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In this paper, the homotopy analysis method (HAM) and Runge-Kutta-Fehlberg 

fourth-fifth order method (RKF45M) are applied to investigate the 2D Sakiadis flow of 

non-Newtonian Casson fluid with convective boundary conditions based on the 

Buongiorno's mathematical model. The governing boundary layer equations of 

continuity, momentum, thermal energy and nanoparticle concentration are derived 

and converted to the dimensionless form via the similarity variables. The present 

solutions agree entirely with those available results in the literatures. A parametric 

study is also performed to illustrate the effects of pertinent parameters on the fluid 

flow. It is shown that the skin friction coefficient for a non-Newtonian fluid is found 

to be higher than that of the Newtonian one. Furthermore, the thermal boundary 

layer thickness is greatly affected by the resistive Lorentz force and viscous 

dissipation. 
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 Introduction 1.

 

In fluid mechanics the Sakiadis problem [1,2] which can be considered as a variant of the well-

known Blasius equation [3], is concerned with the boundary layer flow in a quiescent fluid. The 

most important aspect of this problem is to provide the fluid motion by a moving flat plate. In 

recent years, there has been an increase in the number of research studies dealt with this problem. 

In this regard, Sulochana et al., [4] analyzed the magnetohydrodynamic (MHD) axisymmetric 

Sakiadis flow of Cu-H2O and Al50Cu50-H2O nanofluids past a thin horizontal needle considering the 

Joule heating. They developed those reported by Soid et al., [5] and showed that accounting for the 

effect of Lorentz force increases the thermal boundary layer thickness. They also found that the 

relative velocity of Al50Cu50-H2O nanofluid is greater in the vicinity of the wall, compared to the Cu-
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H2O nanofluid. Cortell Bataller [6] investigated the effects of convective heat transfer with thermal 

radiation on the Blasius and Sakiadis flow numerically through the Runge-Kutta fourth-order 

method (RK4M). They found that the Sakiadis flow yields a thicker thermal boundary layer than the 

Blasius flow at low Prandtl numbers. They also reported the significant effect of thermal diffusion 

on the wall temperature. Finally, they concluded that their findings are in agreement with those of 

Aziz [7]. Hayat et al., [8] performed heat transfer analysis in the Blasius and Sakiadis flow of an 

Eyring-Powell fluid with the constant heat flux and convective boundary conditions, and found that 

the thermal boundary layer thickness decreases with an increase in the Prandtl number. They also 

illustrated importance of the external convection resistance inside the surface. Bachok et al., [9] 

optimized the Blasius and Sakiadis flow of Cu-H2O, Al2O3-H2O and TiO2-H2O nanofluids presented by 

Ahmad et al., [10] and showed that Cu-H2O and TiO2-H2O nanofluids take the lowest and highest 

heat transfer rates, respectively. They also emphasized that in case of zero heat flux, their findings 

are fully consistent with those of Ishak et al., [11]. Pantokratoras [12] studied the Blasius and 

Sakiadis flow of a Carreau fluid numerically through the finite difference method (FDM). He showed 

that the momentum boundary layer thickness decreases with an increase in the Deborah number. 

He also investigated effects of the Deborah number on the shear-thinning and Shear-thickening 

fluids (see Ref. [13]) for both the Blasius and Sakiadis flow cases. Hayat et al., [14] analyzed the 

combined effects of convective heat transfer and viscous dissipation on the Blasius and Sakiadis 

flow of an upper-converted Maxwell (UCM) fluid using the HAM, and indicated that the heat 

transfer rates decreases with an increase in the Eckert number. They also found that the thermal 

boundary layer thickness is significantly affected by the Biot number. With mathematical precision, 

Girgin [15] employed the generalized iterative differential quadrature method (GIDQM) to 

investigate the effects of variable fluid properties on the Blasius and Sakiadis flow, and showed that 

his findings are consistent with those provided by Arikoglu and Ozkol [16] and Andersson and 

Aarseth [17]. Xu and Guo [18] developed a fixed point iterative method (FPIM) for solving the 

Blasius and Sakiadis flow in terms of a series of linear differential equations. Fazio [19] proved that 

the iterative transformation method (ITM) is applicable to the Sakiadis flow. He also emphasized 

that the skin friction coefficient in this case is 1.34 times greater than that of the Blasius flow (see 

Ref. [20]). It should be emphasized here that more details can be found in Refs. [21-30]. 

