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A nonlinear three-dimensional thermal process was studied experimentally and 

numerically. The present study aims to investigate the distribution of temperature in 

the joint of aluminum AA2024-T3 plates throughout the friction stirred butt. The 

experiments were conducted at a constant tool tilted angle of 3
o 

under various 

rotational speeds (690, 1130, 2000 rpm) and feed rates (20, 32, 45 mm/min). The 

highest temperature of 860 K was obtained at the experimental condition of 2000 

rpm, 20 mm/min, 20 dwell times, and 3° tilt angle. This value was less than the 

melting point temperature of Al 2024 alloy (911 K). The comparison between the 

numerical and experimental results of temperature distribution showed a good 

agreement. The deviation between the theoretical and experimental results for the 

maximum and minimum rotational speed and feed rate was (7, 10 %) and (5, 12 %), 

respectively.  
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 Introduction 1.

 

Aluminum alloy has unique properties such as strength/weight, good machinability, corrosion 

resistance, etc. These characteristics have led to increased demand for this alloy, especially in the 

aerospace sector. However, it is difficult to join these alloys by fusion welding because of their low 

melting point and the presence of an oxide layer. In addition, more defects are encountered during 

welding, such as porosity and distortion [1-4]. Friction-Stir Welding (FSW) is a new joining method 

that was patented in The Welding Institute (TWI), Cambridge, UK (1991). The process is a solid-state 

technique as illustrated in Figure 1. Heat is generated in this method by the friction between the 

welding tool and workpiece; the welding tool is equipped with a pin or a probe which is plunged 

into the butted plate and pin shoulder [5-10]. The tool is characterized as non-consuming and non-

melting during the process. The FSW process has presented as a solution to the problems 

encountered during the welding of aluminum alloys [11-17]. 
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The softened materials around the pin and beneath the shoulder produce a solid-state welding 

by motion tool (rotational and welding speed). It is expected that this process will inherently 

produce a weld with that lowers the residual stress and distortion as compared to the fusion 

welding methods since no melting of the material occurs during the welding [18-22]. The FSW 

process parameters can be classified into three groups: (1) tool-related parameters (includes pin 

and shoulder materials, pin and shoulder diameter, pin length, thread pitch, and feature geometry); 

(2) Machine-related parameters (includes welding and rotational speed, tool tilt angle, and plunge 

force; (3) other parameters (includes anvil material and size, workpiece size and properties, etc.) 

[8]. The diagram of the FSW process parameters was shown in Figure 2. 

 

 
Fig. 1. Schematic diagram of the principle of the FSW process and 

terminology 
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Fig. 2. Schematic diagram of the effect of FSW process parameters 

 

After the FSW technique was patented by TWI, many researchers have studied the mechanical 

and metallurgical behavior of friction stir welded joints. It is obvious from the literature that most 

of the studies focused on the FSW of aluminum alloys such as AA6061, AA6083, AA7075, etc. 

because of their application in the aerospace industry [23-27]. In addition, most of the existing 

studies investigated the mechanical properties and microstructure of FSW joints but failed to 

provide information about the process temperature distribution [28, 29].  
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Song  et al., [30] have developed a 3D model with a moving coordinate system for describing 

the heat transfer during FSW processes. The model helped to find the temperature distribution of 

AA6061 near the tool. Also, they concluded that preheating is advantageous for FSW. Aval  et al., 

[31] have experimentally and numerically (3D finite element) studied heat transfer through FSW. 

The result showed temperature distribution on the advancing side more than the retreating side. 

Muhsin  et al., [32] measured the thermal distribution through FSW of AA7020-T53 alloy. The 

results showed that the temperature distribution is symmetrical with respect to the welding line. 

The numerical results found the temperature to increase with increased rotational speed and 

decreased welding speed. The numerical result agreed with the measured data with a relative error 

ratio of 2 %.   Padmanaban  et al., [33] used CFD to investigate temperature distribution and 

materials flow during the FSW process for two alloys (AA2024 and AA7075). They found increases in 

the rotational speed and shoulder diameter to increase the temperature while increases in the 

welding speed decreased the temperature. Ghetiye  et al., [34] investigated the formation of 

defects in FSW butt joints under different welding conditions for alloy (AA8011). They FSW 

experiments were conducted in air and immersed conditions. Also, they found a superior strength 

in the immersed case compared to the air process.  

