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number of 100 and 400. The solutions are obtained for grid size 16 x 16 up to 256 x
256. From the plots of velocity profiles along centerline geometry, it shows good
agreement with the benchmark solution from past researchers. The velocity and
pressure in the cavity varies as the Reynolds number increases from 100 to 400.
SIMPLER algorithm is proven to be more efficient compared to SIMPLE as iteration
number required for a given Reynolds number and grid size is lower than that of
SIMPLE. The values of under-relaxation factors for velocity components and pressure
play significant role in terms of convergence rate of a numerical scheme.
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1. Introduction

Lid driven cavity [1,2] is a classic benchmark problem for viscous incompressible flow [3-5]. The
model is able to exhibit various types of phenomena that can happen in an incompressible flow such
as secondary flows, transition to turbulence, eddy flows and complex three-dimensional patterns
[6,7]. In order to solve the incompressible Navier-Stokes equations, various methods have been
developed and the commonly used numerical procedure is Semi-Implicit Method for Pressure Linked
Equation (SIMPLE) and SIMPLER (SIMPLE — Revised) by [8].

Yapici and Uludag [9] have used finite volume method (FVM) of two-dimensional square lid driven
cavity flow at high Reynolds number (Re). The coupled flow equation is solved by SIMPLE algorithm.
Moreover, he has used QUICK scheme to approximate the convection terms in the flow equations.

*Corresponding author.
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In the findings, the accuracy of a numerical solution can be improved by using a smaller mesh in the
regions of high gradients than the mesh size of bulk flow.

Jing Yang et al. [10] have presented a model for pool boiling called CAS model. The numerical
model is commonly used to measure the heat transfer in the industries application. SIMPLER
algorithm is integrated with a cellular automata technique to investigate the pressure and
temperature during the boiling process as the cellular automata technique alone is not effective to
investigate the boiling process. From the results shown, the integration of the technique into the
algorithm has proven to be a good approach in obtaining data coherent with the benchmark solution.

Yin and Chow [11] have computed comparison of four algorithms in simulating atrium fire. The
four algorithms for solving the velocity-pressure coupled equations are SIMPLE, SIMPLER, SIMPLEC
and PISO. The numerical schemes are each tested with the relaxation factors. In the results, all four
algorithms provide similar data for the flow variables except for pressure. It is concluded in the
studies that SIMPLER is the viable algorithms used to solve the equations in simulating atrium fire.

Although SIMPLE and SIMPLER method is widely used to solve velocity-pressure coupling fluid
problems, the numerical comparison between them is still unclear. Hence, the objective of the
present study is to compare SIMPLE and SIMPLER in terms of convergence, iteration number and
computational time.

2. Numerical details
2.1. The governing equations

The incompressible two-dimensional Navier-Stokes equations can be written as follows:

ou ouu ouvy opP 2
ot ox = ay’ ax+uVu (1)

ov | v | Buvy _ _ 3P 2
e T oy Tox) = "oy THVY (2)

u v
=0 (3)
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with V= (e +j % Expanding the terms on x- and y-momentum equations results in:
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Based on Eqg.s (3) — (5), a general transport equation can be written as follows:
9 9 9 _ 2 (1) 42 (p2e
=2 (08) + 5= (pud) + 2= (pv®) = 2= (152) + 55 (T 25) + S (6)

where@ is the dependent variable such as velocity, temperature and enthalpy, I is the diffusion
coefficient and Sy represent the source term. The first term on LHS is the unsteady term and the
second and third term on LHS is the convection terms. Consider only the x-momentum equation, the
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@ in Eq. 6 is replaced by u-velocity. Using discretization method by staggered grid as explained in
detail by [4,10], discretized x-momentum equation is as follows:

apUp = AglUp + ayUy + ayUy + asus + by = Yopp AuplUnp + by (7)

where the coefficient ag, ay,, ay, as are the convection — diffusion at the neighboring cell faces and
by, = (Pe — Pw) + ScAxAy.