Motivated by the aforementioned research studies, this paper provides analytical and 

numerical solutions for dealing with the heat and mass transfer analysis in the Sakiadis flow of 

Casson fluid with convective boundary conditions. The Buongiorno's mathematical model [31] 

related to the Brownian motion and thermophoresis effects has also been utilized to simulate slip 

mechanisms in the nanoparticles. The organization of this paper is as follows. 

Section 2 provides a very detailed description of the governing equations and its non-

dimensionalization. Section 3 states the analytical and numerical solution methods. The results and 

discussion are reported in section 4. The concluding remarks are summarized in section 5. 

 

 Governing Equations 2.

 

The non-Newtonian fluids are categorized into three main types: Time-independent, time-

dependent and viscoelastic fluids [32, 33]. In the case of time-dependent fluids, the viscosity is not 

dependent on the duration of shearing [34]. In this section, one may define the time-independent 

Casson fluid [35] which has the following constitutive equation 
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��� = ��1 − 	
��|
�|�� �̅, |�̅| > ��̅,0, |�̅| ≤ ��̅,          (1) 

where � is the plastic dynamic viscosity, ��  is the rate of shear strain, ��̅ is the yield stress, �̅ is the 

Cauchy stress tensor and |�̅| is the magnitude of �̅. From Eq. 1, it is apparent that the viscosity 

decreases with an increase in the rate of shear strain. Moreover, if the yield stress is equal to zero, 

the Casson fluid reduces to the Newtonian type [34]. 

For a 2D flow in the Cartesian coordinate system, the velocity, temperature and nanoparticle 

concentration fields are stated as 

 � = ����, ��, ���, ���,  = !��, ��, " = #��, ��,        (2) 

 

where � and � are the velocity components along the �- and �-axes, respectively, ! is the 

temperature and # is the nanoparticle concentration. 

Using the above-mentioned assumptions, the governing boundary layer equations of continuity, 

momentum, thermal energy and nanoparticle concentration can be written as follows 

 

$%%
&
%%'
()(* + (,(- = 0,
� ()(* + � ()(- = . /1 + 012 (3)(-3 − 45�367 � sin� ; ,� (<(* + � (<(- = = (3<(-3 + >?@ /1 + 012 /()(-2� + A BCB (E(- (<(-+ FT<H /(<(-2�I − 067?@ (JK(- ,� (E(* + � (E(- = CB (3E(-3 + FT<H (3<(-3 ,

    (3) 

 

along with the following boundary conditions 

 Lat	� = 0:	� = OP , � = 0, ! = !P, # = #P ,
as	� → ∞:	� → 0, ! → !S, # → #S,          (4) 

 

where . is the kinematic viscosity, T is the Casson fluid parameter, U is the electrical conductivity, V� is the magnetic field strength, WX is the fluid density, ; is the inclination angle of the magnetic 

field, = is the thermal diffusivity, YZ is the specific heat of the fluid at constant pressure, A = �6?�@�6?�7 is 

the ratio of nanoparticle heat capacity to the base fluid heat capacity, CB is the Brownian diffusion 

coefficient, CT is the thermophoresis diffusion coefficient, !S is the ambient temperature, [\ is the 

radiation heat flux, OP is the constant velocity of the moving flat plate, !P is the wall temperature, #P is the nanoparticle concentration around the wall and #S is the ambient nanoparticle 

concentration. 