Jain  et al., [35] have studied the thermal profile of alloy AA2024 and reported that the 

maximum temperature was attained in the nugget zone while the temperature profile assumed a 

'V' shape due to higher heat generation on the top surface compared to the bottom. Also, they 

found the deformation to increase with increases in the rotational speed of the tool but decreases 

with increase welding speed. Aziz  et al., [36] experimentally and numerically (finite element) 

studied temperature distribution for AA2219 alloy. The results showed the temperature field 

obtained from the FE simulations to be similar to the temperature field obtained experimentally, 

with a maximum relative error of 7 %. Also, they found that a high rotational speed caused a higher 

amount of frictional heat and plastic dissipation energies. Verma  et al., [37] experimentally studied 

the FSW of AA6082 alloy and found the temperature on the advance side to be more compared to 

the retreating side for the investigated working conditions. The maximum temperature was 

obtained at the working condition of 2º tilt angle, 30 dwell time, 500 rpm, and 20 mm/min. Also, 

the temperature was found to increase with the dwell time.  

The aim of this study is to numerically and experimentally investigate the thermal distribution 

during the friction stir welding (FSW) of AA2024-T3 aluminum alloy with emphasis on the effect of 

machine parameters (welding transverse and rotational) speed on the temperature distribution 

during the process. For the verification of the numerical predictions, the numerical results were 

compared with the experimental data. 

 

 Experimental Details 2.

 

In this study, AA2024-T3 plate (dimension = 170 mm × 100 mm × 3 mm) was selected as the 

weld material. Two plates were prepared in a universal milling machine and fixed to a backing plate 

which served as a support during the FSW process. The tool pins were designed and manufactured 

from tool steel as shown in Figure 3. The temperature properties of AA2024-T3 aluminum alloy at 

different temperatures were given in Figure 4. Four k-type thermocouples were placed at equal 

distance from the weld line to measure the temperature along the advancing side (AS); the 

thermocouples were placed on the AS because many researchers have found the temperature at 

the AS to be higher than at the retreating side (RS). A data logger thermometer (Applent AT 4808) 

with 8 channels (Figure 5) was used for measuring the temperature distribution during the FSW 

process. The data logger records the process temperature and produces the results as an excel file. 
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One thermocouple was placed 10 mm from the center line and 1.5 mm depth from the top surface. 

Figure 6 showed the position of the thermocouple in the weld line. 

  
Fig. 3. The tapered pin tool (all dimension in mm) 

 

 
Fig. 4. Thermal materials properties of AA2024-T3 

 

 
Fig. 5. The data logger used in measuring temperature 
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Fig. 6. Schematic diagram shows the position of 

thermocouple along advancing side (All dimensions 

in mm) 

 

The parameters were implemented at a constant tilt angle and dwell time with different 

rotational and welding speeds. The parameters used are presented in Table 1. 

 

Table 1 

 Machine parameters used in this study  

Sample No. Rotational speed (rpm) Welding speed (mm/min) Dwell time (s) Tilt angle (°) 

1 

690 

20 

20 3 

2 32 

3 45 

4 

1130 

20 

5 32 

6 45 

7 

2000 

20 

8 32 

9 45 

 

 Finite Element Thermal Model of FSW  3.

 

The thermal model of the FSW process was investigated in this study using finite element 

simulation. The ANSYS Parametric design language (APDL) provided by ANSYS group® was used to 

build the finite element method in non-linear and transient three-dimensional heat transfer model 

to determine the temperature distribution [38-40]. The temperature was determined as a function 

of time and the coordinates x, y, and z. In addition, the model was validated by comparing the 

simulated results with the experimental data. 
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3.1 Thermal model  

 

The purpose of the thermal model is to calculate the transient temperature distribution as a 

function of time (t) and spatial coordinates (x, y, z) using Eq. 1 [33] 

ρC	 ∂T	(x, y, z, t)∂t = −�∂R�∂x + ∂R�
∂y + ∂R�∂z � + Q(x, y, z, t)																																																																									(1) 

 

where T is the temperature, ρ is the density, C is the specific heat, R is the heat flux per unit area. 

By applying Fourier's law (R = k ��
��), Eq. 1 becomes 

 

ρC	 ��	(�,�,�,�)�� = −� �
�� �k� 	����� + �

�� �k� 	����� + �
�� �k� 	������ + Q(x, y, z, t)       (2) 

 
where k is the thermal conductivity. 

 

3.2 Assumptions 

 

The following assumptions were developed from the finite element thermal model: 

 

No melting of the workpiece the during FSW process. 

 

I.  Weld material is isotropic and homogeneous. 

II.  Boundary conditions are symmetrical around the center line of weld. 

III.  Heat transfer to the tool and machine is negligible. 

IV.  The process is a solid-state and no change in state. 

V.  Radiation by top surface. 

 

3.3 Heat Generation  

 

In FSW thermal model, there are two sources of heat inputs, 1) heat gendered at the tool 

shoulder-welds interface, and 2) heat generated at the tool pin-welds interface as shown if Figure 

7.  