2.2. SIMPLE algorithm
The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) is originally proposed by [8].

The principle of SIMPLE is to create discrete pressure equation based on discrete continuity equation.
The u-momentum equation for control volume centred at e is given as:

AU = an AppUnp T Ae(P - PE) + b, (8)

A guessed pressure field denoted as P* is to replace onto the Eq. 8 to obtain guessed velocity
components of u* and v*:

AeUg = an anbu;b + Ae(PP* - PE*) + b, (9)

However, the guessed velocity components would not able to satisfy conservation of mass, in that
case, velocity and pressure are corrected by adding correction values:

u=u"+u
P=P +P (10)
v=v'+v

Relating Eq.s 8 - 10 gives:

AelUe = Yinp anbu;lb + Ae(PIIJ - PI:") (11)
The neighbouring values in Eq. 11 are omitted for approximation as the terms will not affect the

final solution due to the correction values, u’ will be zero when the solution converged. Then,

relating to Eq. 10 becomes:

Ue :u;-l'de(PI;_PLC?) (12)

At this point, Eq. 12 is needed to satisfy the discretized continuity equation (pud), — (pud),, +

(pvA),, — (pvA)s = 0, hence it is substitute into the continuity equation. The same goes for uw, un,

us which gives:

[(pdA). + (pdA),, + (pdA)y + (pdA),]Pp = (pdA) Pg + (pdA)y Py + (pdA)nPy + (pdA)Ps +
[(ou"A)w — (pu"A), + (pu'A)s — (pu"A),] =0 (13)

Simplifying Eq. 13 leads to:
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apPI,a=aEPé'+aWpév+aNPI(]+a5P5"+b;> (14)
where,
ag = (pdA).
a,, = (pdA),
ay = (pdA),
as = (pdA)s
ap = anp

nb
bp = (pu*A)y, — (pu*A)e + (pu*d)s — (pu*A)y,

Eq. 14 is a pressure correction equation, the momentum source term b’ is the mass imbalance
due to incorrect velocity field. When the source term reaches zero, it means that the solution has
converge.

2.3. SIMPLER algorithm

SIMPLER is a revised version of SIMPLE in which discretized continuity equation is used to derived
discretized equation for pressure instead of pressure correction equation. Pseudo-velocities are
introduced in SIMPLER, which can be defined as follows:

~ Ynb AnpUnp+b
ue — nb “nbUnpTPle (15)
Qe

Substitute Eq. 15 into Eq. 8 gives:
U = U + de(pP - pE) (16)

Substitute Eq. 16 into discretized continuity equation and rearranging the terms produces:

[(pdA) + (pdA),, + (pdA)y + (pdA),]pp = (pdA)cpE + (PdA)wpw + (pdA) Py +
(pdA)sps + [(pTA),, — (pTid), + (pDA)s — (pDA),] (17)

Eqg. 17 can be further simplified into:

appp = AgPg + aywpw + aypy + asps + bp (18)
where
ag = (pdA).
ay = (pdA)w
ay = (pdA),
as = (pdA)s
ap = Anp
nb

bp = (pA)y — (plUA) + (pDA)s — (pDA),

After obtaining the pressure value, the following sequence is the same as SIMPLE in which the
pressure value is used to solve the discretized momentum equation.
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3. Results and discussion
3.1. Mesh independence study and validation

Prior to comparative study on computational efficiency of SIMPLE and SIMPLER model, the
validation is done by comparing the computed velocity value with the work of [13].

Extrema of velocity along geometry centreline at Re = 100 and Re = 400 are tabulated in Table 1
and Table 2. It is shown that both algorithms are able to produce results that are good agreement
with Ghia’s benchmark solution [13] as the grid increases. It can be said that grid independence is
achieved in this case.

For SIMPLE algorithm, the Navier-Stokes equations can only be solved up to 128 x 128 grid due
to the under-relaxation factors. Optimal value of relaxation factors could not be obtained, hence, the
solution oscillates and diverge at one point of the iteration. In the present study, convergence
criterion is set as 1073 at which the simulation is terminated and assumed to reach steady state. The
convergence criterion defined in the present study is the summation of error of velocity components
and pressure,

€ = Z|®n+1 _ @n | < 1073 (19)

where @ represents primitive variables, n is the iteration step.

