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1. Introduction

In fluid mechanics the Sakiadis problem [1,2] which can be considered as a variant of the well-
known Blasius equation [3], is concerned with the boundary layer flow in a quiescent fluid. The
most important aspect of this problem is to provide the fluid motion by a moving flat plate. In
recent years, there has been an increase in the number of research studies dealt with this problem.
In this regard, Sulochana et al., [4] analyzed the magnetohydrodynamic (MHD) axisymmetric
Sakiadis flow of Cu-H,0 and AlsoCuso-H,0 nanofluids past a thin horizontal needle considering the
Joule heating. They developed those reported by Soid et al., [5] and showed that accounting for the
effect of Lorentz force increases the thermal boundary layer thickness. They also found that the
relative velocity of AlsgCuso-H,0 nanofluid is greater in the vicinity of the wall, compared to the Cu-
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H,0 nanofluid. Cortell Bataller [6] investigated the effects of convective heat transfer with thermal
radiation on the Blasius and Sakiadis flow numerically through the Runge-Kutta fourth-order
method (RK4M). They found that the Sakiadis flow yields a thicker thermal boundary layer than the
Blasius flow at low Prandtl numbers. They also reported the significant effect of thermal diffusion
on the wall temperature. Finally, they concluded that their findings are in agreement with those of
Aziz [7]. Hayat et al., [8] performed heat transfer analysis in the Blasius and Sakiadis flow of an
Eyring-Powell fluid with the constant heat flux and convective boundary conditions, and found that
the thermal boundary layer thickness decreases with an increase in the Prandtl number. They also
illustrated importance of the external convection resistance inside the surface. Bachok et al., [9]
optimized the Blasius and Sakiadis flow of Cu-H,0, Al;03-H,0 and TiO,-H,0 nanofluids presented by
Ahmad et al., [10] and showed that Cu-H,0 and TiO,-H,0 nanofluids take the lowest and highest
heat transfer rates, respectively. They also emphasized that in case of zero heat flux, their findings
are fully consistent with those of Ishak et al, [11]. Pantokratoras [12] studied the Blasius and
Sakiadis flow of a Carreau fluid numerically through the finite difference method (FDM). He showed
that the momentum boundary layer thickness decreases with an increase in the Deborah number.
He also investigated effects of the Deborah number on the shear-thinning and Shear-thickening
fluids (see Ref. [13]) for both the Blasius and Sakiadis flow cases. Hayat et al., [14] analyzed the
combined effects of convective heat transfer and viscous dissipation on the Blasius and Sakiadis
flow of an upper-converted Maxwell (UCM) fluid using the HAM, and indicated that the heat
transfer rates decreases with an increase in the Eckert number. They also found that the thermal
boundary layer thickness is significantly affected by the Biot number. With mathematical precision,
Girgin [15] employed the generalized iterative differential quadrature method (GIDQM) to
investigate the effects of variable fluid properties on the Blasius and Sakiadis flow, and showed that
his findings are consistent with those provided by Arikoglu and Ozkol [16] and Andersson and
Aarseth [17]. Xu and Guo [18] developed a fixed point iterative method (FPIM) for solving the
Blasius and Sakiadis flow in terms of a series of linear differential equations. Fazio [19] proved that
the iterative transformation method (ITM) is applicable to the Sakiadis flow. He also emphasized
that the skin friction coefficient in this case is 1.34 times greater than that of the Blasius flow (see
Ref. [20]). It should be emphasized here that more details can be found in Refs. [21-30].

Motivated by the aforementioned research studies, this paper provides analytical and
numerical solutions for dealing with the heat and mass transfer analysis in the Sakiadis flow of
Casson fluid with convective boundary conditions. The Buongiorno's mathematical model [31]
related to the Brownian motion and thermophoresis effects has also been utilized to simulate slip
mechanisms in the nanoparticles. The organization of this paper is as follows.

Section 2 provides a very detailed description of the governing equations and its non-
dimensionalization. Section 3 states the analytical and numerical solution methods. The results and
discussion are reported in section 4. The concluding remarks are summarized in section 5.