According to the Rosseland approximation [36] the radiation heat flux involved in Eq. 3 may be 

expressed in the following form 

 [\ = − ]4^_`ab (<c(- ,            (5) 

 

where Ud5 and ef are the Stefan-Boltzmann constant and Rosseland mean absorption coefficient, 

respectively. 
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It is to be noted that the fluid-phase temperature difference within the flow is almost negligible 

and hence !] can be expanded into a Taylor series with respect to !S as  !] ≅ 4!!S̀ − 3!S] . Then, 

the radiation heat flux results in [\ = − 0j<Hk 4^_`ab (<(-. 

To convert above equations to the dimensionless form, the following variables can be 

expressed 

 ; = lOP��m�n�, n = �	op,* , q�n� = <r<H<pr<H , s�n� = ErEHEprEH,      (6) 

 

where ; is the stream function which is governed by � = (t(-  and � = − (t(* , m is the similarity 

function, n is the similarity parameter, q is the dimensionless temperature and s is the 

dimensionless nanoparticle concentration. 

 

Substituting Eq. 6 into Eq. 3 and Eq. 4 gives 

 

$%&
%'/1 + 012 (kX(uk + m (3X(u3 − (X(u /(X(u + Ha� sin� ;2 = 0,
0Pr (3z(u3 + 0�m (z(u + Nb (}(u (z(u +Nt /(z(u2� + 0�Nrm (z(u + Ec /1 + 012 /(3X(u32� = 0,
(3}(u3 + 0� Lem (}(u + NtNb (3z(u3 = 0,

    (7) 

 

and, 

 

�at	n = 0:	m = 0, (X(u = 1, q = 1, s = 1,
as	n → ∞:	 (X(u → 0, q → 0, s → 0,          (8) 

 

where Ha� = 45�36op is the square of the Hartmann number, Pr = >� is the Prandtl number, Nb =�FB> �#P − #S� is the Brownian motion parameter, Nt = �FT><H �!P − !S� is the thermophoresis 

parameter, Nr = �ab]4^_<Hk  is the radiation parameter, Ec = op3?@�<pr<H� is the Eckert number and Le = �FB is the Lewis number. 

 

The skin friction coefficient, local Nusselt number and local Sherwood number are defined as 

 CX = 2 
p6op3 , Nu* = *Jp��<pr<H� , Sh* = *J�FB�EprEH�,        (9) 

 

where, 

 �P = � /1 + 012 /()(-2-�� , [P = −� /(<(-2-�� , [� = −CB /(E(-2-��.                  (10) 

  

Substituting Eq. 6 and Eq. 10 into Eq. 9 gives 
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CXRe*�3 = /1 + 012 /(3X(u32u�� , Nu*Re*r�3 = −/(z(u2u�� , Sh*Re*r�3 = −/(}(u2u��,                (11) 

 

where Re* = *op>  is the local Reynolds number based on the wall velocity. 

The following section contains the analytical and numerical solutions for Eq. 7 and Eq. 8 that 

may be amenable to the nonlinear boundary value problems. 

 

 Solution method 3.

3.1 HAM 

 

Let us choose the appropriate initial guesses as follows 

 m��n� = 1 − exp�−n�, q��n� = exp�−n�, s��n� = exp�−n�.                  (12) 

 

The auxiliary linear operators can be expressed as 

 LLLLX ≡ (kX(uk − (X(u , LLLLz ≡ (3z(u3 − q, LLLL} ≡ (3}(u3 − s,                    (13) 

 

which have the following properties 

 

�LLLLX�Y0 + Y�exp�n� + Y`exp�−n�� = 0,LLLLz�Y]exp�n� + Y�exp�−n�� = 0,LLLL}�Yjexp�n� + Y�exp�−n�� = 0,                      (14) 

 

where Y0, Y�, … , Y� are the arbitrary constants. The zeroth-order problems correspond to Eq. 7 and 

Eq. 8 are constructed in the following forms 

 

��1 − ��LLLLX�m��n, �� − m��n�� = ��XNNNNX�m��n, ���,�1 − ��LLLLz�q��n, �� − q��n�� = ��zNNNNz�m��n, ��, q��n, ��, s��n, ���,�1 − ��LLLL}�s��n, �� − s��n�� = ��}NNNN}�m��n, ��, q��n, ��, s��n, ���,                 (15) 