Table 1
Extrema of velocity along geometry centerline at Re = 100

Reference Grid Umin Vmax Vmin
SIMPLE 16 x 16 -0.18011 0.14960 -0.20606
SIMPLER 16 x 16 -0.18741 0.16002 -0.23098
SIMPLE 32x32 -0.20687 0.17349 -0.24592
SIMPLER 32x32 -0.20555 0.17387 -0.24588
SIMPLE 64 x 64 -0.21265 0.17834 -0.25247
SIMPLER 64 x 64 -0.21183 0.17810 -0.25167
SIMPLE 128 x 128 -0.21373 0.17932 -0.25356
SIMPLER 128 x 128 -0.21349 0.17924 -0.25335
SIMPLER 256 x 256 -0.21391 0.17950 -0.25371

Ghia et. al. [13] 129 x 129 -0.21090 0.17527 -0.24533
Table 2
Extrema of velocity along geometry centerline at Re = 400

Reference Grid Umin Vmax Vmin
SIMPLE 16 x 16 -0.17234 0.16559 -0.28274
SIMPLER 16 x16 -0.17200 0.16585 -0.28220
SIMPLE 32x32 -0.24566 0.23069 -0.36796
SIMPLER 32x32 -0.24533 0.23085 -0.36778
SIMPLE 64 x 64 -0.29837 0.27849 -0.42560
SIMPLER 64 x 64 -0.29770 0.27749 -0.42458
SIMPLE 128 x 128 -0.31973 0.29701 -0.44629
SIMPLER 128 x 128 -0.31928 0.29602 -0.44564
SIMPLER 256 x 256 -0.32613 0.30172 -0.45178

Ghia et. al. [13] 129 x 129 -0.32726 0.30203 -0.44993
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3.2. Pressure-Velocity contour plot

As both algorithms produced similar results, finest grid size of contour plots are illustratedfrom Fig.
1(a) - 1(f). With the increasing of Reynolds number from 100 to 400, the pressure in the cavity has
decreases. The maximum pressure of the flow is present at the top right corner of the cavity,
whereas, the minimum pressure occurs at the top left corner of the cavity. As the fluid moves from
left to right on the top lid, the fluid starts to spreads throughout the cavity after knocking the right
wall. The pressure is then decreases at the lower part of the cavity.

In the u-velocity contour plot, the velocity flow is dominant at the top lid due to stationary walls on
both sides. In addition to that, it can be seen that the boundary layer of the flow near the top moving
lid is thinner as the Reynolds number increases. The region of the minimum velocity has increases
and shifted towards the center of the cavity.

Due to the increase of Reynolds number, the velocity components have a higher magnitude
throughout the region inside the cavity. The bottom left and right corner of low velocity has covers
larger region as compared to at Re = 100. In v-velocity contour, the fluid flow is dominant on the left
wall and the flow is reverse on the right wall. At higher Re, the maximum and minimum v-velocity
regions spreads out, covers larger area in the cavity.
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Fig. 1. Contour plots with at 256 x 256 grid for (a) pressure, Re = 100; (b) pressure, Re = 400; (c) u-velocity, Re = 100;
(d) u-velocity, Re = 400; (e) v-velocity, Re = 100; (f) v-velocity, Re = 400

3.3. Velocity profile analysis

From Fig. 2 - 5, it is shown that the u-velocity and v-velocity profile along vertical and horizontal
centerline of geometry of cavity respectively are coherent with Ghia’s benchmark solution as the grid
size increases. However, SIMPLE algorithm unable to be implemented for 256 x 256 grid size due to
incompatible relaxation factors. Optimum relaxation factors for velocity and pressure cannot be
found, hence, cause the solution to oscillates and diverge.