2. Governing Equations
The non-Newtonian fluids are categorized into three main types: Time-independent, time-
dependent and viscoelastic fluids [32, 33]. In the case of time-dependent fluids, the viscosity is not

dependent on the duration of shearing [34]. In this section, one may define the time-independent
Casson fluid [35] which has the following constitutive equation
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where u is the plastic dynamic viscosity, y is the rate of shear strain, 7 is the yield stress, T is the
Cauchy stress tensor and || is the magnitude of 7. From Eq. 1, it is apparent that the viscosity
decreases with an increase in the rate of shear strain. Moreover, if the yield stress is equal to zero,
the Casson fluid reduces to the Newtonian type [34].

For a 2D flow in the Cartesian coordinate system, the velocity, temperature and nanoparticle
concentration fields are stated as

= [u(x,y),v(x,y)], T=T(x,y),C= C(x,y), (2)

where u and v are the velocity components along the x- and y-axes, respectively, T is the
temperature and C is the nanoparticle concentration.

Using the above-mentioned assumptions, the governing boundary layer equations of continuity,
momentum, thermal energy and nanoparticle concentration can be written as follows

(Ou , ov _
ax oy '
ou ou 1\ 82 6B . o
u—+v—=vl|l —)———usm ,
0x T ay ( +A 0y? pf I[) 3)
1 3
aT T 92T v au ac ot ar\? 1 0
U— +v—=a—+—(1+—) — +( B —T(—) -2
0x oy y2  cp y ay dy ay oy prcp Oy
ac ac 0%c = Dy d°T
Uu—+v—=D—+——
\ 6x+ oy B y2+T°o6y2'

along with the following boundary conditions
{atyzO:uzUW,U=O,T=TW,C=CW, ()
asy - oo:u—=0,T>Ty,,C— Co,

where v is the kinematic viscosity, A is the Casson fluid parameter, o is the electrical conductivity,
By is the magnetic field strength, py is the fluid density, Y is the inclination angle of the magnetic
(po)y
the ratio of nanoparticle heat capacity to the base fluid heat capacity, Dy is the Brownian diffusion
coefficient, Dt is the thermophoresis diffusion coefficient, Ty, is the ambient temperature, g, is the
radiation heat flux, U,, is the constant velocity of the moving flat plate, T, is the wall temperature,
C,, is the nanoparticle concentration around the wall and C, is the ambient nanoparticle
concentration.

According to the Rosseland approximation [36] the radiation heat flux involved in Eq. 3 may be
expressed in the following form

field, a is the thermal diffusivity, ¢, is the specific heat of the fluid at constant pressure, { =

40‘53 aT
3Br 0y’

qr = (5)

where osg and S are the Stefan-Boltzmann constant and Rosseland mean absorption coefficient,
respectively.
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It is to be noted that the fluid-phase temperature difference within the flow is almost negligible
and hence T* can be expanded into a Taylor series with respect to T, as T* = 4TTS — 3T2. Then,
16T 058 ar

3Br Oy’

To convert above equations to the dimensionless form, the following variables can be

expressed

the radiation heat flux results in g, = —

= JTf =y 2,00 = 22 g = S5, ©

where Y is the stream function which is governed by u = Z—i} and v = —Z—f, f is the similarity

function, n is the similarity parameter, 6 is the dimensionless temperature and ¢ is the
dimensionless nanoparticle concentration.

Substituting Eq. 6 into Eq. 3 and Eq. 4 gives

((1+ )an];-l-fg% af( + Ha?sin 1/))—0

i_ a¢ae 0*f

f +Nb +Nt( ) += Nf +Ec(1+ )(an) =0, (7)
B, 1, 000 Mo

an2+z fan Nbanz =~ '

and,

mn:&fzag:LQ:L¢:1

af (8)
asn — oo: a—>0,9—>0,¢—>0,

2
where Ha? = % is the square of the Hartmann number, Pr =§ is the Prandtl number, Nb =

w

%(CW— ») is the Brownian motion parameter, NtzzTﬂ(Tw— ) is the thermophoresis
(5]

k . - Uz
ﬁR3 is the radiation parameter, Ec = ——
40s5pTs cp(Tw—Teo)

Le = Di is the Lewis number.
B

is the Eckert number and

parameter, Nr =

The skin friction coefficient, local Nusselt number and local Sherwood number are defined as

Cr = 25 N = 5, 55 St = 5., 2oy Q
where,
Tw = U (1 + ) (gz)y 0 qw = —k (Z_;)y:()’ qm = —Dp (ay)y 0 (10)

Substituting Eq. 6 and Eq. 10 into Eq. 9 gives
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¢ Re NuRet=— (%) shRei=-(22) (11)

on

=(1+3) G

Uy . .
where Re,, = xTW is the local Reynolds number based on the wall velocity.

n= n:O

The following section contains the analytical and numerical solutions for Eq. 7 and Eq. 8 that
may be amenable to the nonlinear boundary value problems.

