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effect. Two types of oxide nanoparticles namely graphene and iron oxide suspended
in two different types of base fluids such as methanol and kerosene oil. The
governing boundary layer equations are transformed into nonlinear partial
differential equations system and solved numerically using an implicit finite
difference scheme known as Keller box method. The results for temperature, velocity
and angular velocity are discussed and plotted for different values of the parameters,
namely, nanoparticle volume fraction, the micro-rotation parameter and the mixed
convection parameter by considering the thermo-physical properties of both
nanoparticles and base fluids. Moreover, numerical results for the local Nusselt
number and the local skin friction coefficient are obtained. It is found that Fe;0,/GO
kerosene oil has higher in local Nusselt number compared with Fe;0,/GO methanol.
The results of the local Nusselt number and the local skin friction for the Newtonian
fluid are found to be in good accurate with the literature.
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1. Introduction

A nanofluid is a heat-transfer fluid [1] containing nanoparticles with a size smaller than 100 nm
such as oxides, metals and carbides [2]. Common base fluids comprise water oil and ethylene glycol
[3], The nanoparticles has a unique chemical and physical properties, while compared only to base
fluid, will increase the efficiency of the thermal conductivity and the convective heat-transfer
coefficient [4]. Nanofluids have many properties that make them potentially useful in several
applications in heat transfer, such as microelectronics, fuel cells, pharmaceutical processes, and
hybrid-powered engines. Buongiorno [5] published an article on the convective transport in
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nanofluids. The nanofluid flow inside two-sided lid-driven differentially heated square cavity is
studied numerically by Tiwari et al., [6]. The nanofluids used to acquire optimum thermal
properties at the lowest volume fraction of nanoparticles in the base fluid by Godson et al., [7].
Kandelousi et al., [8] also considered the nanofluid flow and heat transfer through a permeable
channel. Haq et al., [9] studied the slip effect on heat transfer nanofluid flow past a stretching
surface. There are several references that have on nanofluid as in the universal book by Das et al.,
[1], and many studies that have been conducted to boost the heat-transfer characteristics
technique by nanofluids, including some several study [10-16].

The classical Navier-Stokes theory described the flow properties of non-Newtonian materials,
but this theory wasn’t suitable to describe microrotations, certain microscopic effects growing from
the local structure of fluid elements, and some naturally arising fluids, which are known as
micropolar or thermomicropolar fluids. Micropolar fluid theory and its dilation to
thermomicropolar fluids was initially introduced by Eringen et al., [17]. Further, many physicists,
engineers and mathematicians have been studied on the micropolar fluid to conclude the different
results related to flow problems. Hassanien et al., [18] presented the boundary layer flow and heat
transfer from a stretching sheet to a micropolar fluid. Papautsky et al.,, [19] investigated the
laminar fluid behaviour in microchannels using micropolar fluid theory. Nazar et al., [20] considered
stagnation point flow of a micropolar fluid towards a stretching sheet. Exact solutions are obtained
using the Laplace transform technique for the unsteady flow of a micropolar fluid by Sherief et al,,
[21]. Hussanan et al., [22] described the microrotation, temperature, velocity and concentration
are considered. Hussanan et al, [23] explained the unsteady natural convection flow of a
micropolar fluid on a vertical plate oscillating in its plane with Newtonian heating condition. Free
convection boundary layer flow of micropolar fluid on a solid sphere with convective boundary
conditions was considered by Alkasasbeh et al., [24]. Alkasasbeh [25] explores heat transfer
magnetohydrodynamic flow of micropolar Casson fluid on a horizontal circular cylinder with
thermal radiation. Natural convection on boundary layer flow of Cu-water and Al,Os;-water
micropolar nanofluid about a solid sphere investigated by Swalmeh et al., [26] and micropolar
forced convection flow over moving surface under magnetic field was inspected by Wagqgas et al.,
[27].

The heat transfer through a boundary layer in the mixed convection flow about a sphere has a
vast space in applied technology, such as solving the cooling problems in turbine blades, electronic
systems and manufacturing processes. Experiments on heat transfer between spheres and airflow
Yuge, [28]. Recently, the various papers in mixed convection boundary-layer flow for an isothermal
solid sphere with different types of fluids, was presented by some researcher [29-33].