Tool

pin

Ro

Ri

Qsh

Q Pin 2

Q Pin 1

 
Fig. 7. Schematic of the region tool-

weld interface 
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3.4 Heat Input at the Tool Shoulder-Weld Interface 

 

The heat input at the tool shoulder-weld interface is assumed to be frictional heat and the local 

heat can be calculated from 

 

Q�� =  
! 	(1 − δ)	πμpω(R'�! − R(!)         (3) 

 

where δ is the slip factor which has been reported to be between 0.6 – 0.85, µ is the friction 

coefficient found to be between 0.3 – 0.5 [41, 42], ω is the rotational speed, p is the pressure, Rsh is 

the radius of the shoulder, and Rp is the radius of a pin. 

 

3.5 Heat Input at the Tool Pin-Weld Interface 

 

The heat input at the tool pin-weld interface is in two parts; 1) feat generated by the friction on the 

horizontal surface of the pin and shoulder. The heat can be calculated using Eq. 4 

 

Q()�* = +
, 	(1 − δ)	πμpωR)!          (4) 

 
Heat generated by the friction on the vertical surface of the pin; the local heat can be calculated using Eq. 5: 

 

Q()� = 2	π	μ	p	ωLR) 	          (5) 

 

where (Lpin) is the length of the pin and dependent on the workpiece thickness. 

 

The total friction on heat input by tool pin-welds is the summation of Eq. 4 and 5 as follows 

 

Q/�0�12 = 2	πμpωR) 3(*45)67! + L()�8         (6) 

 

3.6 Boundary Conditions 

  

Based on the data from previous studies [43-48], heat loss by convection and radiation was 

considered in all the workpiece except for the bottom surface because heat loss at the bottom 

surface occurs by conduction to the backing plate. The heat loss qs by convection and radiation can 

be calculated Eq. 7 

 q' = h(T − T0) + εFσ(T> − T0>)          (7) 

 

where T is the absolute temperature of the workpiece, To is the ambient temperature of the 

workpiece, h is the convection heat transfer coefficient taken to be 30 W/m
2
K, ε is the emissivity of 

surface, taken as 0.5 for aluminum, F is a factor of radiation (1), σ is a Stefan-Boltzmann constant 

(5.67 × 10
-8

 W/m
2
K

4
). 

On the other hand, heat loss qsp by conduction from the bottom surface of the workpiece can 

be calculated based literature [18] using Eq. 8 

 q'( = h((T − T0)            (8) 
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where hp is the convection coefficient through the bottom surface; the complexity in determining 

this coefficient is that the value must be estimated by assuming varying values during a reverse 

analysis approach. In the model, the optimized value of hp was taken as 300 W/cm
2
K. The boundary 

conditions used in the thermal model are shown in Figure 8.  

 

Convection and 

radiation from top 

and bottom surface

h= 30 w/m2.k

And T= 303 k

h= 300 w/m2.k

 
Fig. 8. Schematic of the boundary conditions 

 

3.7 Element Used  

 

In this thermal model, the workpiece was meshed using element SOLID70; it is defined as nodes 

with temperature as a lone degree of freedom at every node (8), and by orthotropic material 

properties. 

 

3.8 Simulation  

 

The thermal modeling was implemented using transient thermal analysis. The flow chart of the 

method used for the finite element analysis was shown in Figure 9. 
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Fig. 9. Flowchart of thermal analysis 
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 Results and Discussion 4.

 
The effect of weld parameters (rotational and welding speed) on the thermal history of 2024-T3 

aluminum alloy was studied (simulation and experimentally) and discussed in this section. Figure 10 

showed the thermal modeling of the temperature distribution when the tool is moving along the 

weld centerline for 20 sec. The temperature distribution was influenced by the heat condition 

between the weld and backing plate; it was also influenced by heat loss through convection and 

radiation to the environment. The movement speed also influenced the temperature distribution. 

 

 
Fig. 10. Temperature distribution (a) on the top, (b) across the welded 

plate at 20s (690 rpm & 60 mm/min) 

 

4.1 Effect of Rotational Speed 

 

The temperature distribution along the region perpendicular to the center line of the plate 

welds was shown in Figure 11(a) and (b). It was discovered that an increase in the rotational speed 

increased the temperature of the plate welds because of the increased frictional heat between the 

tool-welds interface. Similar results were found by other researchers [35, 36]; moreover, it was 

discovered from the temperature profile that the maximum temperature was achieved at the stir 

zone.  
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Fig. 11. (a) Experimental, (b) Simulated temperature profiles along the weld at 20 mm/min 

 

Figure 12 showed the comparison of the experimental and simulated temperature values at the 

welding speed of 20 mm/min along the advancing side from the welds speed. An agreement 

between the simulated and measured values was observed. Additionally, increases in the rotational 

speed increased the error ratio as follows: 7.19 % error ratio at X = 10 cm and 2000 rpm, 3.56 % 

error ratio at X = 10 cm and 690 rpm.  