 

and, 

 

�at	n = 0:	m��n, �� = 0, (X��u,Z�(u = 1, q��n, �� = 1, s��n, �� = 1,
as	n → ∞:	 (X��u,Z�(u → 0, q��n, �� → 0, s��n, �� → 0,                   (16) 

 

where 0 ≤ � ≤ 1 is an embedding parameter, �X, �z  and �} are the non-zero auxiliary parameters, 

and NNNNX, NNNNz and NNNN} are the nonlinear operators which can be defined as follows 
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$%%
&
%%'
NNNNX�m��n, ��� = /1 + 012 (kX�(uk + m� (3X�(u3 − (X�(u /(X�(u + Ha� sin�;2 ,NNNNz�m��n, ��, q��n, ��, s��n, ��� = 0Pr (3z�(u3 + 0�m� (z�(u + Nb (}�(u (z�(u + Nt /(z�(u2�	+ 0�Nrm� (z�(u + Ec /1 + 012 /(3X�(u32� ,NNNN}�m��n, ��, q��n, ��, s��n, ��� = (3}�(u3 + 0� Lem� (}�(u + NtNb (3z�(u3 .

                 (17) 

 

When � = 0, Eq. 5 converts to LLLLX�m��n, 0� − m��n�� = 0, LLLLz�q��n, 0� − q��n�� = 0, LLLL}�s��n, 0� − s��n�� = 0,                (18) 

 

and when � = 1, Eq. 5 converts to 

 

�NNNNX�m��n, 1�� = 0,NNNNz�m��n, 1�, q��n, 1�, s��n, 1�� = 0,NNNN}�m��n, 1�, q��n, 1�, s��n, 1�� = 0.                      (19) 

 

expanding m��n, ��, q��n, �� and s��n, �� into the Taylor series with respect to � gives 

 

�m��n, �� = m���� + ∑ m��n���S��0 ,q��n, �� = q���� + ∑ q��n���S��0 ,s��n, �� = s���� + ∑ s��n���S��0 ,                     (20) 

 

where, 

 

$%
&
%'m��n� = / 0�! (�X��u,Z�(Z� 2Z�� ,q��n� = / 0�! (�z��u,Z�(Z� 2Z�� ,s��n� = / 0�! (�}��u,Z�(Z� 2Z�� .

                      (21) 

 

If the initial guesses, auxiliary linear operators and auxiliary parameters are properly chosen, Eq. 20 

converges at � = 1 as follows 

 

�m�n� = ∑ m��n�S��� ,q�n� = ∑ q��n�S��� ,s�n� = ∑ s��n�S��� .                       (22) 

 

Differentiating Eq. 15 ¢ times with respect to �, setting � = 0 and dividing them by ¢! gives the 

following ¢th-order problems 

 

�LLLLX�m��n� − χ�m�r0�n�� = �XRRRR�X �n�,LLLLz�q��n� − χ�q�r0�n�� = �zRRRR�z �n�,LLLL}�s��n� − χ�s�r0�n�� = �}RRRR�} �n�,                     (23) 



CFD Letters 

Volume 11, Issue 1 (2018) 42-57 

48 

 

Penerbit

Akademia Baru

 

and, 

 

�at	n = 0:	m�n� = 0, (X�u�(u = 0, q�n� = 0, s�n� = 0,
as	n → ∞:	 (X�u�(u → 0, q�n� → 0, s�n� → 0,                    (24) 

 

where χ� and RRRR�X , RRRR�z  and RRRR�}  can be written as 

 χ� = ¤0,¢ ≤ 1,1,¢ > 1,                        (25) 

 