The aim of this present paper is to study the mixed convection boundary layer flow over a solid
sphere in a micropolar nanofluid with constant wall temperature. Iron oxide (Fe,04) and graphene
(GO) in two based micropolar nanofluid (methanol and kerosene oil) have been considered in the
present investigation. The boundary-layer equations are solved numerically via efficient implicit
finite-difference scheme known as the Keller-box method, as displayed by Cebeci et al., [34]. The
effects of the nanoparticle volume fraction parameters, the mixed convection and micro-rotation
parameter on the local heat transfer, local skin friction, temperature, velocity and angular velocity
around the sphere are discussed and explained in the tables and figures. For comparison purposes,
the present results for ¥ =0 and K =0 (regular Newtonian fluid) and Pr = 0.7 are computed, and

they show excellent agreement with those obtained by Nazar et al., [35].
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2. Mathematical Analysis

Consider the impermeable solid sphere of radius a, which is placed in an incoming stream of
micropolar nanofluid with an undisturbed free-stream velocity U_ and constant temperature T_,

with steady mixed convection boundary-layer flow. Two types of nanoparticles such as iron oxide
(Fes04) and graphene oxide (GO) are suspended in two different types of base fluids such as
methanol and kerosene oil. The convective forced flow move upward, while the gravity vector g

acts downward in the opposite direction as displayed in Figure 1, where x-coordinate is measured
along the circumference of the solid sphere from the lower stagnation point, y-coordinate is
measured normal to the surface of the sphere. It is also supposed that the surface of the sphere is
maintained at a constant temperature 7 with 7' >T for a heated sphere (assisting flow) and 7 <7,
for a cooled sphere (opposing flow).

Fig. 1. Physical model and coordinate system for the
mixed convection

The continuity, momentum and energy equations for micropolar nanofluid are [6]

d . 90 __

< g = 1

a),C(ru)+ay(rv) 0, (1)
0 ou m e B+(1- . < 77

ﬁa—Z+Va—u=ﬁg di, || Hy *K a%_‘_(}tpﬁ ( Z)pfﬁf)g(T—Tm)sin[x}KaH, (2)
dx dy dx Py )y Py aj Py dy
(_oH _oH — du Jo°H

p,lf][uax+vay]:—zr[2H+ayj+¢”fayz, (3)

2

O O OT, o

ox dy dy

Subject the boundary conditions

uw=v=0,T=T,, Hz_lal asy=0,
2y
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i — i, (x), T—>T.,H—>0 asy—c, (5)

we consider that 7(X) =a sin( x/a) and ; -3y sin(fj' here u and Vv are the velocity
¢ 2 " a

components along the X -y plane, respectively, u,(x) is the local free-stream velocity, 7(x) is the

radial distance from the symmetrical axis to the surface of the sphere, T is the fluid temperature,
K is the vortex viscosity, Z is the nanoparticle volume fraction, ,Bf is the thermal expansion

coefficient of the fluid fraction, /3 is the thermal expansion coefficient of the solid fraction, &, is

the thermal diffusivity of the nanofluid, p,, is the density of the nanofluid, 4, is the viscosity of

the nanofluid, =Y is micro-inertia density, which are given by [36, 37]
U

k, y2 .
@, = (,OC—f)’ e =A=200+ 20, My = ! 250 O :(’u’!f +K/2) J>
p/nf

a-2

k. (k. +2k)-2xk, —k.)
C ), =(-2)(pC,), +2(pC,),, ~n = KT —
(pC,), =A=20(pC,); +x(pC,), (k, +2k )+ x(k, — k)

: (6)

where ¢,f is the spin gradient viscosity of nanofluid, knf is the effective thermal conductivity of the
nanofluid, kf is the thermal conductivity of the fluid, k, is the thermal conductivity of the solid,
(pC,),; is the heat capacity of the nanofluid, 0y is the density of the fluid fraction, 0, is the density

of the solid fraction and 4, is the viscosity of the fluid fraction.