3. Solution method
3.1 HAM

Let us choose the appropriate initial guesses as follows

fo(m) =1 —exp(—n),0,(n) = exp(—n), po(n) = exp(—n). (12)
The auxiliary linear operators can be expressed as

__33F  of _ 9%6 _ 0%¢
Lf=$—£. 9=6—772_9'L¢=W_¢' (13)

which have the following properties

Le[c; + coexp(n) + czexp(—n)] = 0,
Lg[csexp(n) + csexp(—n)] = 0, (14)
Ly [ceexp(n) + c;exp(—n)] = 0,

where ¢y, C,, ..., C7 are the arbitrary constants. The zeroth-order problems correspond to Eg. 7 and
Eq. 8 are constructed in the following forms

(1 —pLe[f . p) — fo)] = pheNe[f (. D)),
(1 —p)Le[0(n,p) — 8o()] = PRaNa[f (1, D), 8(n, D), d(n,D)], (15)
(1 —p)Ly[d (. p) — po(M] = pheNy [f (., p), 6, p), (1, D)),

and,

~ af(m, ~ ~
atn=0:f(n,p)=0,$=1,9(n,p)=1,¢>(n,p)=1, 6)
) 16
as 1 — oo: %’,’7”’)% 0,6(n,p) »0,6(,p) - 0,

where 0 < p < 1 is an embedding parameter, hs, hg and hy, are the non-zero auxiliary parameters,
and N¢, Ng and Ny, are the nonlinear operators which can be defined as follows
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(N[f ()] = (143) nf+f% ny( + Ha? sin? ),

JNe [f(1.0),8(n.p), §(n.p)] = g% + lfaf] + Nb%g + Nt (g)z .
+INrf 22 + Ec(1+ )(Z:’;) ,
N [F @, p) 00,301, p)] =22 +11ef 2+ HIT

When p = 0, Eq. 5 converts to

Le[f(n,0) = fo()] = 0,L[6(n, 0) — 8,(m)] = 0, Ly [¢ (1, 0) — o ()] = 0, (18)

and when p = 1, Eqg. 5 converts to

Ne[f(n, D] =0,
No[£ (1, 1),6(n,1),$(n, D] = 0, 19)
No[f(n,1),6(n,1),¢(, 1] = 0.

expanding £ (1, p), 8(n, p) and ¢(n, p) into the Taylor series with respect to p gives

F,0) = fo(®) + X321 frn(mP™,
O, p) = 05(p) + Y=t Om MDP™, (20)
A, p) = o) + Xy P (MP™

where,
_(19™f(mp)

() = (7 5 ),,=o'
_ (19™m8(n.p)

em(n)—(m!—apm )p:o' (21)
_ (13™$(np)

onn = (50)

If the initial guesses, auxiliary linear operators and auxiliary parameters are properly chosen, Eq. 20
converges at p = 1 as follows

f) =Xm=0fm(@),
() = Xm=00m(), (22)
¢ = Xm=0bm(®).