$%%
%&
%%%
'RRRR�X �n� = /1 + 012 (kX�¥�(uk + ∑ m¦ (3X�¥§¥�(u3�r0¦�� − ∑ (X§(u (X�¥§¥�(u�r0¦��	−Ha� sin� ; (X�¥�(u ,
RRRR�z �n� = 0Pr (3z�¥�(u3 + 0�∑ m¦ (z�¥§¥�(u�r0¦�� + Nb∑ (}§(u (z�¥§¥�(u�r0¦��	+Nt∑ (z§(u (z�¥§¥�(u�r0¦�� + 0�Nr∑ m¦ (z�¥§¥�(u�r0¦�� + Ec /1 + 012 ∑ (3X§(u3 (3X�¥§¥�(u3�r0¦�� ,
RRRR�} �n� = (3}�¥�(u3 + 0� Le∑ m¦ (}�¥§¥�(u�r0¦�� + NtNb (3z�¥�(u3 .

               (26) 

 

It is to be noted that Eq. 23-26 can be easily solved using the symbolic MATLAB software for ¢ ≥ 1. 

The general solution for Eq. 23 in terms of particular solutions i.e., m�⋆�n�, q�⋆ �n� and s�⋆ �n� are 

given in the following forms 

 

�m��n� = m�⋆�n� + Y0 + Y�exp�n� + Y`exp�−n�,q��n� = q�⋆ �n� + Y]exp�n� + Y�exp�−n�,s��n� = s�⋆ �n� + Yjexp�n� + Y�exp�−n�,                     (27) 

 

where, 

 Y� = Y] = Yj = 0, Y` = (X�⋆ ���(u , Y0 = −Y` − m�⋆�0�, Y� = −q�⋆ �0�, Y� = −s�⋆ �0�.                (28) 

 

As stated by Liao [37-40], convergence of the HAM-series solutions largely depends on the 

values of auxiliary parameters. Hence, the optimal values of �X, �z  and �} can be found by 

minimizing the square residual errors as follows [40] 

 

$%&
%'ϵϵϵϵX�«�X¬ = 0J­0∑ ®NNNNX«∑ m�n��̄�� ¬u�°±u²� ³nJ°�� ,
ϵϵϵϵz���z� = 0J­0∑ ®NNNNz«∑ m�n��̄�� , ∑ q�n��̄�� , ∑ s�n��̄�� ¬u�°±u²� ³nJ°�� ,
ϵϵϵϵ}�«�}¬ = 0J­0∑ ®NNNN}«∑ m�n��̄�� , ∑ q�n��̄�� , ∑ s�n��̄�� ¬u�°±u²� ³nJ°�� ,

                 (29) 

 

and, 
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�X ∶ 	 lim�→S ϵϵϵϵX�«�X¬ = 0, �z ∶ 	 lim�→S ϵϵϵϵz���z� = 0, �} ∶ 	 lim�→S ϵϵϵϵ}�«�}¬ = 0,   

              (30) 

 

where [ = 20 and ·n = 0.5. In this regard, Table 1 tabulates the optimal values of auxiliary 

parameters and corresponding square residual errors for different orders of approximation in terms 

of T = 0.4, Ha = 1, ; = 45°, Pr = 1, Nb = Nt = 0.5, Nr = 0.3, Ec = 0.2 and Le = 1. From this 

table, it can be seen that �X = -0.7083, �z = -0.8958 and �} = -0.6736 will hereafter be employed 

within the text. 

To summarize, the HAM algorithm can be provided as follows 

 

a) Set ¢ = 1. 

b) Substitute Eq. 12 into Eq. 26 and obtain RRRR0X�n�, RRRR0z�n� and RRRR0}�n�. 
c) Substitute RRRR0X�n�, RRRR0z�n� and RRRR0}�n� into Eq. 23. 

d) Compute Y0, Y�, … , Y� for ¢ ≥ 1 and obtain m0�n�, q0�n� and s0�n�. 
e) Substitute m0�n�, q0�n� and s0�n� into Eq. 26 and obtain RRRR�X�n�, RRRR�z�n� and RRRR�}�n�. 
f) Repeat steps 2-4 ¢ times. 

g) Obtain m̧ �n�, q¸�n� and s¸�n� where ¹ is the number of iterations. 

h) Check for convergence of the computations. 