We introduce now the following non-dimensional variables

a 2 7 u,(x) _ r-T,
H=|— |Re"*H =2, = . 7
[UJ oy T,-T. )

where R6=Uw£ is the Reynolds number and V; is the kinematic viscosity of the fluid. Substituting

the previous variables into Eq. 1-4, we obtain the following boundary-layer equations for the
problem under dimensionless form

P u 1 B, . P,  OH
Um—tv—=u, —+ L (D(y)+K)—+—| zp,| == |+ (1-x)p, |A0sinx+ LK —, (9)
ox ay ox pnf( ( ) )ayZ pnf( [ﬁf ( ) f p”f ay
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36 96 1 ki [k, 9°6
o a0 1 | (10)
”ax Vay Pr[(l—,{)‘*‘l(pcp)x/(pcl’)f]ay2

— 2
Mai+vai=—p_f[( 2ﬁ+a_z +p_f(D(Z)+£jaI;I’ (11)
dx dy P 2 ) dy

where D(y)=1/1-p">, K=xiu, is the micro-rotation parameter, Przvf/af is the Prandtl number and

A is the mixed convection parameter, which is defined as 1=Gi/ReWith Gr=gB(T, -T.)a* /v, is the
Grashof number. It is important mentioning that 4> 0 for an assisting flow (7, >T.) ( heated flow),

A<0 for an opposing flow (T, <T.) (cooled flow) and A=0 the forced convection flow. The
boundary conditions (5) become

u=v=0, =1, H:_lal as y=0,
20y

u—)ue(x):%sinx, u—>0, 650, H>0aS y—>0, (12)

We assume the following variables to solve Eq. 8-11, subject to boundary conditions (Eq. 12)
¥ =xr(x)f(x.y), 8 =0(x,y), H=xh(x,y), (13)
where ¥ is the stream function defined as

w=1%and ,__19v,
r dy r ox

which satisfies the continuity Eq. 8. Substituting the Eg. 13 into Eq. 9 to Eg. 11, we obtain the
following transformed equations

i(D()()+K)?;yj: +(1+xcotx)fazf_(al] +L[1ps[iJ+(l_Z>pJﬂ Sir;xg

v a* dy) p, B, (14)

9sinxcosx P, 8_h: 8i82_f_8l82f
* 4 X " Py K dy x[ay oxdy dx 0y’ J’

k.lk 2
L L a—?%—fﬁ(l%—xcotx):x(ai%—ai%], (15)
Pr| (I-p)+x(pc,),/(pc,), |dy" ~ oy dy dx  dx dy
2 2

p—f(D(z)+£]a—il+(1+xcotx)fa—h—aih—&K(zm J {]:x(aia_h_aia_hj. (16)

o 2 )dy dy dy p, dy dy dx dx dy

The boundary conditions (Eq. 12) become
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of 19°f
=>=0,0=1, p=—-2J as y=0,
f % h 2% y

aiﬁésin)c §-0h—0as y—>oo. (17)
dy 2

We observe that at the lower stagnation point of the sphere, x=0 Eq. 14-17 reduce to the
following differential equations

pf »w ” n2 1 ﬁ pf 8h 9

L(D(p)+K) 720 () +—| zo.| &= |+ (1-2) p, A0+ LK —+==0, (18)
D) k) () p,,f[ [ﬁj( )f] K

1 k,lk, ” , 19
- : 0" +216 =0, (19)
Pr (1—x)+z(pcp)s/(pcp),}

P K\, ey P 7y = (20)
p"f(D(;()+2]h +2fh' - f'h p,,fK(2h+f) 0,

along with the boundary conditions

F(0)=£/(0)=0.0(0)=1. h(0)= =2 f"(0) as y =0, (21)

f'—>%,9—>0,h—>0as y = oo,

where the primes denote differentiation with respect toy.
The physical quantities of interest are the local skin friction coefficient c, and Nusselt number

Nu and they can be written as

T k
C,=—2—Re " [(ynf vy K‘H]  Nu=-——%  Re [a_z] (22)
©, U, dy k(T,-T.) dy o

=0
Using the non-dimensional variables (Eq. 7) and boundary conditions (Eqg. 12) the local skin friction

coefficient Cf and Nusselt number Nu are

2 k, 06
) __
Cf :[D(Z)+§jx ay{ (X’O)s NM__kf ay ('x’o)' (23)