Differentiating Eq. 15 m times with respect to p, setting p = 0 and dividing them by m! gives the
following mth-order problems

L [fn ) = Xmfm—1()] = bR, (),
Lg [0 (1) — XmOm-1(m)] = hgRS, (), (23)
Lo[dm @) = Xm®m-1(D] = heRE M),
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and,

atn = 0: () = 0,Z 2 = 0,6G1) = 0,6(n) = 0,

(24)
a5 > <0: 2280, 0,007) = 0,(r) = 0,
where X,, and R{n, R?, and R(f;l can be written as
om<1,
m=1{1m 1 (25)
(f —_ afml afmnl mlafnafmnl
REG) = (1+7) 7222+ pns f, Pty e
—Ha?sin? vy —afm L
0 169m1 00m-—n-1 m16¢naemn1
{R%, () = o Z R + Nb Y © o on (26)
m—l%M 1 m-1 ¢ 90m-n-1 1\ vm—10%/n 0% fm-n-1
+Nth—0 an 677 + Nan:O fn 67] + EC (1 + l) ZTI:O 6772 6772 )
[ 92 ¢m 1 0pm-n-1 &620,71_1
[R%(n) = +3Le Ths) f, Mumnet 4 B2

It is to be noted that Eq. 23-26 can be easily solved using the symbolic MATLAB software for m > 1.
The general solution for Eq. 23 in terms of particular solutions i.e., (1), 6,,(n) and ¢;,,(n) are
given in the following forms

fm() = fin(m) + 1 + cexp(n) + czexp(—n),
O, () = 05,(n) + caexp(n) + csexp(—n), (27)
dm(M) = Ppm(m) + ceexp(n) + cyexp(—n),

where,

6 m 0 * * *
;=04 =Ce=0,c3= fan( )'Cl = —c3 — fin(0),cs = —07,(0),c; = —¢,(0). (28)

As stated by Liao [37-40], convergence of the HAM-series solutions largely depends on the
values of auxiliary parameters. Hence, the optimal values of hs, hy and hyg can be found by
minimizing the square residual errors as follows [40]

(67 () = 300 [N (S0 FOD), |
ez"(he)=i o [No(Z20f @), S0 0G0 0), | 0
€ (hp) = =S80 [Ng (S £(1), Z10 001 , 570 (1))

) (29)

n= 161]]

and,

48



CFD Letters
Volume 11, Issue 1 (2018) 42-57

he : limy,_e e}"(hf) =0,hg : limy_,c €5 (hg) = 0,hy : limy e egl(h(p) =0,
(30)

where g =20 and 61 = 0.5. In this regard, Table 1 tabulates the optimal values of auxiliary
parameters and corresponding square residual errors for different orders of approximation in terms
of 1=04,Ha=1, ¥ =45 Pr=1, Nb=Nt=0.5, Nr=0.3, Ec=0.2 and Le = 1. From this
table, it can be seen that hf = -0.7083, hg = -0.8958 and h¢ = -0.6736 will hereafter be employed
within the text.

To summarize, the HAM algorithm can be provided as follows

a) Setm = 1.

b) Substitute Eq. 12 into Eqg. 26 and obtain R{(n), R¢(n) and R‘f(n).

c) Substitute R{(n), R¢(n) and R‘f (n) into Eq. 23.

d) Compute ¢y, Cy, ..., c; form > 1 and obtain f; (1), 6:(n) and ¢, (n).

e) Substitute f;(n), 6,(n) and ¢ (n) into Eq. 26 and obtain R];(n), RS (1) and R‘f m.
f) Repeat steps 2-4 m times.

g) Obtain f3,(n), 0,,(n) and ¢, (n) where M is the number of iterations.

h) Check for convergence of the computations.

Table 1

Selection of auxiliary parameters
m he € hg €y’ hg €
2 -0.6402 3.48x10° -0.8214 7.29%x10°° -0.5552 5.33x107°
5 -0.6746 7.16x10°° -0.8690 8.10x107 -0.6140 1.60x10
10 -0.6940 2.96x107 -0.8841 1.90x10”7 -0.6470 8.09x10°®
15 -0.7016 8.18x10°® -0.8907 4.98x10°8 -0.6615 1.15x10®
20 -0.7083 4.53x10°° -0.8958 5.91x107° -0.6736 8.54x107

3.2 RKF45M

The generated RKF45M algorithm in MAPLE 13 worksheet together with the shooting
technique, as it is illustrated in Figure 1, converts Eq. 7 to a set of initial value problems with the

convergence criterion 10'6, step size An = 0.01 and upper bound of the integral ,, = 10. For more
details on the RKF45M, see Refs. [7,41].