 

Table 1 

Selection of auxiliary parameters ¢ �X ϵX� �z  ϵz� �}  ϵ}� 

2 -0.6402 3.48×10-5 -0.8214 7.29×10-6 -0.5552 5.33×10-5 

5 -0.6746 7.16×10-6 -0.8690 8.10×10-7 -0.6140 1.60×10-5 

10 -0.6940 2.96×10-7 -0.8841 1.90×10-7 -0.6470 8.09×10-6 

15 -0.7016 8.18×10-8 -0.8907 4.98×10-8 -0.6615 1.15×10-6 

20 -0.7083 4.53×10-9 -0.8958 5.91×10-9 -0.6736 8.54×10-7 

 

3.2 RKF45M 

 

The generated RKF45M algorithm in MAPLE 13 worksheet together with the shooting 

technique, as it is illustrated in Figure 1, converts Eq. 7 to a set of initial value problems with the 

convergence criterion 10
-6

, step size ∆n = 0.01 and upper bound of the integral nS = 10. For more 

details on the RKF45M, see Refs. [7,41]. 

 

 Results and Discussion 4.

 

In this section, the obtained results from evaluating the flow of Casson fluid above a moving flat 

plate with viscous dissipation, magnetic force, radiation effects and convective boundary conditions 

is reported based on the Buongiorno's mathematical model. In order to ensure the accuracy and 

effectiveness of the present analytical and numerical solutions, the obtained results are compared 

with those available findings in the literatures in subsection 1. Then, further details about this paper 

are available in subsection 2. 
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Fig. 1. Generated RKF45M algorithm in MAPLE 13 worksheet together with the shooting 

technique 

 

 

4.1 Comparison and Validation 

 

Example 1. This example aims to provide a comparison between the present solutions and 

those reported in Refs. [42,43] to determine the values of /(3X(u32u�� in terms of T. Haldar et al., [42], 

suggest flow of the Casson fluid past a power-law stretching surface is investigated numerically 

using the RK4M together with the Newton's technique while Bhattacharyya et al., [43] suggests a 

closed-form solution for the flow of Casson fluid past a porous shrinking / stretching surface. It is to 

be mentioned here that the other pertinent parameters dealt with this paper are set to zero i.e., Ha = ; = Pr = Nb = Nt = Nr = Ec = Le = 0. From Table 2, it is seen that the values of /(3X(u32u�� 

decrease with an increase in T for all cases listed in this table. Moreover, since the maximum 

relative error between the HAM / RKF45M and those of Refs. [42,43] does not exceed 0.008% / 

0.035% and 0.009% / 0.037%, respectively, the validity of the present solutions is confirmed. 

Example 2. At this point, MHD three-dimensional flow of a fluid past a linearly stretching 

surface which is provided in Chamkha research [44], is compared with the present solutions to 

calculate the values of /(3X(u32u�� in terms of Ha. The pertinent parameters in this case are provided 

as follows, T → ∞, Pr = 6.7 and ; = Nb = Nt = Nr = Ec = Le = 0. Furthermore, the obtained 

results correspond to this example are rounded up to five digits. As it is shown in Table 3, the values 
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of /(3X(u32u�� decrease with an increase in Ha. The results of HAM / RKF45M and Chamkha [44] only 

suffer from a relative error of at most 0.031% / 0.033%. Hence, it can be emphasized that the 

present solutions are consistent with the findings of Chamkha [44]. However, there is a minor 

difference between these results which is largely due to the different solution methodologies. 