3. Graphical Results and Discussion

Equations 14-16 subject to the boundary conditions (Eq. 17) have been solved numerically using
an efficient implicit finite-difference scheme known as the Keller-box method, along with Newton’s
linearization technique as described by Cebeci et al., [34]. To gain the physics of the problem, the
velocity, angular velocity and temperature distribution profiles have been illustrated by varying
controlling parameters, namely, mixed convection parameter A , the micro-rotation parameter K,
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and the nanoparticle volume fraction y for both the assisting (1>0) and opposing (1<0) flow

cases. The numerical solution starts at the lower stagnation point of the sphere, x = 0 with initial
profiles as given by the Eq. 18-21, and proceed round of the circumference of solid sphere up to the
separation point. The present results are obtained up to x = 120° only. We have used data related
to thermophysical properties of the fluid and nanoparticles as given in Table 1. To satisfy the
accuracy of the present method, we have found the values of the heat transfer coefficient and local
skin friction compared with nazar et al.,’s study [35] for the regular Newtonian fluid with k=0 and
x =0 as presented in Table 2 and Table 3.

Table 2

Table 1

Thermo-physical properties of based fluids and nanoparticles

Physical properties Methanol Kerosene oil Fe;0, GO
o (kg/m°) 792 783 5200 1800
G, (/kg - K) 2545 2090 670 717
k (W/m—K) 0.2035 0.145 6 5000
8x107°(K") 149 99 1.3 28.4
Pr 7.38 21

Local skin friction coefficient C, at K=0 and y =0 (Newtonian fluid), Pr=0.7 and various values of A

(results in parentheses are those of Nazar et al., [35])

X

0°
10°
20°
30°

40°

100°

110°

120°

A

-4 -3 2 -1 05 0.0 0.74 0.75 1.0
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)
0.07987  0.1806 0.2665 0.3443 0.3810 0.4166  0.46761  0.4682 0.4850
(0.0801)  (0.1806)  (0.2662)  (0.3438)  (0.3804)  (0.4160)  (0.4669)  (0.4675)  (0.4843)
0.1152 0.3269 0.5016 0.6583 0.7320 0.8034 0.9053 0.9067 0.9400
(0.1149)  (0.3261)  (0.5000)  (0.6564)  (0.7301)  (0.8014)  (0.9031)  (0.9045)  (0.9380)
0.4043 0.6754 0.9138 1.0253 1.2110 1.2858 1.2878 1.3375
(0.4024)  (0.6718)  (0.9098)  (1.0211)  (1.1284)  (1.2813)  (1.2833)  (1.3335)
0.3737 0.7602 1.0860 1.2363 1.3806 1.5851 1.5878 1.6534
(0.3704)  (0.7535)  (1.0790)  (1.2292)  (1.3733)  (1.5775) (1.5802)  (1.6471)
0.7199 1.1540 1.3457 1.5281 1.7848 1.7882 1.8690
(0.7181)  (1.1434)  (1.3350) (1.5172) (1.7737)  (1.7771)  (1.8607)
0.5466 1.1014 1.3392 1.5623 1.8729 1.8770 1.9659
(0.5295)  (1.0866)  (1.3246)  (1.4577)  (1.8580)  (1.8621)  (1.9627)
0.9127 1.2078 1.4727 1.8550 1.8493 1.9703
(0.8929)  (1.1889)  (1.4583)  (1.8260)  (1.8307)  (1.9486)
0.5545 0.9326 1.2705 1.7023 1.7078 1.8307
(0.5280)  (0.9190)  (1.2480)  (1.6800)  (1.6855)  (1.8216)
0.5243 0.9305 1.4573 1.4638 1.6061
(0.4813)  (0.9154)  (1.4289)  (1.4352)  (1.5915)
0.4612 1.1245 1.1321 1.2874
(0.4308)  (1.0847)  (1.0922)  (1.2732)
0.7003 0.7001 0.8960
(0.6543)  (0.6637)  (0.8831)
0.0427 0.4327
(0.0380)  (0.4220)
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Table 3
Local Nusselt number Nu at K=0and y =0 (Newtonian fluid), Pr=0.7 and various values of A (results in

parentheses are those of Nazar et al., [35]).