The minimum u-velocity along the vertical centerline of the cavity and v-velocity at minimum and
maximum along horizontal centerline for various grid sizes are computed in Table 3. The minimum
u-velocity is denoted as Umin and minimum and maximum v-velocity are denoted as Vmin and Vmax
respectively. As can be seen from the table, the extrema of velocity of grid size 128 x 128 and 256 x
256 of SIMPLER algorithm does not differ much. This in turns shows that, the numerical solution will
no longer changes with the increasing of grid size, in other words, grid independence. Furthermore,
both SIMPLE and SIMPLER algorithms have implemented and converge to similar results.

Table 3
Extrema of velocity along the centerline of the cavity, Re = 100
Reference Grid Umin Vmax Vmin
SIMPLE 16 x 16 -0.18011 0.14960 -0.20606
SIMPLER 16 x16 -0.18741 0.16002 -0.23098
SIMPLE 32x32 -0.20687 0.17349 -0.24592
SIMPLER 32x32 -0.20555 0.17387 -0.24588
SIMPLE 64 x 64 -0.21265 0.17834 -0.25247
SIMPLER 64 x 64 -0.21183 0.17810 -0.25167
SIMPLE 128 x 128 -0.21373 0.17932 -0.25356
SIMPLER 128 x 128 -0.21349 0.17924 -0.25335
SIMPLER 256 x 256 -0.21391 0.17950 -0.25371
Ghia et. a/ [10] 129 x 129 -0.21090 0.17527 -0.24533
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Fig. 2.U-velocity profile along vertical centerline by SIMPLE algorithm at Re

=100
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Fig. 3.V-velocity profile along vertical centerline by SIMPLE algorithm at Re =

100

In the simulation runs at Re = 400, the results obtained are also coherent with the benchmark
solution as shown in Fig.s 6 - 9. Both algorithms are implemented and matches well with Ghia as the
size of the grid increases. SIMPLE algorithm can only be implemented to solve up until 128 x 128 due

to incompatible relaxation parameters found.
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Fig. 5.V-velocity profile along horizontal centerline by SIMPLE algorithm at
Re =100

As previously mentioned in the results at Re = 100, there is not much difference in extrema
velocity of grid size 128 x 128 and 256 x 256. However, at Re = 400, the velocity between the two
grid sizes has larger difference values as compared to the solution at Re = 100. It can be said that for
larger Reynolds number, finer grid size is required in order to reach grid independence. Similarly,
both SIMPLE and SIMPLER algorithm implemented is able to converge to the same extrema velocity
profiles at all grid sizes. This can be shown through Table 4.
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Fig. 6.U-velocity profile along vertical centerline by SIMPLE algorithm at Re =
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Fig. 7.V-velocity profile along vertical centerline by SIMPLE algorithm at Re =
400
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Fig. 9.V-velocity profile along horizontal centerline by SIMPLE algorithm at
Re =400
Table 4
Extrema of velocity along the centerline of the cavity, Re = 400
Reference Grid Umin Vmax Vmin
SIMPLE 16x 16 -0.17234 0.16559 -0.28274
SIMPLER 16 x16 -0.17200 0.16585 -0.28220
SIMPLE 32x32 -0.24566 0.23069 -0.36796
SIMPLER 32x32 -0.24533 0.23085 -0.36778
SIMPLE 64 x 64 -0.29837 0.27849 -0.42560
SIMPLER 64 x 64 -0.29770 0.27749 -0.42458
SIMPLE 128 x 128 -0.31973 0.29701 -0.44629
SIMPLER 128 x 128 -0.31928 0.29602 -0.44564
SIMPLER 256 x 256 -0.32613 0.30172 -0.45178

Ghia et. al 129 x 129 -0.32726 0.30203 -0.44993
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3.4. Computational Cost Study

The numerical solution is obtained on PC with Intel® Core™i5 processor and 8GB RAM. In general,
it can be seen that the iteration number and computational time to implement SIMPLE is much larger
than SIMPLER. For Re = 400 and at grid size 128 x 128, the iteration number and computational time
has reach as high as 127999 and 16228.38 seconds. Whereas, for SIMPLER algorithm, it can go as fast
as 1.03 seconds and only require 309 iterations to obtain the solution.

