is the computation time when the code is run in serial and Ty is parallel computation time

when N threads are used. From Eq. 16, the maximum speedup can be found through

1
S = ,
Nmax ™ g 4+ (1-F)/N

(17)

with F being the percentage of code that runs in serial. Conversely, Eq. 16 can determine the
parallelizability of a code by using the obtained maximum speed up. For this analysis, a medium sized
grid was selected and the number of threads applied throughout the codes was varied from 1 to 12
threads (6 physical cores). Both speedup and computation time were then reported.

The RTI problem was simulated for 5s on a 75x150 pressure grid. The simulation progress can be
observed through the level-set contours presented in Figure 9. The computation time of each
individual function is reported in Figure 10 in order to identify the most time-consuming function in
the MPLS-RTI code. The tasks performed by each function are listed in Table 1. As seen, the time-
consuming functions are calcUVstar and calcpprebicgstab in the serial code (46.5% and 26.3%
respectively). The former is concerned with the intermediate velocity calculation while the latter is
the pressure solver. Fortunately, since calcUVstar has no parallel threshold limitations, it is entirely
parallelized and the resulting speedup is high (7.52x). Calcpprebicgstab, on the other hand, has a low
parallel threshold of 4 threads with this grid density, resulting in a low speedup value (1.63x). The
highest speedup value of 8.44x was achieved by the face velocity calculation function calcUVface
which solves Eq. 6 (Eulerian function). Figure 11 shows good scaling for the RTI problem with a
maximum speedup of 3.71x using 6 cores (12 threads) which is comparable, if not better than, other
E-L methods (Gao and Schwartzentruber [7] achieved 1.54x speedup using 8 threads; Yakubov et al.
[30] reported 8.8x speedup using 128 cores). It is important to note that the level-set function
solvelevelset (Eq. 11) reports a speedup of 6.1x while being computationally expensive at first. The
speedup increase rate drops after the number of threads involved exceeds that of physical cores,
which is expected as reported in open literature [15, 16]. This is due to the overhead communication
cost incurred by the addition of logical cores. Nonetheless, by applying Eq. 17, we find that only 12.3%
of the code is executed in serial.

5.4 Weak Scaling
In weak scaling, the main focus is to analyse the single-core performance. This is done by varying

the thread count along with the problem size in a manner that ensures consistent load distribution
between threads. Normally, the rate of increase of threads/problem-size is to the power of 2.
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However, since the machine used in this work has 12 threads, the grid variations were designed based
on 2, 6 and 12 threads with consistent cells/thread values. The variation settings are listed in Table
2. In this work the parameter selected was grid density. Since parallel thresholds exist for each
function, the reporting of individual function scaling would better reflect the parallelization effect.

(@) (b) (0)

Fig. 9. The level-set contours of RTI problem at (a) t = 1s, (b) t = 3s
and (c) t = 5s, (48x96 grid)

3000 © = "
[ ]
=T
4000

o

" 3000 >

@ =] - =]

E 2000

o
o -
= I ] = F
= - |||l <3 bl
0 I L. . J“In. TR I L
LS - s L "
@F@ Q."}‘b \‘F" ;"{b z’\& @ab‘y &é@,
S » S ¥ & &
g > AC F & RS
& ¥ & RS
‘\.CJQ &
,:"b
Functions

Serial mTNZ ®mTN3 mTN4 mTN5 wTN6
ETN7 mTNE TN9 mTNI0 = TN11 =TN 12

Fig. 10. Computation times for the RTI case function. TN indicates the
number of threads used (75x150 grid)

The weak scaling study for RTI presented in Figure 12 shows that with the exception of functions
calcpprebicgstab and calcUVstar, all functions scale well with a slight increase in computation time, which
could be attributed to the increase in communication load as the number of particles increases. It is important
to note that the pressure solver is limited to 4 threads which in a way invalidate the weak scaling approach for
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N 4

this function. Interestingly enough, calcUVstar experiences an increase in computation time despite of the fact
that it scales very well in the strong scaling study. This can be attributed to the exponential increase in the
number of particles that takes place as the grid is refined, which in turn causes the communication cost to
increase greatly as observed. Keeping in mind that the number of particles also increases as simulation time
increases due to particle insertion protocols. Intriguingly, the level-set functions scale exceptionally well,
seeing that they are considered as time-consuming functions in serial computation.
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Fig. 11. Strong scaling result of the RTI case (75x150 grid)
Table 1
Tasks performed by code functions
Function Task
calcrhomiuavg Calculates the smoothed density and dynamic viscosity

calcrhoavg_cell

Calculates the cell density.