X A
-4 -3 -2 -1 -0.5 0.0 0.74 0.75 1.0

0° 0.6518 0.7094 0.7516 0.7858 0.8009 0.8149 0.8342 0.8344 0.8406
(0.6534)  (0.7108)  (0.7529)  (0.7870)  (0.8021)  (0.8162)  (0.8354)  (0.8357)  (0.8463)

10°  0.6430 0.7030 0.7462 0.7809 0.7961 0.8103 0.8298 0.8300 0.8362
(0.6440)  (0.7040)  (0.7470)  (0.7818)  (0.7970)  (0.8112)  (0.8307)  (0.8309)  (0.8371)

20°  0.6146 0.6839 0.7301 0.7664 0.7822 0.7969 0.8168 0.8171 0.8233
(0.6150)  (0.6845)  (0.7305)  (0.7669)  (0.7827)  (0.7974)  (0.8173)  (0.8176)  (0.8239)

30° 0.6504 0.7031 0.7424 0.7592 0.7747 0.7955 0.7958 0.8021
(0.6507)  (0.7027)  (0.7422)  (0.7591)  (0.7746)  (0.7955)  (0.7958)  (0.8024)

40° 0.5981 0.6640 0.7086 0.7270 0.7437 0.7659 0.7662 0.7677
(0.5977)  (0.6628)  (0.7076)  (0.7261)  (0.7429)  (0.7652)  (0.7655)  (0.7725)

50° 0.6106 0.6643 0.6853 0.7038 0.7281 0.7284 0.7351
(0.6080)  (0.6624)  (0.6836)  (0.7022)  (0.7267)  (0.7270)  (0.7345)

60° 0.5382 0.6085 0.6335 0.6550 0.6822 0.6825 0.6896
(0.5309)  (0.6055)  (0.6309)  (0.6525)  (0.6800)  (0.6803)  (0.6887)

70° 0.5379 0.57071 0.5968 0.6284 0.6287 0.6365
(0.5224)  (0.5668)  (0.5934)  (0.6253)  (0.6257)  (0.6352)

80° 0.4395 0.4915 0.5264 0.5650 0.5655 0.5759
(0.4342)  (0.4879) (0.5236)  (0.5672)  (0.5632)  (0.5742)

90° 0.3817 0.4353 0.4862 0.4868 0.5080
(0.3796)  (0.4398)  (0.4920)  (0.4926)  (0.5060)

100° 0.3196 0.3924 0.4000 0.4326
(0.3263)  (0.4120) (0.4127)  (0.4304)

110° 0.3132 0.2985 0.3481
(0.3179)  (0.3192)  (0.3458)

120° 0.1936 0.24682

(0.1276)  (0.2442)

The effect of nanoparticle volume fraction y, the micro-rotation parameter k , and the mixed
convection parameter 4 on local skin friction G and local Nusselt number Nu for F.0, and GO

suspended methanol-kerosene oil base nanofluids shown in Figures 2 to 7, respectively. We notice
that the local Nusselt number Nu and the local skin friction coefficient C increase with increasing

values of nanoparticle volume fraction x, the micro-rotation parameter K and the mixed
convection parameter A . It is also noticed that Fe,0,/GO kerosene oil has higher in local Nusselt

number compared with Fe,0,/GO methanol for various values of nanoparticle volume fraction x,
the micro-rotation parameter K and the mixed convection parameter A _Further, the local skin
friction C, of Fe,0,/GO methanol is higher than Fe,0,/GO kerosene oil for nanoparticle volume
fraction y, the micro-rotation parameter K and the mixed convection parameter (/1>0). On the
other hand, the opposite effect happened when (1<0), the local skin friction of Fe,0,/GO methanol
is lower than Fe,0,/GO kerosene oil, this is because of the physical properties for fluids. Moreover,
these figures showed that the local Nusselt number Nu and the local skin friction G of graphene