 
Table 2 

Values of /(3X(u32u�� compared with Refs. [42,43] for Ha = ; = Pr = Nb = Nt = Nr = Ec = Le = 0 

T  Present solution-HAM Present solution-RKF45M  Ref. [42] Ref. [43] 

0.5  -0.577398 -0.577405  -0.577351 -0.577865 

1  -0.707186 -0.707194  -0.707107 -0.707243 

2  -0.816529 -0.816538  -0.816497 - 

5  -0.912963 -0.912970  -0.912871 -0.913120 

 
Table 3 

Values of /(3X(u32u�� compared with Chamkha [44] for T → ∞, Pr = 6.7 and ; = Nb = Nt = Nr = Ec = Le = 0 

Ha 0 1 2 3 4 

Present solution-HAM -1.00114 -1.41544 -2.23690 -3.16297 -5.09921 

Present solution-RKF45M -1.00116 -1.41546 -2.23690 -3.16297 -5.09921 

Ref. [44] -1.00180 -1.41602 -2.23731 -3.16351 -5.10068 

 

Example 3. This example illustrates a comparison between the present solutions and Abdul 

Hakeem et al.,[45] to determine the values of /(3X(u32u�� in terms of ; considering T = 0.4, Ha = 1 

and Pr = Nb = Nt = Nr = Ec = Le = 0. In Ref. [45], the flow of Casson fluid with thermal 

radiation and velocity slip boundary conditions is investigated using the RK4M together with the 

shooting technique. Based on the results of Table 4, the values of /(3X(u32u�� decrease with an 

increase in ;. The difference in these findings is due to a maximum relative error equals to 1.082% 

/ 0.377% between the HAM / RKF45M and Abdul Hakem et al., [45] which can verify the present 

solutions. 

 
Table 4 

Values of /(3X(u32u�� compared with Abdul Hakeem et al., [45] for T = 0.4, Ha = 1 and Pr = Nb = Nt = Nr =Ec = Le = 0 ; 0° 30° 45° 60° 

Present solution-HAM -1.0612 -1.1681 -1.2547 -1.3399 

Present solution-RKF45M -1.0747 -1.1712 -1.2604 -1.3442 

Ref. [45] -1.0797 -1.1763 -1.2644 -1.3482 

 

Example 4. The final stage is to compare the values of /(z(u2u�� in terms of Pr obtained by the 

present solutions with those reported in Gorla and Sidawi [46]. The numerical procedure for solving 

two-point BVPs is utilized to investigate the effect of mass transfer rate on the vertical stretching 

surface.[46] The results of this example are provided with T → ∞ and Ha = ; = Nb = Nt = Nr =
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Ec = Le = 0. From Table 5, it is observed that the values of /(z(u2u�� increases with a decrease in Pr. Above all, the relative error between the HAM / RKF45M and Gorla and Sidawi [46] does not 

exceed 0.129% / 0.153%; accordingly, the present solutions are in agreement with Gorla and 

Sidawi [46]. 

 
Table 5 

Values of /(z(u2u�� compared with Gorla and Sidawi [46] for T → ∞ and Ha = ; = Nb = Nt = Nr = Ec =Le = 0 Pr		 0.7 3 7 10 

Present solution-HAM -0.45416 -1.16608 -1.89578 -2.30312 

Present solution-RKF45M -0.45399 -1.16573 -1.89546 -2.30288 

Ref. [46] -0.45593 -1.16669 -1.89691 -2.30350 

 

4.2 Further Details 

 

In this subsection, unless stated otherwise, the pertinent parameters are provided as follows, T = 0.4, Ha = 1, ; = 45°, Pr = 1, Nb = Nt = 0.5, Nr = 0.3, Ec = 0.2 and Le = 1. 

Figure 2 shows variation in the local Nusselt number with T and Ha. The obtained results 

correspond to this figure demonstrate that the local Nusselt number decreases with an increase in T. This is because, an increase in T decreases the yield stress of the fluid that leads eventually to an 

increase in the plastic dynamic viscosity as well as its viscous forces on the flow. Indeed, one can 

imagine the flow of Casson fluid to act as a solid until a yield stress is exceeded [47]. Moreover, as it 

is seen from Figure 2, the local Nusselt number decreases with an increase in Ha by reason of a 

drag-like force, namely Lorentz force. This force tends to resist flow of the fluid and consequently 

retards its motion. In addition, presence of the thermal radiation might well lead to a decrease in 

the local Nusselt number [45]. The point is, an increase in thermal radiation leads to generate the 

internal heat energy. 