 

 
Fig. 12. Comparison of the experimental and simulated temperatures at the 

welding speed of 20 mm/min 

 

4.2 Effect of welding speed  

 

Figure 13 (a) and (b) showed the temperature distribution along the plate weld. It was observed 

that increases in the welding speed decreased the temperature due to the decrease in the frictional 

dwell time. Moreover, the temperature profile for different welding speeds remained the same, 

indicating a uniform effect of welding speed on temperature along the weld plate. Similar results 

were reported by Jain et al., [35]. 

300

400

500

600

700

800

900

0 10 20 30 40 50

T
e

m
p

e
ra

tu
re

 [
k

]

Distance [mm]

690 RPM

1130 RPM

2000 RPM

(a)

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60

T
e

m
p

e
ra

tu
re

 [
k

]

Distance [mm]

690 RPM

1130 RPM

2000 RPM

(911°K) Melting Temp. of AA2024

(b)

300

400

500

600

700

800

900

0 10 20 30 40 50 60

T
e

m
p

e
ra

tu
re

 [
k
]

Distance [mm]

ANS 690 RPM

Test 690 RPM

ANS 1130 RPM

Test 1130 RPM

ANS 2000 RPM

Test 2000 RPM



CFD Letters 

Volume 11, Issue 1 (2019) 58-72 

68 

 

Penerbit

Akademia Baru

 
Fig. 13. (a) Experimental, (b) Simulated temperature profiles along the weld at 690 rpm 

 

Figure 14, showed the comparison of the experimental and simulated temperature value at the 

welding speed of 690 rpm along the advancing side from the weld. An agreement was observed 

between the simulated and measured values. Additionally, error rates due to increases in the 

welding speed decreased as follows 7.4 % error ratio at X = 10 cm and 20 mm/min, 3.7 % error ratio 

at X = 10 cm and 45 mm/min.  

 

 
Fig. 14. Comparison of the experimental and simulated temperatures at the welding 

speed of 690 rpm. 
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4.3 Effect Rotational and Welding Speed  

 

The heat generated from FSW is estimated by the quotient of the spindle power and welding 

speed; the spindle power is a function of the rotational speed of the tool. As such, the cumulative 

influence of rotational speed and welding speed serve as an estimate of the heat generated into 

the weld. Figure 15 showed the simulated peak temperature at the weld zone for different welding 

speeds and rotational speeds. The temperature at the center line underneath the tool shoulder was 

different for different process conditions as follows: least value of 710 K for the weld at 960 rpm 

and 45 mm/min, and the maximum value of 860 K for the weld at 2000 rpm and 20 mm/min. It is 

discerning from the plot that the maximum temperature at the weld zone was more affected by 

rotational speed than welding speed.  

 

 
Fig. 15. Simulated peak temperature at the weld zone 

 

 Conclusion 5.

 

In this paper, temperature distribution during FSW of AA2024-T3 was evaluated experimentally 

and numerically for different machine parameters. The experimentally-determined temperature 

was recorded using a K-type thermocouple fixed perpendicularly to the weld centerline weld while 

the numerically-determined temperature was estimated using finite element method. The 

following conclusions were drawn from the results of the study 

 

I.  High temperature was observed at 2000 rpm, 20 mm/min, 20 dwell time, and 3° tilt angle 

since the last observed temperature value was 860 K before the melting of the Al 2024 alloy at 

911 K. 

II.  The numerical results showed that the temperature distribution increased with increases in 

the rotational speed (Tmax= 860 K at 2000 rpm & 20 mm/min, and Tmax= 734 K at 690 rpm & 20 

mm/min). 

III.  The numerical results also showed that the temperature distribution increased with 

decreases in the welding speed (Tmax= 710 K at 690 rpm & 45 mm/min, and Tmax= 734 at 690 rpm 

& 20 mm/min). 
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IV.  An agreement was found between the experimental and numerical values, with an 

acceptable error ratio which showed the ability of the model to correctly predict the heat 

transfer process during FSW.  

V.  The temperature profile showed that the highest temperature at the stir zone appeared due 

to influenced by the tool. 
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