However, there is a set of values which does not follow the trend, at which at Re = 100 of grid
size 128 x 128, the iteration number and computational time required for SIMPLER is larger than that
of SIMPLE. The reason of this discrepancy is due to the relaxation factor used in the SIMPLE algorithm.
As mentioned in Chapter lll, the algorithm is largely dependent on the relaxation factors. For this
case, the relaxation factor selected could be the optimum value for the algorithm to run at that given
Reynolds number and grid size. The iteration number and computational time for SIMPLE algorithm
can be improved if an optimum relaxation factor can be found.

The convergence rate between SIMPLE and SIMPLER algorithms are compared and computed in
the Table 5 - 7. Referring to [14], the rate of convergence canbecalculated with the formula given as
follows:

32X32_,,128X128

convergence rate = log, [t —nn (19)
|umin Winin

Grid size 128 X 128 is chosen as the reference solution. The ratio of the two errors can get an
estimate of the convergence. umin and vminof grid size 32 X 32, 64 X 64 and 128 X 128 at Re = 100
and Re = 400 are select from Table 1 — 2. Rate, and Rate,are the convergence rate for the umin and
Vmin respectively. In the table, it shows that SIMPLER algorithm implemented at Re = 100 and Re =
400 has better convergence rate as compared to SIMPLE algorithm due to the smaller ratio in error.

Table 5
Iteration number and computational time at Re = 100

Re =100 Grid Iteration Number Computational Time (s)

SIMPLE 16 x 16 7039 17.17

SIMPLER 16 x 16 309 1.03

SIMPLE 32x32 11974 85.87

SIMPLER 32x32 1175 12.26

SIMPLE 64 x 64 13922 305.51

SIMPLER 64 x 64 4576 146.94

SIMPLE 128 x 128 17296 1244.98

SIMPLER 128 x 128 18169 2038.38

Table 6
Iteration number and computational time at Re = 400

Re =400 Grid Iteration Number Computational Time (s)
SIMPLE 16 x 16 2745 9.40
SIMPLER 16 x 16 437 1.12
SIMPLE 32x32 8366 94.54
SIMPLER 32x32 1321 11.94
SIMPLE 64 x 64 21069 753.22
SIMPLER 64 x 64 3840 129.86
SIMPLE 128 x 128 127999 16228.38
SIMPLER 128 x 128 13705 1542.31
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Table 7
Convergence rate at Re = 100 and Re = 400
Reference Reynolds Ratey Ratey
Number
SIMPLE 100 2.667 2.809
SIMPLER 100 2.258 2.153
SIMPLE 400 1.794 1.921
SIMPLER 400 1.777 1.886

4.Conclusion

In the present work, SIMPLE and SIMPLER are employed to investigate the pressure and velocity
distribution in lid driven cavity. Comparison have made between the two algorithms in terms of
convergence, iteration number and computational time. Numerical solution for the incompressible
flow at Re = 100 and Re = 400 up to 256 x 256 grid are computed. The results obtained compared
well with the benchmark solution from previous literature. The pressure and velocity distribution
changes according to the Reynolds number. The magnitude of the pressure and the location of the
minimum u-velocity region are affected by the variation of Reynolds number. From this study, it is
found that SIMPLER require less iteration number and computational time to converge solution
despite the extra computational load. The findings from this study are able to be used as a reference
by future researchers in the comparison of these numerical schemes.

Future improvement can be made on this study to improve the computational time of the
numerical schemes. FORTRAN can be used as it is better as compared to MATLAB with its
recognizable computational efficiency. This in turns improve the performance and encourages more
findings at higher Reynolds number and finer grid size in shorter amount of time. In addition, an
application of improvised under-relaxation method on SIMPLE algorithm can improve the
convergence rate and computational time. In this way, more results can be obtained if optimal
relaxation factors are used in the numerical scheme. The solution will no longer oscillates heavily or
diverge.
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