 

 

 
Fig. 2. HAM-series solution for the values of Nu*Re*r�3-Ha curve in terms of T 
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As Figure 3 depicts, for thermophoresis parameter less than 0.3, the local Nusselt number 

increases with an increase in Pr. It is due to the fact that, the higher value of Pr has the convection 

coefficient larger than its conduction coefficient. Furthermore, one can observe that the thermal 

boundary layer thickens with an increase in Pr. For thermophoresis parameter equal to 0.3, there 

exists no considerable difference between these configurations, and the corresponding value of the 

local Nusselt number is approximately -0.681. It can be proved that the thermophoretic force plays 

an important role in the motion of nanoparticles from the hot flat plate to the quiescent fluid. 

However, for thermophoresis parameter more than 0.3, the local Nusselt number decreases with 

an increase in Pr. 
 

 

Fig. 3. HAM-series solution for the values of Nu*Re*r�3-Nt curve in terms of Pr 
 

The effect of viscous dissipation parameter i.e., Eckert number on variation in the local Nusselt 

number is illustrated in Figure 4. From this figure, it is seen that the local Nusselt number decreases 

with an increase in Ec. This is because, an increase in Ec increases the thermal diffusion which is led 

to an increase in the thermal conductivity of the flow. Furthermore, accounting for Ec > 0 provides 

cooling of the flat plate [48,49] so that the generated thermal energy will be stored in the vicinity of 

the fluid. Hence, the thermal boundary layer thickens with an increase in dissipation. Figure 4 also 

emphasizes that the local Nusselt number increases with an increase in Nr. This is because, an 

increase in Nr increases the Rosseland absorptivity parameter i.e., ef which is led to a decrease in 

divergence of the radiation heat flux i.e., 
(JK(- . 

As Figure 5 depicts, the nanoparticle concentration boundary layer thickens with an increase in 

the mass diffusion. Since Le > 1 the heat diffuses through flat plate more rapidly than the 

nanoparticles [50]. However, in case of Le = 1 the heat and nanoparticles diffuse at the same rate. 

Figure 5 also emphasizes that the nanoparticle concentration boundary layer thickens with an 

increase in Nt which is due to the formation of a nanoparticle free layer in the vicinity of the flat 

plate. 
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Fig. 4. HAM-series solution for the values of Nu*Re*r�3-Nr curve in terms of Ec 

 

 

 

Fig. 5. HAM-series solution for the values of Sh*Re*r�3-Nt curve in terms of Le 

 

 

Figure 6 shows that the local Sherwood number is a decreasing function of Nb. This is because, 

an increase in Nb results in an interaction between the fluid and nanoparticles that leads eventually 

to a decrease in the nanoparticle concentration boundary layer thickness. 
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Fig. 6. HAM-series solution for the values of Sh*Re*r�3-Nt curve in terms of Nb 

 

 Concluding Remarks 5.

 

The objective of this paper was to introduce the analytical and numerical solutions i.e., HAM 

and RKF45M to study 2D Sakiadis flow of Casson fluid with cross diffusion, inclined magnetic force, 

viscous dissipation and thermal radiation. To this end, the set of governing partial differential 

equations were converted to the nonlinear ordinary differential equations based on Buongiorno's 

mathematical model. The present solutions were compared and validated by those available results 

in the literatures. The main results that can be inferred from this paper are reported as follows 

a) Accounting for the effect of Lorentz force leads to resist flow of the fluid. 

b) The internal heat energy is generated by an increase in the thermal radiation. Therefore, 

this increment leads to a decrease in the local Nusselt number. 

c) The effect of thermophoretic force on the local Nusselt number can be usually ignored for 

thermophoresis parameter equals to 0.3. 

d) The thermal boundary layer thickness increases with an increase in the dissipation due to 

the generation of thermal energy in the vicinity of the fluid. 

e) The local Sherwood number inversely depends on the mass diffusion. 
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