4, Results and Discussion

In this section, the obtained results from evaluating the flow of Casson fluid above a moving flat
plate with viscous dissipation, magnetic force, radiation effects and convective boundary conditions
is reported based on the Buongiorno's mathematical model. In order to ensure the accuracy and
effectiveness of the present analytical and numerical solutions, the obtained results are compared
with those available findings in the literatures in subsection 1. Then, further details about this paper
are available in subsection 2.
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> restart

> with (plot)

> macro(x = eta) :

> fixedparameters = einf = 10 : lambda == 0.4 : Ha:=1: psi == 45 :
Nt:=05:Nr:=03:Ec:=02:Le:=1:

> eqsl:= (1 4 (1/Iambda)) =dif f(f (eta), eta, eta, eta) + f(eta) * dif f(f (eta), eta, eta)
—diff(f (eta), eta) « (dif f(f (eta), eta)+(Ha)"2 » (sin(psi))"2) = 0 :

> eqs2:= (1/Pr) = dif f (theta(eta), eta, eta) + (1/2) * f(eta) * dif f (theta(eta), eta)
+Nb * dif f(phi(eta), eta) = dif f(theta(eta), eta) + Nt + dif f (theta(eta), eta)

« dif f (theta(eta), eta) + (1/2) + Nr = f(eta) * dif f (theta(eta),eta) + Ec + (1 + (1/lambda))
» dif F{F(eta), eta, eta) = dif f{f(eta), eta, eta) ¢

> egsd:= dif f(phi{eta), eta, eta) + (1/2) » Le » fleta) » dif f(phifeta), sta) + (Ht/Nb)
+ dif'f(theta(eta), eta, eta)

> bes1 = £(0) = 0,(D(£))(0) = 1, theta(0) = 1,phi(0) = 1:

> bes2 = (D(f))(einf) = 0, theta(einf) = 0, phi(einf) = 0 :

eqs = {eqsl,eqs2,eqs3,bcs1, bes2, } -

> Q = dsolve(eqs, {f (x), theta(x), phi(x)}, numeric, output = listprocedure) :

> F = eval(f(x),Q); D1F = eval(dif f(f(x),x),Q); D2F = eval(dif f(f(x),x,x),Q) :

> THETA := eval(theta(x),Q); DITHETA = eval(dif f (theta(x),x),Q) :

> PHI = eval(phi(x),Q); D1PHI = eval(dif f(phi(x),x), Q) :

> plot([F(X),D1F(x),D2F(x)],x = 0..einf):

> p;y = plot(D1F(x),x = 0..einf) :

> py == plot(THETA(x),x = C..einf) :

> p3 = plot(PHI(x),x = 0..einf) :

> evalf({D2F(0),—D1THETA(0), —D1PHI(0)}) :

> Cf == (1 + (1/lambda)) * D2F(0) |

> Nux := —D1THETA(0) :

> Shx := —D1PHI(0) :

Fig. 1. Generated RKF45M algorithm in MAPLE 13 worksheet together with the shooting
technique

Thew oo 4 o BRI . I .
rr~— 1+ N1NUD -— U.0 ¢+

4.1 Comparison and Validation

Example 1. This example aims to provide a comparison between the present solutions and

2
those reported in Refs. [42,43] to determine the values of (Z_n];) in terms of A. Haldar et al., [42],
=0

suggest flow of the Casson fluid past a power-law stretching surface is investigated numerically
using the RK4M together with the Newton's technique while Bhattacharyya et al., [43] suggests a
closed-form solution for the flow of Casson fluid past a porous shrinking / stretching surface. It is to
be mentioned here that the other pertinent parameters dealt with this paper are set to zero i.e.,

2
Ha =1 = Pr = Nb = Nt = Nr = Ec = Le = 0. From Table 2, it is seen that the values of (ZTQ)
n=0
decrease with an increase in A for all cases listed in this table. Moreover, since the maximum
relative error between the HAM / RKF45M and those of Refs. [42,43] does not exceed 0.008% /
0.035% and 0.009% / 0.037%, respectively, the validity of the present solutions is confirmed.
Example 2. At this point, MHD three-dimensional flow of a fluid past a linearly stretching

surface which is provided in Chamkha research [44], is compared with the present solutions to

92 . . o .
calculate the values of (#) in terms of Ha. The pertinent parameters in this case are provided
1=0

as follows, 4 = o, Pr = 6.7 and i = Nb = Nt = Nr = Ec = Le = 0. Furthermore, the obtained
results correspond to this example are rounded up to five digits. As it is shown in Table 3, the values
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2
of (ZT};) decrease with an increase in Ha. The results of HAM / RKF45M and Chamkha [44] only
7=0
suffer from a relative error of at most 0.031% / 0.033%. Hence, it can be emphasized that the
present solutions are consistent with the findings of Chamkha [44]. However, there is a minor

difference between these results which is largely due to the different solution methodologies.