calcTime Calculates the time step size, dt
calcUVstar Calculates the intermediate particle velocity
calcXYstar Calculates the intermediate particle position
ParUpdate Updates the information of particles at new position
calcUVface Calculates the intermediate face velocity
coefPresBicgstab Calculates the coefficients in PPE.
calcpprebicgstab Solves the PPE using the Preconditioned BiCGSTAB
method.
ParMod2 Adds/removes particles.
solvelevelset Solves level-set equations.
correctlvioolson2 Solves the artificial compression PDE.
Table 2
Weak scaling variation settings
Setting Threads Grid Size Cells/Thread
1 2 threads 43x86 1849
2 6 threads 75x150 1875
3 12 threads 105x210 1837.5
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Fig. 12. Weak scaling results for the RTI problem
5.5 Cache Analysis

There are several levels of memory where data is stored, starting from registers which are
extremely small and fast (100 bytes size and latency of <1 ns) all the way to disk memory which is
much slower in comparison (terabytes in size, 5~20 ms latency). The second level is cache memory.
Data can be stored temporarily in any of its three levels (L1, L2 and L3) which conform to the same
speed-size hierarchy. L3 cache has been found to govern the performance in Lagrangian methods as
reported by Kosec et al. [23]. Different approaches have been used to store data in cache with varying
effects as reported by Asao et al. [6]. In this section, we would like to determine the best OpenMP
scheduling method for cache accessibility in the Euler-Lagrangian method such as MPLS. Two
scheduling approaches were tested: guided and dynamic scheduling methods which were then
compared to the scheduling-free counterpart. Even though the guided scheduling was found to be
most suitable for shared-memory machines, this analysis gives an insight on the most suitable
method for distributed-memory machines. Hit counters for Last-Level-cache hits were recorded using
the Visual Studio profiling tool [39]. Hit rate (HR) for any cache level can be defined as

number of successful hits

number of all calls

HR was calculated for both inclusive and exclusive performances. Exclusive performance of a
function accounts for execution within that function excluding the time spent in functions called from
that function. Inclusive performance is the execution performance within that function including the
time spent in function called from that function. In other words, inclusive HR provides an overview
of the code performance while exclusive HR gives an insight on individual function performance. As
such, the grid density was varied and the performance was recorded as seen in Figure 13.

For a coarse grid, it can be seen that the change of scheduling has an unnoticeable effect on HR.
As the grid density increases to an intermediate level, it is visible that when functions are individually
examined, their HR values are high for both scheduling types (exclusive HR). In general, the
scheduling-free code reported the highest HR followed by the dynamic scheduling. Lastly, in the case
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of fine grid, all scheduling types performed well for individual functions, while dynamic scheduling
proved to be the better scheduling approach in terms of cache HR. This analysis, coupled with the
strong scaling analysis, has indicated that guided scheduling is the best option for shared memory
device while dynamic scheduling is the choice for distributed memory device meant for the
parallelization of Euler-Lagrangian method such as MPLS.

120.00
100.00
80.00

60.00

Hit Rate

40.00

20.00

0.00
inclusive exclusive inclusive exclusive inclusive exclusive

43x86 75x150 105x210

1nGuided = Dynamic = No scheduling

Fig. 13. Last-level-cache hit rate for various grid sizes
6. Conclusions

In the current work, the MPLS method has been converted from Fortran77 to C++ and their
effects on the flow results have been presented. The C++ MPLS code has been parallelized using
incremental parallelism. Strong and weak scaling studies were performed. The speedup and the
computation time for each function were reported. For the RTI problem investigated in the current
work, the code has shown good strong scaling capability with a speedup of 3.71x from 6 cores. This
speedup value is comparable to those of other E-L methods. Also, most functions have scaled well in
the weak scaling study. The level-set functions have been found to scale very well in both strong and
weak scaling, thus validating the parallelizability of the MPLS method. The analysis of cache hit rates
has highlighted that dynamic scheduling is more suitable when considering distributed memory
parallelization. In contrast, guided scheduling is good for shared-memory parallelization. Attempts to
incorporate GPU parallelism and to resolve the issue of parallel thresholds in pressure solver are
underway.
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