oxide is higher than the iron oxide with increase values of nanoparticle volume fraction x, the
micro-rotation parameter x and the mixed convection parameter (1>0) and in the opposite case,

the graphene oxide has low local Nusselt number Nu and local skin friction C} as compare to iron
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oxide when the mixed convection parameter (1<0). Also, it is observed from these figures for
Fe,0,/GO nanoparticles suspends in two based fluids namely methanol and kerosene oil, that the
actual value of A=A(>0), which first gives no separation, is difficult to determine precisely as it has
to be found by successive integrations of the equations. However, the numerical solutions indicate
that the value of ﬂs, which first gives no separation, lies between 0.75 and 1.0 for ¥ =0.1 and
K=0.2.

= GO-Methanol

1+ === (GO-kerosesne
Fe 3O A—Methanel

- Fe304—Kerosene

045 I Il I I I Il
0 20 40 60 80 100 120

x in degree

Fig. 2. Variation of the local Nusselt number using
Fe,0,/GO methanol and kerosene oil-based

nanofluids, for various values of x and ¥ when
A=3and K=0.2
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Fig. 3. Variation of the local skin friction using
Fe,0,/GO methanol and kerosene oil-based

nanofluids, for various values of xand %, when
A=3and K=0.2
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Fig. 4. Variation of the local Nusselt number using
Fe,0,/GO in methanol and kerosene oil-based

nanofluids, for various values of x and K, when

A=3and y=0.1
3
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oo 15t K=01,03 RN 1
A \
O,
\\\\\
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0 ‘ w * : : :
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xin degree
Fig. 5. Variation of the local skin friction using Fe,0,/GO

methanol and kerosene oil-based nanofluids, for various
values of xand K, when A=3 and y=0.1

Figures 8 to 16 show the temperature, velocity and angular velocity profiles respectively, at the
lower stagnation point of the sphere, x = 0, for nanoparticle volume fraction y, the micro-rotation

parameter K ~and the mixed convection parameter A for both Fe,O, and GO suspended
nanoparticles in methanol and kerosene oil. It can be seen that when the } and the k increase,

the velocity profiles and the angular velocity profiles decrease, but the temperature profiles
increase. It is also found that the temperature is decrease, and the velocity and the angular
increase when the mixed convection parameter A increase. Besides that, it is also noticed that
Fe,0,/GO methanol has a higher temperature, velocity and angular velocity compared with Fe,0,/GO

kerosene oil for every values of nanoparticle volume fraction ¥ , the micro-rotation parameter K
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and the mixed convection parameter (1>0). On the other hand, the opposite case happens when

(4<0), the velocity and the angular velocity of Fe,0,/GO methanol is lower than Fe,0,/GO kerosene

oil.

3.5

A=-5

,0.75,5

= (GO-Methanol
==== GO-Kerosene

Fe30 4—Methan01
—— Fe304—Kerosene

0.5
0

20 40 60

x in degree

80 100 120

Fig. 6. Variation of the local Nusselt number using Fe,0,/GO
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4. Conclusions

In this paper, we have numerically studied the mixed convection boundary-layer flow about an
isothermal solid sphere in a micropolar nanofluid with constant wall temperature. We discussed
the effects of the mixed convection parameter A , the nanoparticle volume fraction ¥, the micro-
rotation parameter K and the type of nanoparticles FesO4sand GO suspended in two based fluids
such as methanol and kerosene oil. From this study, the following results obtained

i. An increase in the value of the nanoparticle volume fraction ¥ , the micro-rotation
parameter K and the mixed convection parameter A , led to an increase of both the local
Nusselt number Nu and the local skin friction coefficient C,

ii.  The Fe,0,/GO kerosene oil has higher in local Nusselt number compared with Fe,0,/GO
methanol for various values of ¥, Kand A
iii.  An increase in the value of the parameters } and K led to a decrease in the velocity

profiles and the angular velocity profiles, but the temperature profiles increase.
iv.  Fe,0,/GO methanol has a higher temperature, velocity and angular velocity compared with

Fe,0,/GO kerosene oil for every value of parameters ¥ and K
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