Table 2
9?2 .
Values of (a_nj;) compared with Refs. [42,43]forHa=¢Y =Pr=Nb=Nt=Nr=Ec=Le =0
n=0
Present solution-HAM Present solution-RKF45M Ref. [42] Ref. [43]
0.5 -0.577398 -0.577405 -0.577351 -0.577865
-0.707186 -0.707194 -0.707107 -0.707243
-0.816529 -0.816538 -0.816497 -
-0.912963 -0.912970 -0.912871 -0.913120
Table 3
82 .
Values of (#) compared with Chamkha [44] for A = oo, Pr =6.7andy = Nb=Nt=Nr=Ec=Le=0
=0
Ha 0 1 2 3 4
Present solution-HAM -1.00114 -1.41544 -2.23690 -3.16297 -5.09921
Present solution-RKF45M -1.00116 -1.41546 -2.23690 -3.16297 -5.09921
Ref. [44] -1.00180 -1.41602 -2.23731 -3.16351 -5.10068

Example 3. This example illustrates a comparison between the present solutions and Abdul

2
Hakeem et al.,[45] to determine the values of (Z_n];) in terms of 1 considering A = 0.4, Ha =1
n=0

and Pr = Nb = Nt = Nr = Ec=Le =0. In Ref. [45], the flow of Casson fluid with thermal
radiation and velocity slip boundary conditions is investigated using the RK4M together with the

. . 92 .
shooting technique. Based on the results of Table 4, the values of (6_11];) decrease with an
1=0

increase in Y. The difference in these findings is due to a maximum relative error equals to 1.082%
/ 0.377% between the HAM / RKF45M and Abdul Hakem et al., [45] which can verify the present
solutions.

Table 4
2
Values of (g—nj;) compared with Abdul Hakeem et al., [45] for A = 0.4,Ha = 1and Pr = Nb = Nt = Nr =
n=0
Ec=Le=0
P 0° 30° 45° 60°
Present solution-HAM -1.0612 -1.1681 -1.2547 -1.3399
Present solution-RKF45M -1.0747 -1.1712 -1.2604 -1.3442
Ref. [45] -1.0797 -1.1763 -1.2644 -1.3482
) . a0 . .
Example 4. The final stage is to compare the values of (5) in terms of Pr obtained by the
n=0

present solutions with those reported in Gorla and Sidawi [46]. The numerical procedure for solving
two-point BVPs is utilized to investigate the effect of mass transfer rate on the vertical stretching
surface.[46] The results of this example are provided with A - o and Ha =% = Nb = Nt = Nr =
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Ec = Le = 0. From Table 5, it is observed that the values of (%) increases with a decrease in
n=0

Pr. Above all, the relative error between the HAM / RKF45M and Gorla and Sidawi [46] does not

exceed 0.129% / 0.153%; accordingly, the present solutions are in agreement with Gorla and

Sidawi [46].

Table 5

Values of (%) . compared with Gorla and Sidawi [46] for A > wand Ha =Y = Nb = Nt = Nr = Ec =
Le=0 !

Pr 0.7 3 7 10

Present solution-HAM -0.45416 -1.16608 -1.89578 -2.30312
Present solution-RKF45M -0.45399 -1.16573 -1.89546 -2.30288
Ref. [46] -0.45593 -1.16669 -1.89691 -2.30350

4.2 Further Details

In this subsection, unless stated otherwise, the pertinent parameters are provided as follows,
A=04,Ha=1,¢Y =45°Pr=1,Nb=Nt=0.5Nr=0.3,Ec=0.2and Le = 1.

Figure 2 shows variation in the local Nusselt number with A and Ha. The obtained results
correspond to this figure demonstrate that the local Nusselt number decreases with an increase in
A. This is because, an increase in A decreases the yield stress of the fluid that leads eventually to an
increase in the plastic dynamic viscosity as well as its viscous forces on the flow. Indeed, one can
imagine the flow of Casson fluid to act as a solid until a yield stress is exceeded [47]. Moreover, as it
is seen from Figure 2, the local Nusselt number decreases with an increase in Ha by reason of a
drag-like force, namely Lorentz force. This force tends to resist flow of the fluid and consequently
retards its motion. In addition, presence of the thermal radiation might well lead to a decrease in
the local Nusselt number [45]. The point is, an increase in thermal radiation leads to generate the
internal heat energy.
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1

NuxRe;E-Ha curve in terms of 1

52



CFD Letters
Volume 11, Issue 1 (2018) 42-57

As Figure 3 depicts, for thermophoresis parameter less than 0.3, the local Nusselt number
increases with an increase in Pr. It is due to the fact that, the higher value of Pr has the convection
coefficient larger than its conduction coefficient. Furthermore, one can observe that the thermal
boundary layer thickens with an increase in Pr. For thermophoresis parameter equal to 0.3, there
exists no considerable difference between these configurations, and the corresponding value of the
local Nusselt number is approximately -0.681. It can be proved that the thermophoretic force plays
an important role in the motion of nanoparticles from the hot flat plate to the quiescent fluid.
However, for thermophoresis parameter more than 0.3, the local Nusselt number decreases with
anincrease in Pr.

NuxRex™

0.1 0.2 0.3 0.4 05
Nt

1
Fig. 3. HAM-series solution for the values of Nu,Re, ?-
Nt curve in terms of Pr

The effect of viscous dissipation parameter i.e., Eckert number on variation in the local Nusselt
number is illustrated in Figure 4. From this figure, it is seen that the local Nusselt number decreases
with an increase in Ec. This is because, an increase in Ec increases the thermal diffusion which is led
to anincrease in the thermal conductivity of the flow. Furthermore, accounting for Ec > 0 provides
cooling of the flat plate [48,49] so that the generated thermal energy will be stored in the vicinity of
the fluid. Hence, the thermal boundary layer thickens with an increase in dissipation. Figure 4 also
emphasizes that the local Nusselt number increases with an increase in Nr. This is because, an

increase in Nr increases the Rosseland absorptivity parameter i.e., Sz which is led to a decrease in

. . .9
divergence of the radiation heat flux i.e., 61;.

As Figure 5 depicts, the nanoparticle concentration boundary layer thickens with an increase in
the mass diffusion. Since Le > 1 the heat diffuses through flat plate more rapidly than the
nanoparticles [50]. However, in case of Le = 1 the heat and nanoparticles diffuse at the same rate.
Figure 5 also emphasizes that the nanoparticle concentration boundary layer thickens with an
increase in Nt which is due to the formation of a nanoparticle free layer in the vicinity of the flat
plate.
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Figure 6 shows that the local Sherwood number is a decreasing function of Nb. This is because,
an increase in Nb results in an interaction between the fluid and nanoparticles that leads eventually
to a decrease in the nanoparticle concentration boundary layer thickness.
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5. Concluding Remarks

The objective of this paper was to introduce the analytical and numerical solutions i.e., HAM
and RKF45M to study 2D Sakiadis flow of Casson fluid with cross diffusion, inclined magnetic force,
viscous dissipation and thermal radiation. To this end, the set of governing partial differential
equations were converted to the nonlinear ordinary differential equations based on Buongiorno's
mathematical model. The present solutions were compared and validated by those available results
in the literatures. The main results that can be inferred from this paper are reported as follows

a) Accounting for the effect of Lorentz force leads to resist flow of the fluid.

b) The internal heat energy is generated by an increase in the thermal radiation. Therefore,

this increment leads to a decrease in the local Nusselt number.

c) The effect of thermophoretic force on the local Nusselt number can be usually ignored for

thermophoresis parameter equals to 0.3.

d) The thermal boundary layer thickness increases with an increase in the dissipation due to

the generation of thermal energy in the vicinity of the fluid.

e) The local Sherwood number inversely depends on the mass diffusion.
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